

 Page 1 of 9

http://www.icetechnology.com

ICE iPush® Communication Server

Embedded

iceHMsg.ocx

 Programming Guide

By: ICE Technology Corp., March 10, 2004

Ver: 1.3.7

E-Mail \ service@icetechnology.com Tel \ +886-2-23961880 Fax \ +886-2-23961881
Copyright © 2004 ICE Technology Corporation. All Rights Reserved.
iPush® Server is the registered trademark of ICE Technology Corporation.

 Page 2 of 9

http://www.icetechnology.com

Table of Content

TABLE OF CONTENT..2

INTRODUCTION..3

DISTRIBUTION FORM AND INSTALLING ..3

PROPERTIES AND TEXT ...4

DATA ENCAPSULATING AND EXTRACTING:..4

PACKING OUTGOING MESSAGE..6

PARSING INCOMING MESSAGE ...8

PROPERTY ACCEPTED BY IPUSH® EMBEDDED...9

 Page 3 of 9

http://www.icetechnology.com

Introduction

IceHMsg is an ActiveX control that used for data representation and manipulation. It has a

property dictionary whose data can be accessed with string indexes, and a text segment,

both are optional. It can encode the data it represents into a byte array, which is useful to

be transmitted through iPush® Embedded, and the decoding function is also provided.

 This document is organized as the following sections:

 Properties and Text describes data types as well as data access interface

 Producing outgoing messages describes function used to prepare messages

for transmission

 Processing incoming messages describes function used to decode such

transmission format.

Distribution form and installing

IceHMsg is distributed as a DDL file iceHMsg.ocx. Before use it, you should register it as

a system resource, by issuing just one command:

regsvr32 < path to IceHMsg >\iceHMsg.ocx

Then you can see and use it as any ActiveX controls in your system.

 Page 4 of 9

http://www.icetechnology.com

Properties and Text

An iceHMsg object may contain many properties. A property can be a string, an integer

number, a real number, or a Boolean value. These properties are stored in a dictionary

data structure and accessed with their name string.

For each data type, a pair of set/get methods are provided to access a particular property.

For example, to set the property BitInput of an iceHMsg object msg to True, you can use

the setBooleanProperty method demonstrated below:

msg.setBooleanProperty “BitInput”, True

and use the getBooleanProperty method to retrieve that value afterward:

BitValue = msg.getBooleanProperty(“BitInput”)

The following lists are those data access methods corresponding data types supported by

iceHMsg:

Data Encapsulating and Extracting Method:

 setBooleanValue (propName as String, propValue as Boolean)

Set the value of Boolean property named propName to propValue.

 getBooleanValue (propName as String) As Boolean

Retrieve the value of Boolean property named propName.

 setByteValue (propName as String, propValue as Integer)

Set the value of Byte property named propName to propValue.

A Byte value is an integer number ranges from –27 to 27-1

 Page 5 of 9

http://www.icetechnology.com

 getByteValue (propName as String) As Integer

Retrieve the value of Byte property named propName.

 setShortValue (propName as String, propValue as Integer)

Set the value of Short property named propName to propValue.

A Short value is an integer number ranges from –216 to 216-1.

 getShortValue (propName as String) As Integer

Retrieve the value of Short property named propName.

 setIntValue (propName as String, propValue as Long)

Set the value of Int property named propName to propValue.

A Int value is an integer number ranges from –231 to 231-1.

 getIntValue (propName as String) As Long

Retrieve the value of Int property named propName.

 setFloatValue (propName as String, propValue as Single)

Set the value of Float property named propName to propValue.

A Float value is a single-precision real number.

 getFloatValue (propName as String) As Single

Retrieve the value of Float property named propName.

 setDoubleValue (propName as String, propValue as Double)

Set the value of Double property named propName to propValue.

A Double value is a double-precision real number.

 getDoubleValue (propName as String) As Double

Retrieve the value of Double property named propName.

 setStringValue (propName as String, propValue as String)

Set the value of String property named propName to propValue.

 getStringValue (propName as String) As String

 Page 6 of 9

http://www.icetechnology.com

Retrieve the value of String property named propName.

An iceHMsg object may also have one text segment, which is represented as a string. The

interface to access that text segment is:

 setText (text as String)

Set the text segment to text.

 getText () As String

Retrieve the text segment.

There is also methods that remove properties and text segment from a iceHMsg object

respectly:

 clearProperties ()

Remove all properties.

 clearText ()

Remove text segment.

Packing Outgoing Message

It is very simple to transform the data of an iceHMsg object into a byte array, which is

useful for transmission. The interface is:

 packSubjectMessage () As Variant

AS THE FUNCTION NAME IMPLIES, THE RETURNED BYTE ARRAY, WHICH IS WRAPPED AS A

VARIANT OBJECT, IS DESIGNED TO BE USED AS IPUSH® SUBJECT DATA, BUT NOT LIMITED TO IT.

Take an example:

msg.setFloatProperty “x”, 3.0

 Page 7 of 9

http://www.icetechnology.com

msg.setFloatProperty “y”, 4.0

msg.setText “point#1”

bytesMsg = msg.packSubjectMessage()

As result, bytesMsg contains the transmission form of property x set to 3.0, property y set

to 4.0, and text segment “point#1”.

 Page 8 of 9

http://www.icetechnology.com

Parsing Incoming Message

Transform encoded data back into a iceHMsg is straightforward, the interface is:

 parseSubjectMessage (data) as Boolean

This method returns a Boolean value indicates the parsing is successful or not. The data

type of parameter data should be byte array, just like the subject data transmitted from

iPush® ActiveX API. Note that previous text segment and all properties will be removed

before parsing, even the parsing fails afterward.

For example, with the previously constructed bytesMsg transmitted from iPush® as variant

data:

msg.parseSubjectMessage(data)

As a result, msg contains property x, y and text segment as msg in the previous example.

floatX=msg.getFloatProperty (“x”)

and x will be 3.0

floatY=msg.getFloatProperty (“y”)

and y will be 4.0

strText = msg.getText

and we will get strText will be “point#1”

 Page 9 of 9

http://www.icetechnology.com

Default Accepted Data Format

Only data format that well defined in I/O module can be recognized by iPush® Embedded.

Accepted data format could be expended by developer, please refer to IOModule

programming guide for detail description. Following table are default data format accepted

by iPush® Embedded:

Default Data Format accepted by iPush® Embedded

Property

Name
Accepted Data

Type
Example

AnalogInput Float Floating number like 1.42857 or 3.14159

AnalogOutput Float Floating number like 1.42857 or 3.14159

DigitalInput Integer, Byte 0-65535, 0-255

DigitalOutput Integer, Byte 0-65535, 0-255

BitInput Boolean TRUE, FALSE (Upper Case needed)

BitOutput Boolean TRUE, FALSE (Upper Case needed)

Report N/A N/A

