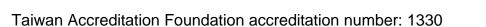


Product Type Applicant Address Trade Name	:	Smart Meter ICP DAS CO., LTD. No. 111, Guangfu N. Rd., Hukou Township, Hsinchu County 30351, Taiwan, R.O.C. ICP DAS
Model Number	:	PM-31zz-xxx-yyyy / PM-31zz-xxxP-yyyy / PM-31zzP-yyyy (zz can be 33 or 12 or 14 ; xxx can be 100 , 160, 240, or 360 ; yyyy can be -CAN,-CPS,-MTCP or blank)
Test Specification	:	EN 61326-1: 2013, Table 1 IEC 61326-1: 2012 EN 55011: 2009 + A1: 2010 , (Class A) EN 61000-4-2: 2009 EN 61000-4-3: 2006 +A1:2008 +A2:2010 EN 61000-4-4: 2012 EN 61000-4-5: 2006 EN 61000-4-6: 2009
Receive Date Test Period Issue Date		Aug. 28, 2014 Sep. 01 ~ 23, 2014 Sep. 29, 2014


Issue by

A Test Lab Techno Corp.

No. 140-1, Changan Street, Bade City,

Taoyuan County 334, Taiwan R.O.C.

Tel: +886-3-2710188 / Fax: +886-3-2710190

Note: This report shall not be reproduced except in full, without the written approval of A Test Lab Techno Corp. This document may be altered or revised by A Test Lab Techno Corp. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, or any government agencies. The test results in the report only apply to the tested sample.

Revision History

Rev.	Issue Date	Revisions	Revised By
00	Sep. 29, 2014	Initial Issue	

Verification of Compliance

Issued Date: 2014/09/29

Product Type	:	Smart Meter
Applicant	:	ICP DAS CO., LTD.
Address	:	No. 111, Guangfu N. Rd., Hukou Township, Hsinchu County 30351, Taiwan, R.O.C.
Trade Name	:	ICP DAS
Model Number	:	PM-31zz-xxx-yyyy / PM-31zz-xxxP-yyyy / PM-31zzP-yyyy
		(zz can be 33 or 12 or 14 ; xxx can be 100 , 160, 240, or 360 ; yyyy can be -CAN,-CPS,-MTCP or blank)
EUT Rated Voltage	:	AC 100-250V, 50-60Hz, 2.0A
Test Voltage	:	230 Vac / 50 Hz
Applicable Standard	:	EN 61326-1: 2013, Table 1
		IEC 61326-1: 2012
		EN 55011: 2009 + A1: 2010 , (Class A)
		EN 61000-4-2: 2009
		EN 61000-4-3: 2006 +A1:2008 +A2:2010
		EN 61000-4-4: 2012
		EN 61000-4-5: 2006
Test Result	:	Complied
Performing Lab.	:	A Test Lab Techno Corp.
		No. 140-1, Changan Street, Bade City,
		Taoyuan County 334, Taiwan R.O.C.
		Tel:+886-3-2710188 / Fax:+886-3-2710190
		Taiwan Accreditation Foundation accreditation number: 1330
		http://www.atl-lab.com.tw/e-index.htm

http://www.atl-lab.com.tw/e-index.htm

The above equipment has been tested by A Test Lab Techno Corp., and found compliance with the requirements set forth in the Directive 93/42/EEC concerning medical devices and technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

(Manager) (Roy Chen) (Testing Engineer) (Frank Lin)	Approved By	: For Chen	Reviewed By	Frank Im.
	(Manager)	(Roy Chen)	(Testing Engineer)	(Frank Lin)

TABLE OF CONTENTS

Gen	eral Information	5
EUT	Description	8
Test	Methodology	17
3.1.	Decision of Test Mode	17
3.2.	EUT Exercise Software	17
3.3.	Configuration of Test System Details	18
3.4.	Test Site Environment	20
Emis	ssion Test	21
4.1.	Conducted Emission Measurement	21
4.2.	Radiated Emission Measurement	28
4.3.	Voltage Fluctuation and Flicker	34
Imm		
5.1.	Electrostatic Discharge (ESD)	
5.2.	Radiated Electromagnetic Field (RS)	47
5.3.	Electrical Fast Transient/Burst (EFT)	51
5.4.	Surge	54
5.5.	Conducted Susceptibility (CS)	57
5.6.	Power Frequency Magnetic Field (PMF)	61
5.7.	Voltage Dips and Interruption	64
EUT	Photograph	67
	EUT Test 3.1. 3.2. 3.3. 3.4. Emis 4.1. 4.2. 4.3. Imm 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7.	EUT Description

1 General Information

1.1 Summary of Test Result

	Emission					
Standard	Item	Result	Remark			
EN 55011: 2009+A1:2010	Conducted	PASS	Meet Class A limit			
EN 55011: 2009+A1:2010	Radiated	PASS	Meet Class A limit			
EN 61000-3-2: 2006+A1:2009+A2:2009	Harmonic current emissions	N/A	EUT power <75W so do not test.			
EN 61000-3-3:2013	Voltage fluctuations & flicker	PASS	Meets the requirements			

	Immunity				
Standard	ltem	Result	Remark		
IEC 61000-4-2:2008	ESD	PASS	Meets the requirements of Performance Criterion B		
IEC 61000-4-3:2006 +A1:2007 +A2:2010	RS	PASS	Meets the requirements of Performance Criterion A		
IEC 61000-4-4:2004	EFT	PASS	Meets the requirements of Performance Criterion B		
IEC 61000-4-5:2005	Surge	PASS	Meets the requirements of Performance Criterion B		
IEC 61000-4-6:2008	CS	PASS	Meets the requirements of Performance Criterion A		
EN 61000-4-8: 2010	PMF	PASS	Meets the requirements of Criterion A		
IEC 61000-4-11:2004	Voltage dips & voltage variations	PASS	Meets the requirements of Voltage Dips:1)100% reduction Performance Criterion B2)60% reduction Performance Criterion C3)30% reduction Performance Criterion CVoltage Interruptions:1)100% reduction Performance Criterion C		

The statements of test result on the above are decided by the request of test standard only; the measurement uncertainties are not factored into this compliance determination.

The information of measurement uncertainty is available upon the customer's request.

1.2 Measurement Uncertainty

Conducted Emission

The measurement uncertainty is evaluated as ± 2.02 dB. <u>Conducted Emissions (Telecommunication Ports)</u> The measurement uncertainty is evaluated as ± 2.02 dB. <u>Radiated Emission</u> The Vertical measurement uncertainty of 30MHz - 1GHz is evaluated as ± 3.62 dB. The Horizontal measurement uncertainty of 30MHz - 1GHz is evaluated as ± 3.98 dB.

The Vertical measurement uncertainty of 1GHz - 6GHz is evaluated as \pm 3.07 dB.

The Horizontal measurement uncertainty of 1GHz - 6GHz is evaluated as \pm 3.11 dB.

Harmonic Current Emission

The measurement uncertainty is evaluated as \pm 1.2 %.

Voltage Fluctuations and Flicker

The measurement uncertainty is evaluated as \pm 1.5 %.

Electrostatic Discharge

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 2005[E], the requirements for measurement uncertainty in ESD testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant ESD standards. The immunity test signal from the ESD system meet the required specifications in IEC 61000-4-2 through the calibration report with the calibrated uncertainty for the waveform of voltage and timing as being 1.52 % and 2.69%.

Radiated susceptibility

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 2005[E], the requirements for measurement uncertainty in RS testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant RS standards. The immunity test signal from the RS system meet the required specifications in IEC 61000-4-3 through the calibration for the uniform field strength and monitoring for the test level with the uncertainty evaluation report for the electrical filed strength as being 2.65 dB.

Electrical fast transient/burst

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 1999[2], the requirements for measurement uncertainty in EFT/Burst testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant FT/Burst standards. The immunity test signal from the FT/Burst system meet the required specifications in IEC 61000-4-4 through the calibration report with the calibrated uncertainty for the waveform of voltage. Frequency and timing as being 1.57% and 2.73%.

<u>Surge</u>

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 2005[E], the requirements for measurement uncertainty in Surge testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant Surge standards. The immunity test signal from the Surge system meet the required specifications in IEC 61000-4-5 through the calibration report with the calibrated uncertainty for the waveform of voltage and timing as being 1.58 % and 2.71%.

Conducted susceptibility

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 2005[E], the requirements for measurement uncertainty in CS testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant CS standards. The immunity test signal from the CS system meet the required specifications in IEC 61000-4-6 through the calibration for unmodulated signal and monitoring for the test level with the uncertainty evaluation report for the injected modulated signal level through CDN and EM Clamp/Direct Injection as being 3.68 dB and 2.72 dB.

Power frequency magnetic field

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 2005[E], the requirements for measurement uncertainty in PFM testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant PFM standards. The immunity test signal from the PFM system meet the required specifications in IEC 61000-4-8 through the calibration report with the calibrated uncertainty for the Gauss Meter to verify the output level of magnetic field strength as being 1.8 %.

Voltage dips and interruption

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 2005[E], the requirements for measurement uncertainty in DIP testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant DIP standards. The immunity test signal from the DIP system meet the required specifications in IEC 61000-4-11 through the calibration report with the calibrated uncertainty for the waveform of voltage and timing as being 1.58 % and 2.72%.

2 EUT Description

Product Type	:	Smart Meter
Trade Name	:	ICP DAS
Model Number	:	PM-31zz-xxx-yyyy / PM-31zz-xxxP-yyyy / PM-31zzP-yyyy (zz can be 33 or 12 or 14 ; xxx can be 100 , 160, 240, or 360 ; yyyy can be -CAN,-CPS,-MTCP or blank) (*Those model numbers differ from each other in selling region.)
Applicant	:	ICP DAS CO., LTD. No. 111, Guangfu N. Rd., Hukou Township, Hsinchu County 30351, Taiwan, R.O.C.
Manufacturer	:	ICP DAS CO., LTD. No. 111, Guangfu N. Rd., Hukou Township, Hsinchu County 30351, Taiwan, R.O.C.

I/O Port Description :

I/O Port Types	Q'TY	Test Description
1). LAN Port	1	Connected to PC
2). D-SUB Port	1	Connected to PC
3). USB Port	1	Connected to PC
4). AC Power Port	1	Connected to AC input
5). DC Power Port	1	Connected to EUT
6). Signal Port	1	Connected to EUT

Feature of Equipment under Test :

The model listed below is series model to PM-3133-100.

Main	Software	Diversity	Mode 1
ET-7261		Ethernet I/O Module with 2-port Ethernet Switch, with	V
PET-7261		11-channels Relay PoE Ethernet I/O Module with 2-port Ethernet Switch, with 11-channels Relay	
ET-6052D		8-channel Digital Output and 14-channel Digital Input	V
ET-6060D		8-channel Digital Output and 10-channel Digital Input	V
ET2-6064D		24-channel Relay Output	V
GPS-721		GPS Receiver and 1 DO, 1 PPS Output Module	
GPS-721-MRTU		GPS Receiver and 1 DO, 1 PPS Output Module includes a GPS Active External Antenna (ANT-115-03)	V
I-7014D		1-channe Transmitter Input with 7-segment LED Display using the DCON and Modbus Protocols	V
I-7014D-X		1-channe Transmitter Input with 7-segment LED Display using the DCON and Modbus Protocols (X : The Cover is mean any color)	
M-7014D		M-7014D with 7-segment LED Display	
M-7014D-X		M-7014D with 7-segment LED Display (X:The Cover is mean any color)	
I-7522		Embedded communication controller with one RS-485 and two RS-232	
I-7522D		I-7522 + LED display	V
I-7520U4		Isolated RS-232 to 4 Channels RS-485 Active Hub	V
I-7520U4-X		Isolated RS-232 to 4 Channels RS-485 Active Hub (X : The Cover is mean any color)	
I-7520U4-CA		I-7520U4-G CR with CA-0915 cable x 1	
I-7520U4-CA-X		I-7520U4-G CR with CA-0915 cable x 1 (X:The Cover is mean any color)	
I-7065A		4-channel Isolated Digital Input and 5-channel AC SSR Output Module using the DCON Protocol	
I-7065AD		I-7065A with LED Display	V
I-7066		7-channel Photo-Mos Relay Output Module with DCON Protocol	
I-7066-X		7-channel Photo-Mos Relay Output Module with DCON Protocol (X : The Cover is mean any color)	
I-7066D		I-7066 with LED Display	V
I-7066D-X		I-7066 with LED Display (X:The Cover is mean any color)	
M-7066P		7-channel Photo-Mos Relay Output Module with DCON and Modbus Protocols	
M-7066P-X		7-channel Photo-Mos Relay Output Module with DCON and Modbus Protocols (X : The Cover is mean any color)	
M-7066PD		M-7066P with LED Display	
M-7066PD-X		M-7066P with LED Display (X:The Cover is mean any color)	
I-7083		3-axis, 32 bits encoder counter	
M-7083		3-axis, 32 bits encoder counter with DCON and Modbus Protocols	
I-7083D		3-axis, 32 bits encoder counter with LED Display	V

Main	Software	Diversity	Mode 1
M-7083D		M-7083D with LED Display	
I-7083B		3-axis, 32 bits encoder counter	
I-7083BD		3-axis, 32 bits encoder counter with LED Display	V
I-7011		1-channel Thermocouple Input Module using the DCON Protocol	
I-7011-X		1-channel Thermocouple Input Module using the DCON Protocol (X : The Cover is mean any color)	
I-7011D		I-7011 with with 7-segment LED Display	
I-7011D-X		I-7011 with with 7-segment LED Display (X:The Cover is mean any color)	
I-7011P		1-channel Thermocouple Input Module using the DCON Protocol	
I-7011P-X		1-channel Thermocouple Input Module using the DCON Protocol (X : The Cover is mean any color)	
I-7011PD		I-7011P with 7-segment LED Display	
I-7011PD-X		I-7011P with 7-segment LED Display (X:The Cover is mean any color)	
M-7011		1-channel Thermocouple Input Module using the DCON and Modbus Protocols	
M-7011-X		1-channel Thermocouple Input Module using the DCON and Modbus Protocols (X : The Cover is mean any color)	
M-7011D		I-7011 with 7-segment LED Display	
M-7011D-X		M-7011 with 7-segment LED Display (X : The Cover is mean any color)	
M-7019Z		0-channel Universal Analog Input Module	
M-7019Z-X		10-channel Universal Analog Input Module (X : The Cover is mean any color)	
M-7019Z-G/S		10-channel Universal Analog Input Module Includes the M-7019Z module and a DB-1820 Daughter Board	
M-7019Z-G/S2		10-channel Universal Analog Input Module Includes the M-7019Z module, a DN-1822 Daughter Board and a 1.8 m Cable	
M-7026		6-channel Analog Input, 2-channel Analog Output, 3-channel Digital Input and 3-channel Digital Output Module using the DCON and Modbus Protocol	V
I-7041P		14-channel Isolated Digital Input Module with DCON Protocol	
I-7041P-X		14-channel Isolated Digital Input Module with DCON Protocol (X : The Cover is mean any color)	
I-7041PD		I-7041P with LED Display	
I-7041PD-X		I-7041P with LED Display (X:The Cover is mean any color)	
M-7041P		14-channel Isolated Digital Input Module with DCON and Modbus Protocol	
M-7041P-X		14-channel Isolated Digital Input Module with DCON and Modbus Protocol (X : The Cover is mean any color)	
M-7041PD		M-7041P with LED Display	V
M-7041PD-X		M-7041P with LED Display (X:The Cover is mean any color)	
M-7041-A5		14-channel High Voltage Isolated Digital Input Module with DCON and Modbus Protocol	

Main	Software	Diversity	Mode 1
M-7041-A5-X		14-channel High Voltage Isolated Digital Input Module with DCON and Modbus Protocol (X : The Cover is mean any color)	
M-7041D-A5		M-7041-A5 with LED Display	V
M-7041D-A5-X		M-7041-A5 with LED Display (X:The Cover is mean any color)	
I-7058		8-channel Isolated Digital Input Module using the DCON Protocol	
I-7058D		I-7058 with LED Display	
I-7058D-X		I-7058 with LED Display (X : The Cover is mean any color)	
M-7058		8-channel Isolated Digital Input Module using the DCON and Modbus Protocols	
M-7058D		M-7058 with LED Display	V
M-7058D-X		M-7058 with LED Display (X:The Cover is mean any color)	
I-7059		8-channel Isolated Digital Input Module using the DCON Protocol	
I-7059-X		8-channel Isolated Digital Input Module using the DCON Protocol (X : The Cover is mean any color)	
I-7059D		I-7059 with LED Display	
I-7059D-X		I-7059 with LED Display (X:The Cover is mean any color)	
M-7059		8-channel Isolated Digital Input Module using the DCON and Modbus Protocols	
M-7059-X		8-channel Isolated Digital Input Module using the DCON and Modbus Protocols (X : The Cover is mean any color)	
M-7059D		M-7059 with LED Display	V
M-7059D-X		M-7059 with LED Display (X:The Cover is mean any color)	
M-7060P		4-channel Isolated Digital Input and 4-channel Relay Output Module using the DCON and Modbus Protocols	
M-7060P-X		4-channel Isolated Digital Input and 4-channel Relay Output Module using the DCON and Modbus Protocols (X : The Cover is mean any color)	
M-7060PD		M-7060P-G with LED Display	V
M-7060PD-X		M-7060P-G with LED Display (X:The Cover is mean any color)	
I-7065B		4-channel Isolated Digital Input and 5-channel DC SSR Output Module with 16-bit Counters	
I-7065B-X		4-channel Isolated Digital Input and 5-channel DC SSR Output Module with 16-bit Counters (X : The Cover is mean any color)	
I-7065BD		I-7065BD with LED Display	
I-7065BD-X		I-7065BD with LED Display (X:The Cover is mean any color)	
M-7065B		4-channel Isolated Digital Input and 5-channel DC SSR Output Module with 16-bit Counters	
M-7065B-X		4-channel Isolated Digital Input and 5-channel DC SSR Output Module with 16-bit Counters (X : The Cover is mean any color)	
M-7065BD		M-7065BD with LED Display	V

Main	Software	Diversity	Mode 1
M-7065BD-X		M-7065BD with LED Display (X:The Cover is mean any color)	
I-7067		7-channel Signal Relay Output Module with DCON Protocol	
I-7067-X		7-channel Signal Relay Output Module with DCON Protocol (X : The Cover is mean any color)	
M-7067		7-channel Signal Relay Output Module with DCON and Modbus Protocols	
M-7067-X		7-channel Signal Relay Output Module with DCON and Modbus Protocols (X:The Cover is mean any color)	
I-7067D		I-7067 with LED Display	
I-7067D-X		I-7067 with LED Display (X:The Cover is mean any color)	
M-7067D		M-7067 with LED Display	V
M-7067D-X		M-7067 with LED Display (X:The Cover is mean any color)	
I-7088		8-channel PWM Output and 8-channel High-speed Counter Module using the DCON Protocol	
I-7088-X		8-channel PWM Output and 8-channel High-speed Counter Module using the DCON Protocol (X : The Cover is mean any color)	
I-7088D		I-7088 with 7-segment LED Display	
I-7088D-X		I-7088 with 7-segment LED Display (X:The Cover is mean any color)	
I-7088-G/S		I-7088 with DN-8P8C-CA External Board	
I-7088D-G/S		I-7088D with DN-8P8C-CA External Board	
M-7088		8-channel PWM Output and 8-channel High-speed Counter Module using the DCON and Modbus Protocols	
M-7088-X		8-channel PWM Output and 8-channel High-speed Counter Module using the DCON and Modbus Protocols (X : The Cover is mean any color)	
M-7088D		M-7088 with 7-segment LED Display	V
M-7088D-X		M-7088 with 7-segment LED Display (X:The Cover is mean any color)	
M-7088-G/S		M-7088 with DN-8P8C-CA External Board	
M-7088D-G/S		M-7088D with DN-8P8C-CA External Board	
DN-8P8C		8-channel Digital Output and 8-channel Counter Input Board, including two CA-090910-A Cable and two CA-3813 Connector Casing.	
DN-8P8C-CA		8-channel Digital Output and 8-channel Counter Input Board, including two CA-090910-A Cable and two CA-3813 Connector Casing.	
DN-8P8C/S		8-channel Digital Output and 8-channel Counter Input Board, including DB-8820 Daughterboard and a CA-2520D Cable.	
NS-209FCS		Single-mode 30 km, SC Connector, 8-port 10/100 Mbps with 1 fiber port Switch	V
NSM-209FCS		Single-mode 30 km, SC Connector, 8-port 10/100 Mbps with 1 fiber port Switch; metal case	
NS-200AFC-T		Industrial 10/100 Base-T to 100 Base-FX Media Converter; 1 multi mode, SC connector	
NS-200AFT-T		Industrial 10/100 Base-T to 100 Base-FX Media Converter; 1 multi mode, ST connector	
NS-200WDM-A		10/100BaseT(X) to 100BaseFX Single-Strand Media Converter, TX 1310 nm, RX 1550 nm, SC	

Main	Software	, ,	
NS-200WDM-B		10/100BaseT(X) to 100BaseFX Single-Strand Media Converter, TX 1550 nm, RX 1310 nm, SC	
NS-200AFCS-T		Industrial 10/100 Base-T to 100 Base-FX Media Converter; 1 single mode, SC connector	
NS-200AFCS-60T		Industrial 10/100 Base-T to 100 Base-FX Media Converter; 1 (60 km) single mode, SC connector	V
РМ-3112-ххх-уууу		2 loops single-phase Power Meter (xxx can be 100 , 160, 240, or 360; yyyy can be -CAN,-CPS,-MTCP or blank	
PM-3112-xxxP-yyyy		2 loops single-phase Power Meter with 333mV CT (xxx can be 100 , 160, 240, or 360; yyyy can be -CAN,-CPS,-MTCP or blank)	
PM-3112P-yyyy		2 loops single-phase Power Meter without CT (yyyy can be -CAN,-CPS,-MTCP or blank)	
PM-3112-100-MTCP		2 loops single-phase Power Meter	V
РМ-3114-ххх-уууу		4 loops single-phase Power Meter (xxx can be 100 , 160, 240, or 360; yyyy can be -CAN,-CPS,-MTCP or blank)	
PM-3114-xxxP-yyyy		4 loops single-phase Power Meter with 333mV CT (xxx can be 100 , 160, 240, or 360; yyyy can be -CAN,-CPS,-MTCP or blank)	
РМ-3114Р-уууу		4 loops single-phase Power Meter without CT (yyyy can be -CAN,-CPS,-MTCP or blank)	
PM-3114-100-MTCP		4 loops single-phase Power Meter	V
РМ-3133-ххх-уууу		3 Phase Compact Smart Meter (xxx can be 100 , 160, 240, or 360; yyyy can be -CAN,-CPS,-MTCP or blank)	
PM-3133-xxxP-yyyy		3 Phase Compact Smart Meter with 333mV CT (xxx can be 100 , 160, 240, or 360; yyyy can be -CAN,-CPS,-MTCP or blank)	
РМ-3133Р-уууу		3 Phase Compact Smart Meter with without CT (yyyy can be -CAN,-CPS,-MTCP or blank)	
PM-3133-100		3 Phase Compact Smart Meter	V
PETL-7060		Ethernet module with PoE, 6-ch isolated DI and 6-ch form-A power relay	
PW-3090-5S-R		Output Power Voltage +5 V @ 2000 mA (max.) Accuracy : 2%	
PW-3090-5S		Output Power Voltage +5 V @ 2000 mA (max.) Accuracy : 2%	V
PW-3090-5D-R		Output Power Voltage 5 V @ 1000 mA (max.) Accuracy : 2%	
PW-3090-5D		Output Power Voltage 5 V @ 1000 mA (max.) Accuracy : 2%	V
PW-3090-12S-R		Output Power Voltage +12 V @ 800 mA (max.) Accuracy : 2%	
PW-3090-12S		Output Power Voltage +12 V @ 800 mA (max.) Accuracy : 2%	V
PW-3090-15D-R		Output Power Voltage 15 V @ 300 mA (max.) Accuracy : 2%	
PW-3090-15D		Output Power Voltage 15 V @ 300 mA (max.) Accuracy : 2%	V
PW-3090-24S-R		Output Power Voltage +24 V @ 400 mA (max.) Accuracy : 2%	
PW-3090-24S		Output Power Voltage +24 V @ 400 mA (max.) Accuracy : 2%	
tET-P6		Tiny Ethernet module with 6-ch DI (Wet Contact)	
tET-PD6		Tiny Ethernet module with 6-ch DI (Dry Contact)	
tPET-P6		Tiny Ethernet module with PoE, and 6-ch DI (Wet Contact)	
tPET-PD6		Tiny Ethernet module with PoE, and 6-ch DI (Dry Contact)	

Main	Software	Diversity	Mode 1
tET-P2POR2		Tiny Ethernet module with 2-ch DI (Wet Contact) and 2-ch Form-A PhotoMos relay	
tET-PD2POR2		Tiny Ethernet module with 2-ch DI (Dry Contact) and 2-ch Form-A PhotoMos relay	V
tET-P2R2		Tiny Ethernet module with 2-ch DI (Wet Contact) and 2-ch Form-A relay	
tET-PD2R1		Tiny Ethernet module 2-ch DI (Dry Contact) and 1-ch Form-A relay	
tPET-P2POR2		Tiny Ethernet module with PoE, 2-ch DI (Wet Contact) and 2-ch Form-A PhotoMos relay	
tPET-PD2POR2		Tiny Ethernet module with PoE, 2-ch DI (Dry Contact) and 2-ch Form-A PhotoMos relay	
tPET-P2R2		Tiny Ethernet module with PoE, 2-ch DI (Wet Contact) and 2-ch Form-A relay	
tPET-PD2R1		Tiny Ethernet module with PoE, 2-ch DI (Dry Contact) and 1-ch Form-A relay	
TP-3080		8.4" (800 x 600) resistive touch panel monitor with RS-232 or USB interface Accessories: Power supply, VGA cable, RS-232 cable, USB cable, Mounting clamps and screws	V
TP-3080/NP		TP-3080 without Power supply	
WP-5141		Standard WinPAC-5000	
WP-5141-EN	Windows CE 5.0	Standard WinPAC-5000 (English Version of OS)	
WP-5141-TC	Windows CE 5.0	Standard WinPAC-5000 (Traditional Version of OS)	
WP-5141-SC	Windows CE 5.0	Standard WinPAC-5000 (Simplified Version of OS)	
WP-5141-XW107	Windows CE 5.0	Standard WinPAC-5000 add XW107	V
WP-5146	Windows CE 5.0	InduSoft and ISaGRAF based WinPAC-5000	
WP-5146-EN	Windows CE 5.0	InduSoft and ISaGRAF based WinPAC-5000 (English Version of OS)	
WP-5146-TC	Windows CE 5.0	InduSoft and ISaGRAF based WinPAC-5000 (Traditional Version of OS)	
WP-5146-SC	Windows CE 5.0	InduSoft and ISaGRAF based WinPAC-5000 (Simplified Version of OS)	
WP-5146-XW107	Windows CE 5.0	InduSoft and ISaGRAF based WinPAC-5000 add XW107	
WP-5147	Windows CE 5.0	ISaGRAF based WinPAC-5000	
WP-5147-EN	Windows CE 5.0	ISaGRAF based WinPAC-5000 (English Version of OS)	
WP-5147-TC	Windows CE 5.0	ISaGRAF based WinPAC-5000 (Traditional Version of OS)	
WP-5147-SC	Windows CE 5.0	ISaGRAF based WinPAC-5000 (Simplified Version of OS)	
WP-5147-XW107	Windows CE 5.0	ISaGRAF based WinPAC-5000 add XW107	
WP-5149	Windows CE 5.0	InduSoft based WinPAC-5149	

Main	Software	Diversity	Mode 1
WP-5149-EN	Windows CE 5.0	InduSoft based WinPAC-5149 (English Version of OS)	
WP-5149-TC	Windows CE 5.0	InduSoft based WinPAC-5149 (Traditional Version of OS)	
WP-5149-SC	Windows CE 5.0	InduSoft based WinPAC-5149 (Simplified Version of OS)	
WP-5149-XW107	Windows CE 5.0	InduSoft based WinPAC-5149 add XW107	
LP-5131-EN	Linux kernel 2.6.19	PAC with Linux kernel 2.6.19 and one LAN port (English Version of OS)	
LP-5141-EN	Linux kernel 2.6.19	PAC with Linux kernel 2.6.19 and two LAN ports (English Version of OS)	
WP-5141-OD	Windows CE 5.0	Standard WinPAC-5000 with Audio	V
WP-5141-OD-EN	Windows CE 5.0	Standard WinPAC-5000 with Audio (English Version of OS)	
WP-5141-OD-TC	Windows CE 5.0	Standard WinPAC-5000 with Audio (Traditional Version of OS)	
WP-5141-OD-SC	Windows CE 5.0	Standard WinPAC-5000 with Audio (Simplified Version of OS)	
WP-5141-OD-XW107	Windows CE 5.0	Standard WinPAC-5000 with Audio add XW107	
WP-5146-OD	Windows CE 5.0	InduSoft and ISaGRAF based WinPAC-5000 with Audio	
WP-5146-OD-EN	Windows CE 5.0	InduSoft and ISaGRAF based WinPAC-5000 with Audio (English Version of OS)	
WP-5146-OD-TC	Windows CE 5.0	InduSoft and ISaGRAF based WinPAC-5000 with Audio (Traditional Version of OS)	
WP-5146-OD-SC	Windows CE 5.0	InduSoft and ISaGRAF based WinPAC-5000 with Audio (Simplified Version of OS)	
WP-5146-OD-XW107	Windows CE 5.0	InduSoft and ISaGRAF based WinPAC-5000 with Audio add XW107	
WP-5147-OD	Windows CE 5.0	ISaGRAF based WinPAC-5000 with Audio	
WP-5147-OD-EN	Windows CE 5.0	ISaGRAF based WinPAC-5000 with Audio (English Version of OS)	
WP-5147-OD-TC	Windows CE 5.0	ISaGRAF based WinPAC-5000 with Audio (Traditional Version of OS)	
WP-5147-OD-SC	Windows CE 5.0	ISaGRAF based WinPAC-5000 with Audio (Simplified Version of OS)	
WP-5147-OD-XW107	Windows CE 5.0	ISaGRAF based WinPAC-5000 with Audio add XW107	
WP-5149-OD	Windows CE 5.0	InduSoft based WinPAC-5149 with Audio	
WP-5149-OD-EN	Windows CE 5.0	InduSoft based WinPAC-5149 with Audio (English Version of OS)	
WP-5149-OD-TC		InduSoft based WinPAC-5149 with Audio (Traditional Version of OS)	
WP-5149-OD-SC		InduSoft based WinPAC-5149 with Audio (Simplified Version of OS)	

Main	Software	Diversity	Mode 1
WP-5149-OD-XW107	Windows CE 5.0	InduSoft based WinPAC-5149 with Audio add XW107	
LP-5131-OD-EN		PAC with Linux kernel 2.6.19 and one LAN port and Audio (English Version of OS)	
LP-5141-OD-EN		PAC with Linux kernel 2.6.19 and two LAN ports and Audio (English Version of OS)	
XW107		8-channel Non-Isolation Digital Input and 8-channel Non-Isolation Digital Output	V

3 Test Methodology

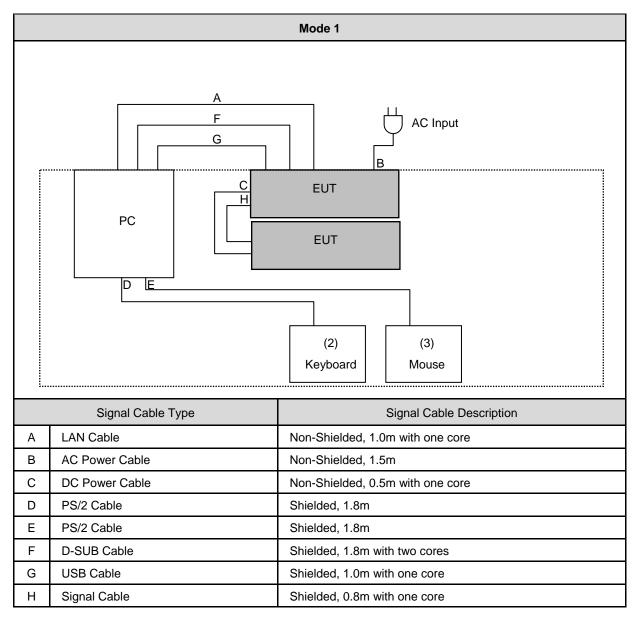
3.1. Decision of Test Mode

3.1.1. The following test mode(s) were scanned during the preliminary test:

	Pre-Test Mode	
Mode 1: Full system (Read/Write)		

3.1.2. After the preliminary scan, the following test mode was found to produce the highest emission level.

		Fina	I Test Mode	
	Conducted Emission	1	Mode 1	
	Radiated Emission	Below 1GHz	Mode 1	
Emission		Above 1GHz	Mode 1	
	Harmonic current en	nissions	N/A	
	Voltage fluctuations	& flicker	Mode 1	
	ESD		Mode 1	
	RS		Mode 1	
	EFT		Mode 1	
Immunity	Surge		Mode 1	
	CS		Mode 1	
	PMF		Mode 1	
	Voltage dips & voltage variations		Mode 1	


Then, the above highest emission mode of the configuration of the EUT and cable was chosen for all final test items. The test items IEC 61000-4-4, IEC 61000-4-5 & IEC 61000-4-11 were performed at the minimum and maximum RATED input voltages. The worst case (Input: 230VAC) was precisely noted in the test report only. Please refer to the following test result.

3.2. EUT Exercise Software

1.	Setup the EUT and simulators as shown on 3.3.
2.	Turn on the power of all equipment.
3.	The EUT will start to operate function.

3.3. Configuration of Test System Details

Devices Description							
	Product Manufacturer Model Number Serial Number Power				Cord		
(1)	Keyboard	DELL	SK-8110	07N2443884232J7Q39	Power b	y PC	
(2)	Mouse	DELL	MO71KC	511091717	Power b	by PC	
(3)	PC	ICP DAS	VB-115H	N/A	Non-Shield	ed, 1.7m	
			※ PC Keypart inform	nation			
	Main	Software		Diversity		Mode 1	
(3)-1	VXC-118U		RS-232 ports (R	erial Communication card oHS) -PC62M D-Sub connecto		V	
(3)-2	VXC-118U/D2		Universal PCI, S RS-232 ports (Re	Universal PCI, Serial Communication card with 8 RS-232 ports (RoHS) Includes one CA-9-6210 cable.			
(3)-3	PIO-D24U		Universal PCI bu	Universal PCI bus, 24-channel DIO board			
(3)-4	PIO-D56U		Universal PCI bu	Universal PCI bus, 56-channel DIO board			
(3)-5	PISO-813		(RoHS)	PCI Bus, 32 channel isolated analog input board.			
(3)-6	PISO-813/S		PCI Bus, 32 char (RoHS)	PCI Bus, 32 channel isolated analog input board.			
(3)-7	PISO-813U		Universal PCI, 32 (RoHS)	Universal PCI, 32-channel isolated analog input board.			
(3)-8	PISO-813U/S		Universal PCI, 3 (RoHS)	Universal PCI, 32-channel isolated analog input board.			
(3)-9	ISO-P32C32		Includes one CA	32-channel isolated digital I/O board Includes one CA-4037W cable and two CA-4002 D-Sub connectors.			
(3)-10) DIO-64/3		•	32-channel Digital Input & 32-channel Digital Output,3 Timer/Counter Board			
(3)-11	DIO-64/6		32-channel Digita	32-channel Digital Input & 32-channel Digital Output,6 Timer/Counter Board			

	Support Unit						
	Product Manufacturer Model Number Serial Number Power Cord						
1.	Industrial Power Supply	ICP DAS	DP-1200	N/A	Non-Shielded, 1.7m with one core		

3.4. Test Site Environment

Items	Test Item	Required (IEC 60068-1)	Actual
Temperature (°C)		15-35	26.0
Humidity (%RH)	EN55011 CE	25-75	60.0
Barometric pressure (mbar)		860-1060	950
Temperature (°C)		15-35	26.0
Humidity (%RH)	EN55011 RE	25-75	60.0
Barometric pressure (mbar)	7	860-1060	950
Temperature (°C)			26.0
Humidity (%RH)	EN 61000-3-3		60.0
Barometric pressure (mbar)	7		950
Temperature (°C)		15-35	26.8
Humidity (%RH)	IEC 61000-4-2	30-60	44.6
Barometric pressure (mbar)	7	860-1060	950
Temperature (°C)			22.6
Humidity (%RH)	IEC 61000-4-3		50.2
Barometric pressure (mbar)	7		950
Temperature (°C)		15-35	24.6
Humidity (%RH)	IEC 61000-4-4	30-60	46.6
Barometric pressure (mbar)		860-1060	950
Temperature (°C)		15-35	24.6
Humidity (%RH)	IEC 61000-4-5	10-75	46.6
Barometric pressure (mbar)	7	860-1060	950
Temperature (°C)			22.6
Humidity (%RH)	IEC 61000-4-6		50.2
Barometric pressure (mbar)			950
Temperature (°C)		15-35	24.6
Humidity (%RH)	IEC 61000-4-8	25-75	46.6
Barometric pressure (mbar)		860-1060	950
Temperature (°C)		15-35	24.6
Humidity (%RH)	IEC 61000-4-11	25-75	46.6
Barometric pressure (mbar)		860-1060	950

4 Emission Test

4.1. Conducted Emission Measurement

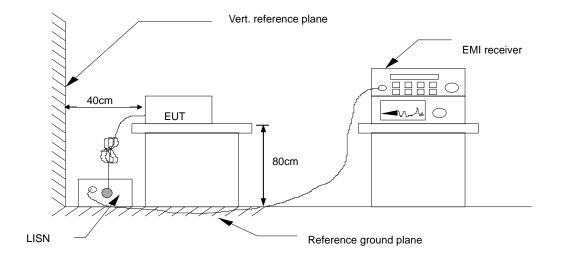
4.1.1. Limit

Frequency	Class A	(dBuV)	Class B (dBuV)		
(MHz)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

Note: (1) The lower limit shall apply at the transition frequencies.

(2) The limit decreases in line with the logarithm of the frequency in the range 0.15 to 0.50 MHz.

(3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.


4.1.2. Test Instruments

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period
Test Receiver	R&S	ESCI	100367	06/12/2014	1 year
LISN	R&S	ENV216	101040	03/07/2014	1 year
LISN	R&S	ENV216	101041	03/07/2014	1 year
T-LISN	FCC	FCC-TLISN-T2-02	20574	04/03/2014	1 year
T-LISN	FCC	FCC-TLISN-T4-02	20529	04/03/2014	1 year
T-LISN	TESEQ	ISN-T8	34413	04/23/2014	1 year
Spectrum Analyzer	Advantest	R3132	160300103	N.C.R.	
Transient Limiter	ELECTRO-METRICS	EM-7600	777	N.C.R.	
Test Site	ATL	TE02	TE02	N.C.R.	

Note: N.C.R. = No Calibration Request.

4.1.3. Test Setup

4.1.4. Test Procedure

Procedure of Preliminary Test

The EUT was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per EN 55011 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.

Support equipment, if needed, was placed as per EN 55011.

All I/O cables were positioned to simulate typical actual usage as per EN 55011.

The test equipment EUT installed received AC power, 230VAC/50Hz, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane.

All support equipment received power from a second LISN.

The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

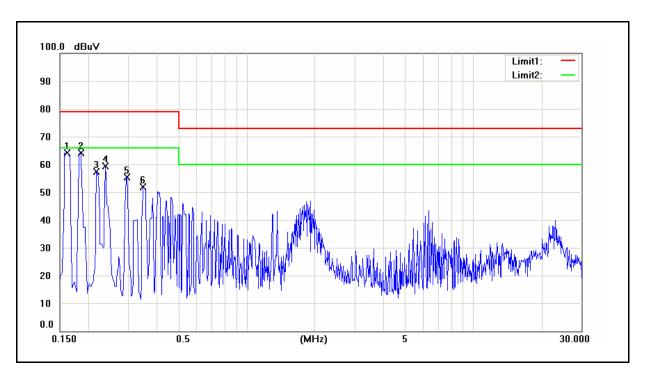
The test mode(s) described in Item 3.2 were scanned during the preliminary test.

After the preliminary scan, we found the test mode described in Item 3.2 producing the highest emission level.

The worst configuration of EUT and cable of the above highest emission level were recorded for reference of the final test.

Procedure of Final Test

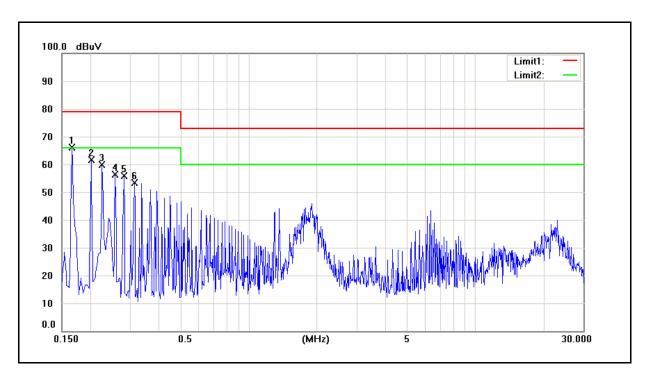
EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.


A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the Average limit in Q.P. mode, then the emission signal was re-checked using an Average detector.

The test data of the worst-case condition(s) was recorded.

4.1.5. Test Result

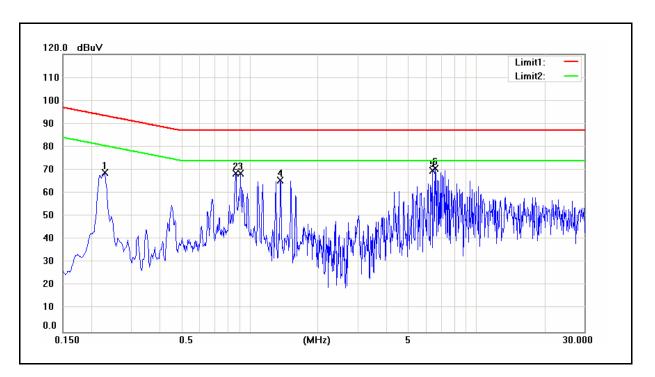
Standard:	EN 55011	Line:	L1
Test item:	Conducted Emission	Power:	AC 230V/50Hz
Model Number:	PM-3133-100	Temp.(℃)/Hum.(%RH):	26(℃)/60%RH
Mode:	Mode 1	Date:	2014/09/01
		Test By:	Frank Lin
Description:			


No.	Frequency	QP	AVG	Correction	QP	AVG	QP	AVG	QP	AVG	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1620	49.60	17.77	9.60	59.20	27.37	79.00	66.00	-19.80	-38.63	Pass
2	0.1860	46.65	15.30	9.60	56.25	24.90	79.00	66.00	-22.75	-41.10	Pass
3	0.2180	43.54	18.17	9.60	53.14	27.77	79.00	66.00	-25.86	-38.23	Pass
4	0.2380	42.22	29.04	9.60	51.82	38.64	79.00	66.00	-27.18	-27.36	Pass
5	0.2980	38.24	11.87	9.61	47.85	21.48	79.00	66.00	-31.15	-44.52	Pass
6	0.3500	35.20	9.61	9.61	44.81	19.22	79.00	66.00	-34.19	-46.78	Pass

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB).

Standard:	EN 55011	Line:	Ν
Test item:	Conducted Emission	Power:	AC 230V/50Hz
Model Number:	PM-3133-100	Temp.(℃)/Hum.(%RH):	26(℃)/60%RH
Mode:	Mode 1	Date:	2014/09/01
		Test By:	Frank Lin
Description:			


No.	Frequency	QP	AVG	Correction	QP	AVG	QP	AVG	QP	AVG	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1660	49.16	17.49	9.60	58.76	27.09	79.00	66.00	-20.24	-38.91	Pass
2	0.2020	45.33	14.20	9.60	54.93	23.80	79.00	66.00	-24.07	-42.20	Pass
3	0.2260	43.39	21.61	9.60	52.99	31.21	79.00	66.00	-26.01	-34.79	Pass
4	0.2580	40.90	11.87	9.61	50.51	21.48	79.00	66.00	-28.49	-44.52	Pass
5	0.2820	39.24	13.16	9.61	48.85	22.77	79.00	66.00	-30.15	-43.23	Pass
6	0.3140	37.21	9.43	9.61	46.82	19.04	79.00	66.00	-32.18	-46.96	Pass

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB).

Standard:	ISN(Voltage)	Line:	N/A
Test item:	Conducted Emission	Power:	AC 230V/50Hz
Model Number:	PM-3133-100	Temp.(℃)/Hum.(%RH):	26(℃)/60%RH
Mode:	Mode 1 (ISN 100M)	Date:	2014/09/01
		Test By:	Frank Lin
Description:			

No.	Frequency	QP	AVG	Correction	QP	AVG	QP	AVG	QP	AVG	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.2300	57.25	56.39	9.95	67.20	66.34	93.45	80.45	-26.25	-14.11	Pass
2	0.8700	57.61	56.60	9.95	67.56	66.55	87.00	74.00	-19.44	-7.45	Pass
3	0.9140	57.11	56.31	9.95	67.06	66.26	87.00	74.00	-19.94	-7.74	Pass
4	1.3700	55.38	55.59	9.97	65.35	65.56	87.00	74.00	-21.65	-8.44	Pass
5	6.3980	58.94	58.47	10.10	69.04	68.57	87.00	74.00	-17.96	-5.43	Pass
6	6.6260	60.00	60.05	10.11	70.11	70.16	87.00	74.00	-16.89	-3.84	Pass

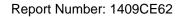
Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB).

4.1.6. Test Photograph

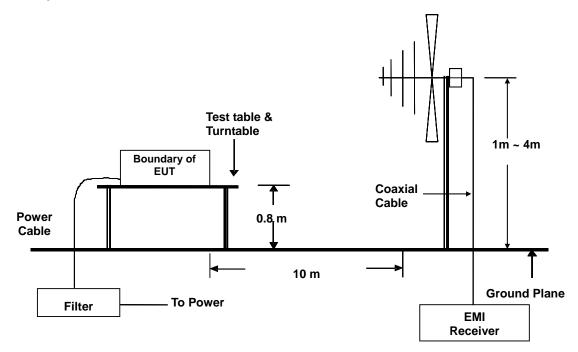
4.2. Radiated Emission Measurement

4.2.1. Limit


Frequency	dBuV/m (Distance 10m)				
(MHz)	Class A	Class B			
30 ~ 230	40	30			
230 ~ 1000	47	37			

Note: The lower limit shall apply at the transition frequencies.

4.2.2. Test Instruments


		10 Meter Chambe	er		
Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period
Pre Amplifier	Agilent	8447D	2944A11120	01/10/2014	1 year
Pre Amplifier	Agilent	8447D	2944A11119	01/10/2014	1 year
Test Receiver	R&S	ESCI	100722	10/26/2013	1 year
Test Receiver	R&S	ESCI	101000	12/03/2013	1 year
Broadband Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB 9160	9160-3268	06/03/2014	1 year
Broadband Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB 9160	9160-3273	12/13/2013	1 year
Test Site	ATL	TE06	TE06	08/09/2014	1 year

Note: N.C.R. = No Calibration Request.

4.2.3. Setup

4.2.4. Test Procedure

Procedure of Preliminary Test

The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is floor-standing equipment, it is placed on the ground plane that has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.

Support equipment, if needed, was placed as per EN 55011.

All I/O cables were positioned to simulate typical usage as per EN 55011.

The EUT received AC power source, 230VAC/50Hz, from the outlet socket under the turntable. All support equipment-received power from another socket under the turntable.

The antenna was placed at 10 meter away from the EUT as stated in EN 55011. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.

The Analyzer / Receiver quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

The test mode(s) described in Item 3.2 were scanned during the preliminary test:

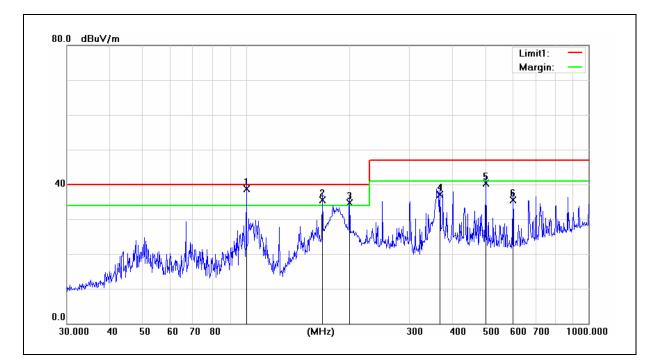
After the preliminary scan, we found the test mode described in Item 3.2 producing the highest emission level.

The worst configuration of EUT and cable, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.

Procedure of Final Test

EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.

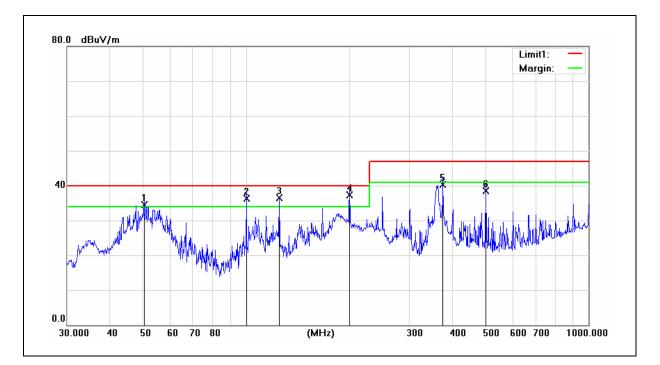
The Analyzer / Receiver scanned from 30MHz to 1000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.


Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented.

The test data of the worst-case condition(s) was recorded.

4.2.5. Test Result

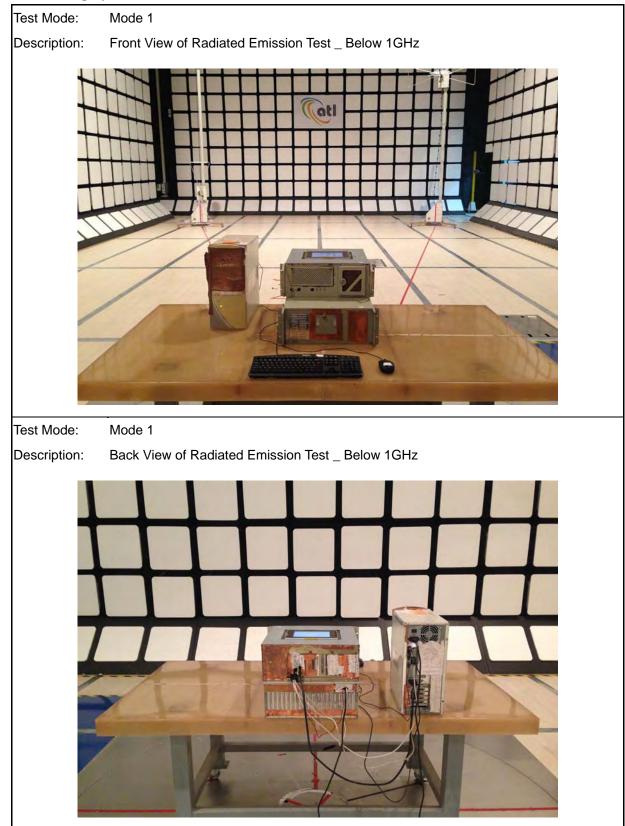
Standard:	EN 55011	Test Distance:	10m
Test item:	Radiated Emission	Power:	AC 230V/50Hz
Model Number:	PM-3133-100	Temp.(℃)/Hum.(%RH):	26(℃)/60%RH
Mode:	Mode 1	Date:	2014/09/22
Ant.Polar.:	Horizontal	Test By:	Frank Lin


No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	100.2286	55.84	-17.04	38.80	40.00	-1.20	400	337	QP
2	167.2368	48.12	-12.52	35.60	40.00	-4.40	400	105	QP
3	200.6881	50.26	-15.46	34.80	40.00	-5.20	400	142	QP
4	368.1116	46.48	-9.28	37.20	47.00	-9.80	200	53	QP
5	501.1790	46.62	-6.22	40.40	47.00	-6.60	200	64	QP
6	601.4265	39.51	-3.91	35.60	47.00	-11.40	100	68	QP

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) – Pre-Amplifier gain (dB).

Standard:	EN 55011	Test Distance:	10m
Test item:	Radiated Emission	Power:	AC 230V/50Hz
Model Number:	PM-3133-100	Temp.(℃)/Hum.(%RH):	26(℃)/60%RH
Mode:	Mode 1	Date:	2014/09/22
Ant.Polar.:	Vertical	Test By:	Frank Lin


No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	50.4090	48.19	-13.69	34.50	40.00	-5.50	100	47	QP
2	100.2286	52.81	-16.51	36.30	40.00	-3.70	100	290	QP
3	125.0066	49.93	-13.33	36.60	40.00	-3.40	100	37	QP
4	200.6881	52.17	-14.87	37.30	40.00	-2.70	100	73	QP
5	375.9385	48.50	-8.20	40.30	47.00	-6.70	100	2	QP
6	501.1790	43.57	-5.07	38.50	47.00	-8.50	100	145	QP

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) – Pre-Amplifier gain (dB).

4.2.6. Test Photograph

4.3. Voltage Fluctuation and Flicker

4.3.1. Limit

The following limits apply:

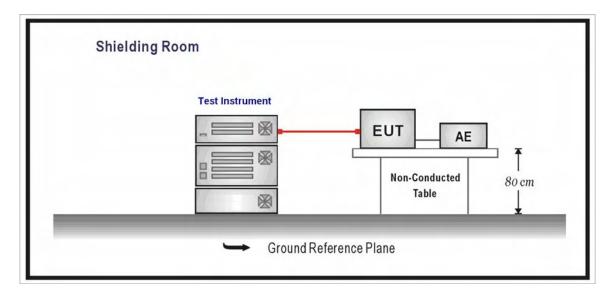
- -- the value of P_{st} shall not be greater than 1.0;
- -- the value of P_{lt} shall not be greater than 0.65;
- -- the value of d(t) during a voltage change shall not exceed 3.3 % for more than 500 ms;
- -- the relative steady-state voltage change, d_c, shall not exceed 3.3 %;
- -- the maximum relative voltage change, $d_{\text{max}},$ shall not exceed;
- a) 4 % without additional conditions;
- b) 6 % for equipment which is:
- -- switched manually, or
- -- switched automatically more frequently than twice per day, and also has either a delayed restart (the delay being not less than a few tens of seconds), or manual restart, after a power supply interruption.

Note: The cycling frequency will be further limited by the P_{st} and P_{1t} limit.

For example: a d_{max} of 6% producing a rectangular voltage change characteristic twice per hour will give a P_{1t} of about 0.65.

- c) 7 % for equipment which is:
- -- attended whilst in use (for example: hair dryers, vacuum cleaners, kitchen equipment such as mixers, garden equipment such as lawn mowers, portable tools such as electric drills), or
- -- switched on automatically, or is intended to be switched on manually, no more than twice per day, and also has either a delayed restart (the delay being not less than a few tens of seconds) or manual restart, after a power supply interruption.

Pst and P1t requirements shall not be applied to voltage changes caused by manual switching.


4.3.2. Test Instrument

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period	
Power Harmonics Analyzers	EMC-Partner AG	HAR1000-1P	171	02/07/2014	2 year	
Test Site	ATL	TE05	TE05	N.C.R.		

Note: N.C.R. = No Calibration Request.

4.3.3. Setup

4.3.4. Test Procedure

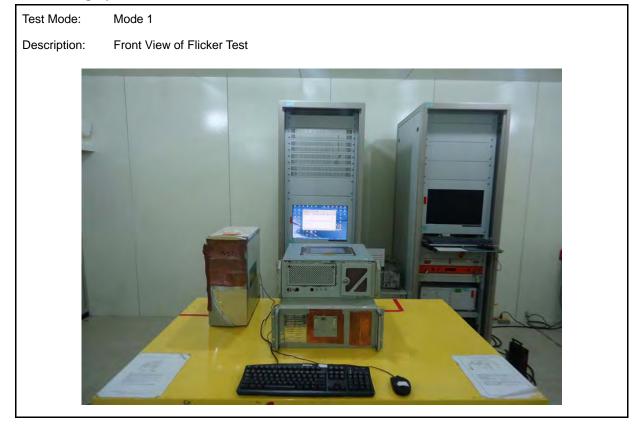
The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.

During the flick measurement, the measure time shall include that part of whole operation cycle in which the EUT produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

4.3.5. Test Result

Model Number	PM-3133-100				
Test Item	Flicker				
Test Mode	Mode 1				
Date of Test	2014/09/22	Test Site	TE05		

Test Result: Pass Status: Test Completed


Plt and limit line

					100%	Actual Flicker (Fli):	0.00		
				+	- 80%	Short-term Flicker (Pst): Limit (Pst): Long-term Flicker (Plt)	1.00		
				+	-	Limit (Plt):	0.65		
					- 60% -	Maximum Relative ¥olt. Change (dmax):	0.00%		
	┝╍┝╍┝		└-↓-↓-	.↓.↓.	40%	Limit (dmax):	4.00%		
					-	Relative Steady-state Voltage Change (dc):	0.03%		
				+	- 20%	Limit (dc): Maximum Interval	3.00%		
		-+-+		+	-	exceeding 3.00% (dt):	0.00ms		
0.01 0.1	2 0.5 2	5 10	100 1	1000 10	」0% 000 Class	Limit (dt>Lim):	200ms		
Flicker Emission - IEC 61000-3-3 , EN 61000-3-3 2014/9/22 PM 02:09:4									
Urms = Irms =	230.9 V 0.327 A	P = pf =	67.20 V 0.891	W		V-nom:	1 A 231 V 10 min (100%)		
Iest Inne: 10 min (100%) 14-0798-EC Test completed, Result: PASSED									
						HAR-1	000 PMC-Partner		
Urms =	230.9V	Freq =	49.987	Range:	1 A				
Irms = P =	0.327A 67.20W	lpk = S =	0.522A 75.42VA	cf = pf =	1.598 0.891				
Test - Time	: 1 x 10min	(100 %)	F.						
LIN (Line Impedance Network) : L: 0.24ohm +j0.15ohm N: 0.16ohm +j0.10ohm									
Limits :	Plt : dmax : dtLim:	0.65 4.00 % 3.00 %	Pst : dc : dt>Lim:	1.00 3.00 % 200ms					

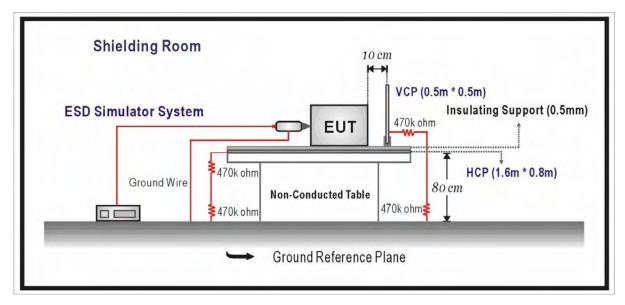
Test completed, Result: PASSED

4.3.6. Test Photograph

5 Immunity Test

5.1. Electrostatic Discharge (ESD)

5.1.1. Test Specification


EN 61000-4-2								
Environmental Phenomena	Test Specification	Performance Criterion						
Enclosure Port								
Electrostatia Discharge	kV (Charge Voltage)	±2,4,8 Air Discharge	В					
Electrostatic Discharge	KV (Charge Vollage)	±2,4 Contact Discharge	Ы					

5.1.2. Test Instrument

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period
Discharge Gun	Noiseken	ESS-2002	ESS05Y4736	03/14/2014	1 year
0.8m Height Wooden Table	N/A	N/A	N/A	N.C.R.	
Test Site	ATL	TE04	TE04	N.C.R.	

Note: N.C.R. = No Calibration Request.

5.1.3. Setup

5.1.4. Test Procedure

The discharges shall be applied in two ways:

a) Contact discharges to the conductive surfaces and coupling planes:

The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 50 indirect discharges to the center of the front edge of the Horizontal Coupling Plane (HCP). The remaining three test points shall each receive at least 50 direct contact discharges. If no direct contact test point be available, then at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.

b) Air discharges at slots and apertures and insulating surfaces:

On those parts of the EUT where it is not possible to perform contact discharge testing, the equipment should be investigated to identify user accessible points where breakdown may occur. Such points are tested using the air discharge method. This investigation should be restricted to those area normally handled by the user. A minimum of 10 single air discharges shall be applied to the selected test point for each such area.

The basic test procedure was in accordance with EN 61000-4-2:

- a) The EUT was located 0.1 m minimum from all side of the HCP (dimensions 1.6m x 0.8m).
- b) The support units were located another table 30 cm away from the EUT, but direct support unit was/were located at same location as EUT on the HCP and keep at a distance of 10 cm with EUT.
- c) The time interval between two successive single discharges was at least 1 second.
- d) Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- e) Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- f) At least ten single discharges (in the most sensitive polarity) were applied at the front edge of each HCP opposite the center point of each unit of the EUT and 0.1 meters from the front of the EUT. The long axis of the discharge electrode was in the plane of the HCP and perpendicular to its front edge during the discharge.
- g) At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane (VCP) in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the EUT.

5.1.5. Test Result

Model Number	PM-3133-100						
Test Item	Electrostatic Discharge						
Test Mode	Mode 1						
Date of Test	2014/09/23	Test Site	TE04				

						Air Disch	arge						
Test					Test Lev	/els					Results		
Points	±2 kV	Performance Criterion		$^{\pm4}_{kV}$		mance erion	±8 kV			Pass	Fail	Observation	
LAN Port	\boxtimes	A	□В	\boxtimes	A	□В	\boxtimes	A⊠	□В	\boxtimes		Note1	
D-SUB Port	\boxtimes	A	□в	\boxtimes	A	□в	\boxtimes	A⊠	□в	\boxtimes		Note1	
Panel	\boxtimes	A	□В	\boxtimes	ΠA	⊠В	\boxtimes	□A	⊠В	\boxtimes		Note2	
CASE	\boxtimes	A	□в	\boxtimes	A	□в	\boxtimes	⊠A	□в	\boxtimes		Note1	
USB Port	\boxtimes	A	□В	\boxtimes	A	□В	\boxtimes	⊠A	□В	\boxtimes		Note1	

	Contact Discharge											
Test	Test Levels							Resu	ults			
Points	±2 kV	Perforr Crite		$rac{\pm}{kV}$		mance erion	±8 kV		mance erion	Pass	Fail	Observation
Screws	\boxtimes	ΜA	□В	\boxtimes	ΜA	□В		ΠA	□В	\boxtimes		Note1

For the tested points to EUT, please refer to attached page.

(Blue arrow mark for Air Discharge and red arrow mark for Contact Discharge)

	Discharge To Horizontal Coupling Plane											
Side of				Result	s							
EUT	$\pm 2 \text{ kV}$	\pm 4 kV	\pm 6 kV	± 8 kV	Pass	Fail	Performance Criterion		Observation			
Front	\boxtimes	\boxtimes			\boxtimes		ΜA	□в	Note1			
Back	\boxtimes	\square			\square		ΜA	□в	Note1			
Left	\boxtimes	\square			\square		ΜA	□в	Note1			
Right	\boxtimes	\square			\square		A	□В	Note1			

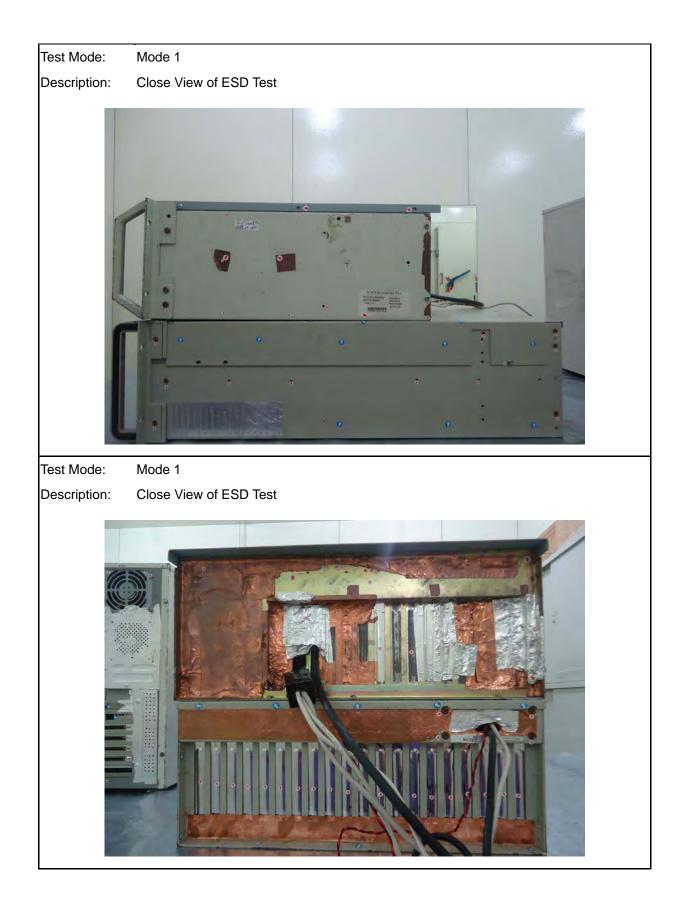
Discharge To Vertical Coupling Plane											
Side of		Test L	Results								
EUT	$\pm 2 \text{ kV}$	$\pm 4 \text{ kV}$	\pm 6 kV	\pm 8 kV	Pass	Fail	Performance Criterion		Observation		
Front	\boxtimes	\boxtimes			\boxtimes		ΜA	□в	Note1		
Back	\boxtimes	\boxtimes			\boxtimes		ΜA	□В	Note1		
Left	\boxtimes	\boxtimes			\boxtimes		ΜA	□в	Note1		
Right	\boxtimes	\boxtimes			\boxtimes		A	□В	Note1		

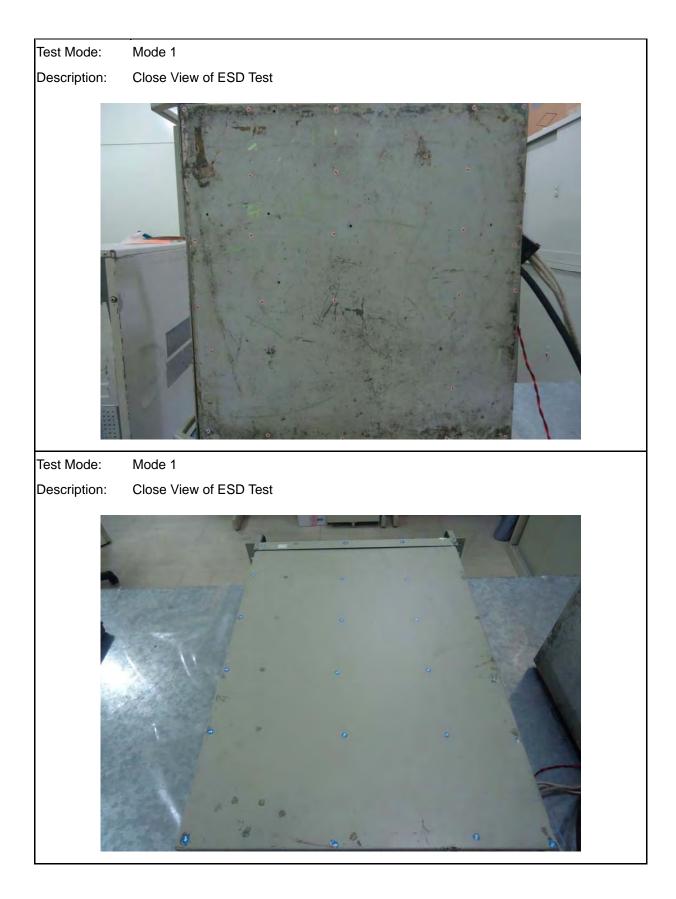
Note1 : Criterion A : There was no change compared with initial operation during the test.

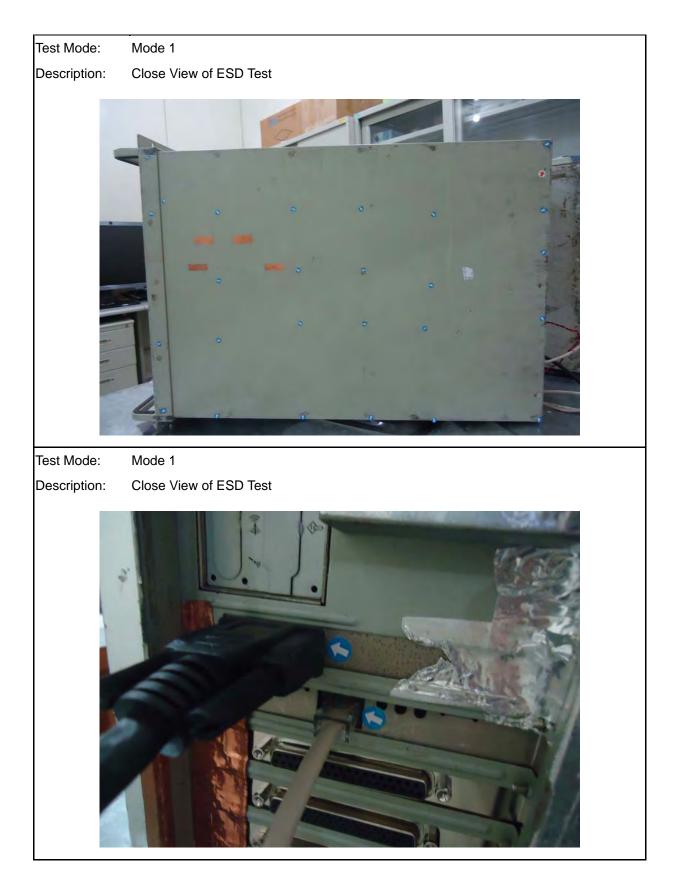
Note2 : Criterion A : There was no change compared with initial operation during the test.

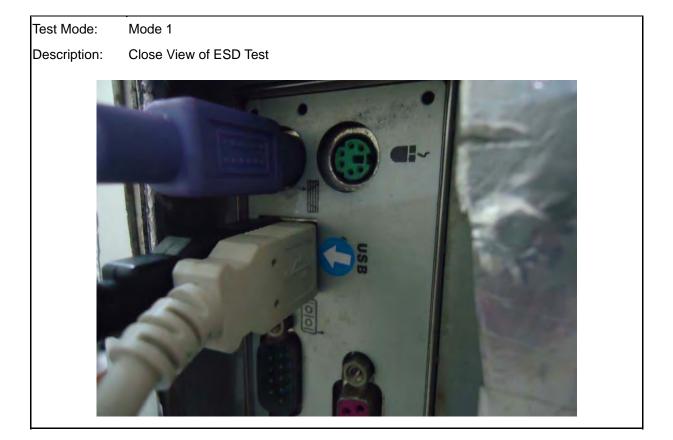
Criterion B : Panel will be twinkle and display disappear.

After test will be recover.


5.1.6. Test Photograph







5.2. Radiated Electromagnetic Field (RS)

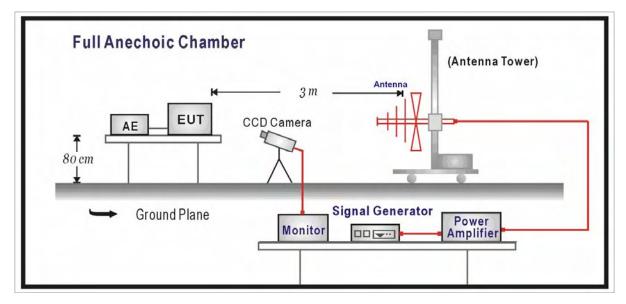
5.2.1. Test Specification

	EN 61000-4-	3	
Environmental Phenomena	Units	Test Specification	Performance Criterion
Enclosure Port			
Test Frequency Range	MHz	80-1000	
		1400-2000	
		2000-2700	
RF Electromagnetic Field	V/m(Un-modulated, rms)	10	
		3	А
		1	
Amplitude Modulated	% AM (1kHz)	80	
Test Distance	m	3	
Antenna Height	m	1.5	

EUT tested in accordance with the specifications given by the standard of EN 61000-4-3.

Step : 1%

Step time : 3 Second


5.2.2. Test Instrument

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period
SMB 100A SIGNAL GENERATOR	R&S	SMB100A	100724	03/07/2014	2 year
NRP-Z91 POWER SENSOR	R&S	NRP-Z91	100611	07/19/2014	1 year
NRP-Z91 POWER SENSOR	R&S	NRP-Z91	100612	07/19/2014	1 year
NRP POWER METER	R&S	NRP	101591	07/19/2014	1 year
Solid State Power Amplifier	BONN ELEKTRONIK	BLWA 0830-160/100/40D	87050	N.C.R.	
Signal Generator Module	R&S	SM300 Module	102209	N.C.R.	
Broad-Band Horn Antenna	Schwarzbeck Mess-Elektronik	BBHA 9120	BBHA 9120 E388	N.C.R.	
Test Site	ATL	TE07	888009	N.C.R.	

Note: N.C.R. = No Calibration Request.

5.2.3. Setup

5.2.4. Test Procedure

The test procedure was in accordance with EN 61000-4-3

- a)The testing was performed in a fully anechoic chamber. The transmit antenna was located at a distance of 3 meters from the EUT.
- b)The frequency range is swept from 80 MHz to 1000 MHz, with the signal 80% amplitude modulated with a 1kHz sine-wave. The rate of sweep did not exceed 1.5 x 10⁻³ decade/s, where the frequency range is swept incrementally, the step size was 1% of preceding frequency value.
- c)The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d)The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

5.2.5. Test Result

Model Number	PM-3133-100										
Test Item	Radiated Susce	eptibility									
Test Mode	Mode 1	Node 1									
Date of Test	2014/09/19			Test Site	TE07						
Frequency (MHz)	Polarity	Azimuth	Field Strength (V/m)	Performance Criterion	Result						
80 ~ 1000	H/V	0	10	⊠A □B	PASS						
80 ~ 1000	H/V	90	10	⊠A ⊡B	PASS						
80 ~ 1000	H/V	180	10	⊠A □B	PASS						
80 ~ 1000	H/V	270	10	⊠A □B	PASS						
1400 ~ 2000	H/V	0	3	⊠A ⊡B	PASS						
1400 ~ 2000	H/V	90	3	⊠A □B	PASS						
1400 ~ 2000	H/V	180	3	⊠A □B	PASS						
1400 ~ 2000	H/V	270	3	⊠A □B	PASS						
2000 ~ 2700	H/V	0	1	⊠A □B	PASS						
2000 ~ 2700	H/V	90	1	⊠A □B	PASS						
2000 ~ 2700	H/V	180	1	⊠A □B	PASS						
2000 ~ 2700	H/V	270	1	⊠A □B	PASS						

Note: The testing performed is from lowest level up to the highest level as required by standard, but only highest

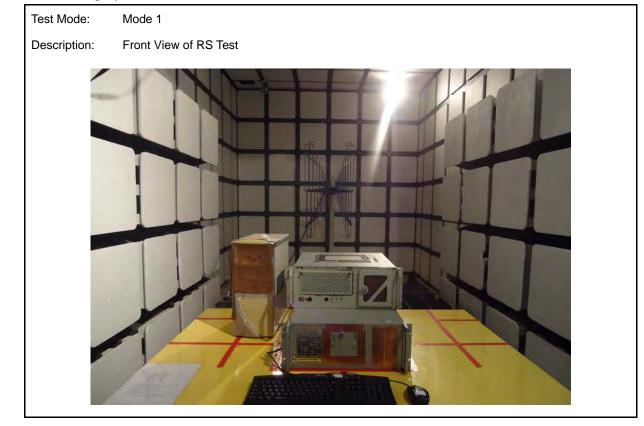
level is shown on the report.

Criterion A: Operate as intended during and after the test

Criterion B: Operate as intended after the test

Criterion C: Loss/Error of function

Additional Information


There was no observable degradation in performance.

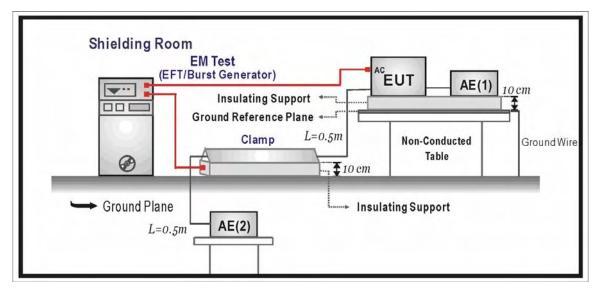
EUT stopped operation and <u>could</u> / <u>could not</u> be reset by operator at _____ V/m at frequency _____MHz.

 \boxtimes No false alarms or other malfunctions were observed during or after the test.

5.2.6. Test Photograph

5.3. Electrical Fast Transient/Burst (EFT)

5.3.1. Test Specification


		EN 61000-4-4							
Item	Environmental Phenomena	Units	Test Specification	Performance Criterion					
I/O a	I/O and communication ports								
Fast	Transients Common Mode	kV (Peak) Tr/Th ns Rep. Frequency kHz	<u>+</u> 1 5/50 5	В					
Input	Input DC Power Ports								
Fast Transients Common Mode		kV (Peak) Tr/Th ns Rep. Frequency kHz	<u>+</u> 2 5/50 5	В					
Input	AC Power Ports								
Fast	Transients Common Mode	kV (Peak) Tr/Th ns Rep. Frequency kHz	<u>+</u> 2 5/50 5	В					

5.3.2. Test Instrument

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period
EMC Immunity Tester	EMC-PARTNER AG	TRANSIENT 2000IN6	952	02/06/2014	1 year
Test Site	ATL	TE08	TE08	N.C.R.	

Note: N.C.R. = No Calibration Request.

5.3.3. Setup

5.3.4. Test Procedure

- a) Both positive and negative polarity discharges were applied.
- b) The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 1 meter.
- c) The duration time of each test sequential was 1 minute.
- d) The transient/burst waveform was in accordance with EN 61000-4-4, 5/50ns.

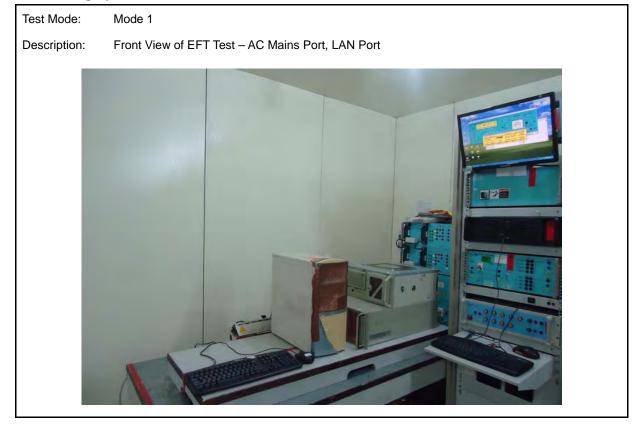
	_								
Model Number	PM-3133-	PM-3133-100							
Test Item	Electrical	Fast Transie	nt/Burst						
Test Mode	Mode 1								
Date of Test	2014/09/2	24			Test Si	te	TE08		
Test Point	Polarity	Test Level (kV)	Inject Time (Second)	Inject Method	Performance Criterion		Result	Observation	
L	<u>+</u>	2	60	Direct	⊠Α	□в	PASS		
N	<u>+</u>	2	60	Direct	⊠Α	□в	PASS		
PE	<u>+</u>	2	60	Direct	⊠Α	□в	PASS		
L+N	<u>+</u>	2	60	Direct	⊠Α	□В	PASS		
L+PE	<u>+</u>	2	60	Direct	ΜA	□В	PASS		
N+PE	±	2	60	Direct	ΜA	□В	PASS		
L+N+PE	±	2	60	Direct	ΜA	□В	PASS		
LAN Port	±	1	60	Direct	ΜA	□В	PASS		

5.3.5. Test Result

Note 1: The testing performed is from lowest level up to the highest level as required by standard, but only highest

level is shown on the report.

Criterion A: Operate as intended during and after the test


Criterion B: Operate as intended after the test

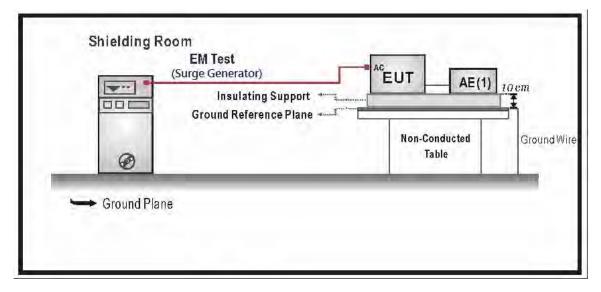
Criterion C: Loss/Error of function

- Additional Information
- There was no observable degradation in performance.
- EUT stopped operation and <u>could</u> / <u>could not</u> be reset by operator at _____ V/m at frequency _____MHz.
- $\boxtimes\,$ No false alarms or other malfunctions were observed during or after the test.

5.3.6. Test Photograph

5.4. Surge

5.4.1. Test Specification


	EN 61000-4-5								
Item	Environmental Phenomena	Units	Test Specification	Performance Criterion					
Signa	al Ports and Telecommunication	Ports(See 1) and 2))							
-	es to Line to Ground	Tr/Th us kV	1.2/50 (8/20) ± 1 ± 2	В					
Input	DC Power Ports								
	es to Line to Ground	Tr/Th us kV	1.2/50 (8/20) ± 1 ± 2	В					
Input	AC Power Ports								
-	es to Line to Ground	Tr/Th us kV kV	1.2/50 (8/20) ± 1 ± 2	В					

5.4.2. Test Instrument

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period
EMC Immunity Tester	EMC-PARTNER AG	TRANSIENT 2000IN6	952	02/06/2014	1 year
Test Site	ATL	TE08	TE08	N.C.R.	

Note: N.C.R. = No Calibration Request.

5.4.3. Setup

5.4.4. Test Procedure

a) For EUT power supply:

The surge is applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

b) For test applied to unshielded un-symmetrically operated interconnection lines of EUT:

The surge was applied to the lines via the capacitive coupling. The coupling / decoupling networks didn't influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

c) For test applied to unshielded symmetrically operated interconnection / telecommunication lines of EUT: The surge was applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor were not specified. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

Model Number	PM-3133-10	0					
Test Item	Surge						
Test Mode	Mode 1						
Angle	0, 90, 180, 2	, 90, 180, 270					
Date of Test	2014/09/22			Test Site	TE08		
Inject Line	Polarity	Voltage (kV)	Time Interval (Second)	Inject Method	Perforn Crite		Result
L-N	±	1	60	Direct	A	□в	Pass
L-PE	±	2	60	Direct	A	□в	Pass
N-PE	±	2	60	Direct	A	□в	Pass
L+N-PE	±	2	60	Direct	A	□в	Pass
LAN Port	±	1	60	Direct	A	□В	Pass

5.4.5. Test Result

Note: The testing performed is from lowest level up to the highest level as required by standard, but only highest

level is shown on the report.

Criterion A: Operate as intended during and after the test


Criterion B: Operate as intended after the test

Criterion C: Loss/Error of function

- Additional Information
- EUT stopped operation and <u>could</u> / <u>could not</u> be reset by operator at _____ V/m at frequency ______MHz.
- \boxtimes No false alarms or other malfunctions were observed during or after the test.

5.4.6. Test Photograph

5.5. Conducted Susceptibility (CS)

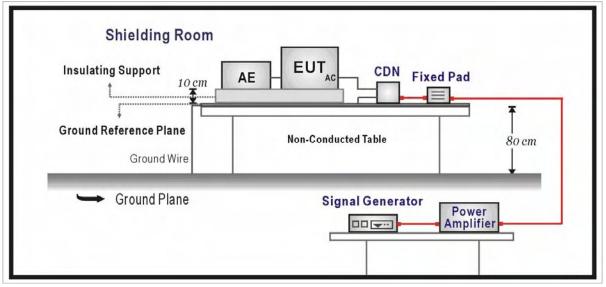
5.5.1. Test Specification

EN 61000-4-6								
Environmental Phenomena	Units	Test Specification	Performance Criterion					
Signal Ports and Telecommunication Ports								
	MHz	0.15-80						
Radio-Frequency Continuous Conducted	V (rms, Un-modulated)	MHz 0.15-80 ns, Un-modulated) 3 % AM (1kHz) 80 MHz 0.15-80 ns, Un-modulated) 3 % AM (1kHz) 80 MHz 0.15-80 MHz 0.15-80	А					
	% AM (1kHz)	80						
Input DC Power Ports								
	MHz	0.15-80						
Radio-Frequency Continuous Conducted	V (rms, Un-modulated)	UnitsTest SpecificationPerformn Ports0.15-80MHz0.15-80/ (rms, Un-modulated)3% AM (1kHz)80MHz0.15-80/ (rms, Un-modulated)3% AM (1kHz)80MHz0.15-80MHz0.15-80	А					
	% AM (1kHz)	80						
Input AC Power Ports								
	MHz	0.15-80						
Input AC Power Ports Radio-Frequency Continuous Conducted	V (rms, Un-modulated)	3	А					
	% AM (1kHz)	80						

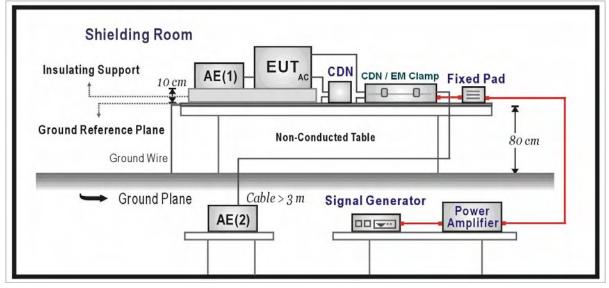
EUT tested in accordance with the specifications given by the standard of EN 61000-4-6.

Step : 1%

5.5.2. Test Instrument


Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period
Signal Line Coupling Decoupling Network	FCC	FCC-801T2-RJ11	8017	07/17/2014	1 year
Signal Line Coupling Decoupling Network	FCC	FCC-801T4-RJ45	8018	07/17/2014	1 year
Signal Line Coupling Decoupling Network	FCC	FCC-801-M2/M3-16A 8030	8030	07/17/2014	1 year
EM Injection Clamp	FCC	F-203I-23MM	8576	07/17/2014	1 year
NRP-Z91 POWER SENSOR	R&S	NRP-Z91	100613	07/19/2014	1 year
Amplifiers	ar	75A250A	328729	N.C.R.	
De-coupling Network	FCC	F-203I-23MM- DCN	8234	N.C.R.	
Test Site	ATL	TE08	TE08	N.C.R.	

Note: N.C.R. = No Calibration Request.



5.5.3. Setup

CDN Method

EM Clamp Method

5.5.4. Test Procedure

The EUT shall be tested within its intended operating and climatic conditions.

The test shell performed with the test generator connected to each of the coupling and decoupling devices in turn, while the other non-excited RF input ports of the coupling devices are terminated by a 50-ohm load resistor.

The frequency range was swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal was modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. The sweep rate was 1.5 x 10-3 decades/s. Where the frequency range is swept incrementally, the step size was 1 % of preceding frequency value from 150 kHz to 80 MHz.

The dwell time at each frequency was less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies such as clock frequency and harmonics or frequencies of dominant interest, was analyzed separately.

Attempts was made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.

Model Number	PM-3133-100	PM-3133-100							
Test Item	Conducted Susc	Conducted Susceptibility							
Test Mode	Mode 1	Node 1							
Date of Test	2014/09/19	2014/09/19				TE08			
Frequency Band (MHz)	Field Strength (Vrms)	Inject Port	Inject Method	Performance Criterion		Result			
0.15 ~ 80	3	AC Mains	CDN-M3	A⊠	□в	PASS			
0.15 ~ 80	3	LAN Port	CDN-T4	ΜA	□в	PASS			

5.5.5. Test Result

Note: The testing performed is from lowest level up to the highest level as required by standard, but only highest

level is shown on the report.

Criterion A: Operate as intended during and after the test

Criterion B: Operate as intended after the test

Criterion C: Loss/Error of function

Additional Information

EUT stopped operation and <u>could</u> / <u>could not</u> be reset by operator at _____ V/m at frequency MHz.

 \boxtimes No false alarms or other malfunctions were observed during or after the test.

5.5.6. Test Photograph

5.6. Power Frequency Magnetic Field (PMF)

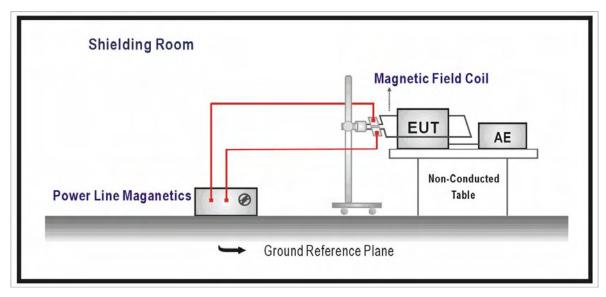
5.6.1. Test Specification

	EN 61000-4-8								
Item	Environmental Phenomena	Units	Test Specification	Performance Criterion					
Enclosu	Enclosure Port								
	Power-Frequency Magnetic Field	Hz A/m (r.m.s.)	50 30	A					

EUT tested in accordance with the specifications given by the standard of EN 61000-4-8.

Orientation : X, Y, Z

Test time : 180 Second


5.6.2. Test Instrument

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period
EMC Immunity Tester	EMC-PARTNER AG	TRANSIENT 2000IN6	952	02/06/2014	1 year
Magentic Field Antenna	EMC-PARTNER AG	MF1000-1	155	02/06/2014	1 year
Test Site	ATL	TE08	TE08	N.C.R.	

Remark: ⁽¹⁾ Calibration period 1 year. ⁽²⁾ Calibration period 2 years.

Note: N.C.R. = No Calibration Request.

5.6.3. Setup

5.6.4. Test Procedure

- a). The equipment was configured and connected to satisfy its functional requirements. It shall be placed on the GRP with the interposition of a 0.1m-thick insulating support.
- b). The equipment cabinets shall be connected to the safety earth directly on the GRP via the earth terminal of the EUT.
- c). The power supply, input and output circuits shall be connected to the sources of power supply, control and signal.
- d). The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.

5.6.5. Test Result

Model Number	PM-3133-100							
Test Item	Power Frequency Mag	Power Frequency Magnetic Field						
Test Mode	Mode 1	Node 1						
Date of Test	2014/09/22	Test Site		TE08				
Polarization	Frequency (Hz)	Magnetic Strength (A/m)	Performance Criterion		Result			
X Orientation	50	30	⊠A	□в	PASS			
Y Orientation	50	30	⊠A	□в	PASS			
Z Orientation	50	30	⊠A	□в	PASS			

Note: The testing performed is from lowest level up to the highest level as required by standard, but only highest

level is shown on the report.

Criterion A: Operate as intended during and after the test

Criterion B: Operate as intended after the test

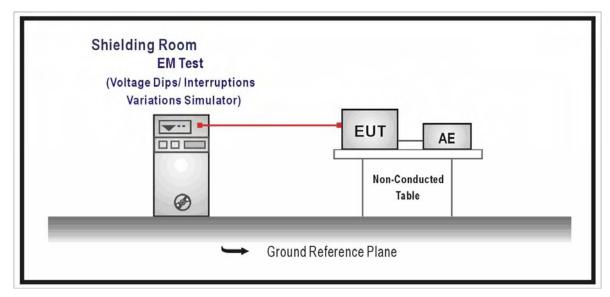
Criterion C: Loss/Error of function

- Additional Information
- EUT stopped operation and <u>could</u> / <u>could not</u> be reset by operator at _____ V/m at frequency _____MHz.
- No false alarms or other malfunctions were observed during or after the test.

5.6.6. Test Photograph

5.7. Voltage Dips and Interruption

5.7.1. Test Specification


IEC 61000-4-11 / EN 61000-4-11								
Environmental Phenomena	Units	Test Specification	Performance Criterion					
Input AC Power Ports								
	0	% Residual	В					
	1	ut AC Power Ports % Residual Period % Residual Period % Residual Period % Residual Period	D					
Voltage Dips	40	% Residual	С					
Voltage Dips	10/12	Period	C					
	70	% Residual	С					
	25/30	Period	C					
	0	% Residual	C					
Voltage Interruptions	250/300	Period	C					

5.7.2. Test Instrument

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period
EMC Immunity Tester	EMC-PARTNER AG	TRANSIENT 2000IN6	952	02/07/2014	1 year
Test Site	ATL	TE08	TE08	N.C.R.	

Note: N.C.R. = No Calibration Request.

5.7.3. Setup

5.7.4. Test Procedure

- 1. The EUT and support units were located on a wooden table, 0.8 m away from ground floor.
- 2. Setting the parameter of tests and then perform the test software of test simulator.
- 3. Conditions changes to occur at 0 degree crossover point of the voltage waveform.
- 4. Recording the test result in test record form.

5.7.5. Test Result

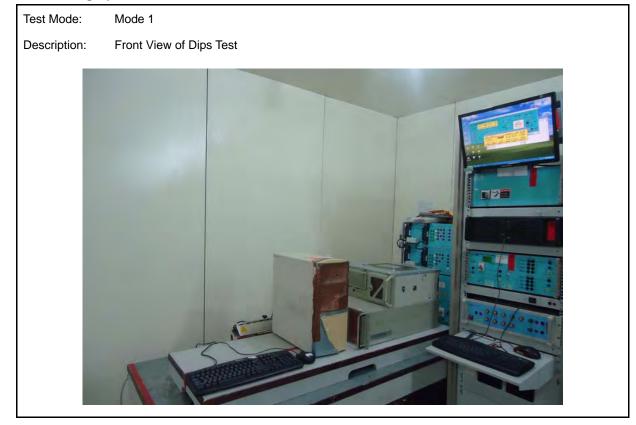
Model Number	PM-3133-100							
Test Item	Voltage Dips and Interruption Measurement							
Test Mode	Mode 1							
Angle	0~360 degree			Step		45 degree		
Date of Test	2014/09/22			Test Site	st Site		TE08	
Test Voltage (Vac)	Voltage Residual (%)	Test Duration (periods)	Performance	Criterion Test Re		esult	Observation	
230	>95	1	🛛 A 🗌 B	C Pas		s	Note1	
	30	25	⊠A ⊟B	C Pas		S	Note1	
	60	10	⊠A ⊟B	C Pas		S	Note1	
	>95	250	□a □b	C Pas		S	Note2	
100	>95	1	⊠A ⊟B	C Pas		S	Note1	
	30	25	⊠A ⊟B	□с	Pass		Note1	
	60	10	⊠A ⊟B	□с	C Pass		Note1	
	>95	250	□A □B ⊠C		Pass		Note2	

Note 1: The acceptance criteria were met, and the EUT passed the test.

Criterion A : Operate as intended during and after the test

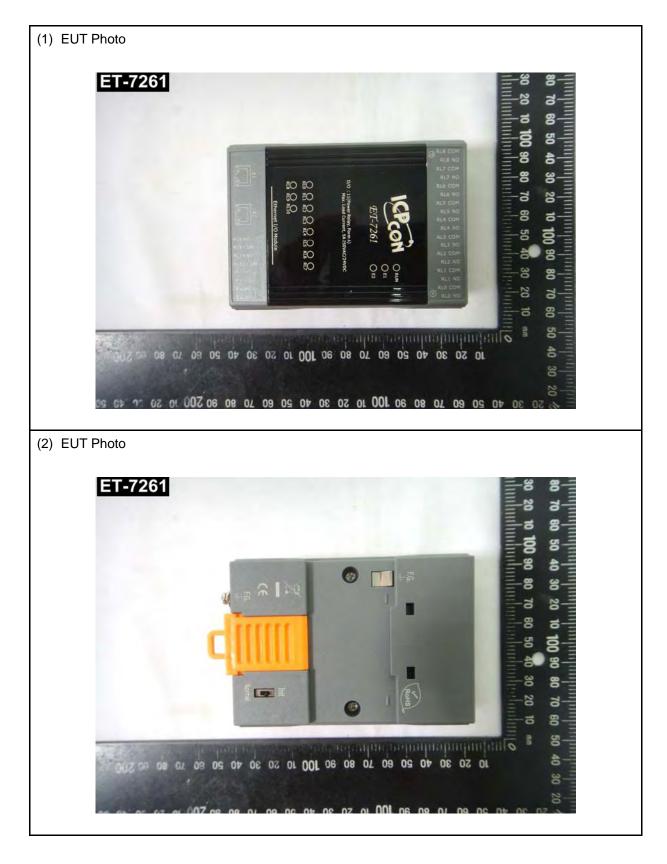
Criterion B : Operate as intended after the test

Criterion C : Loss/Error of function

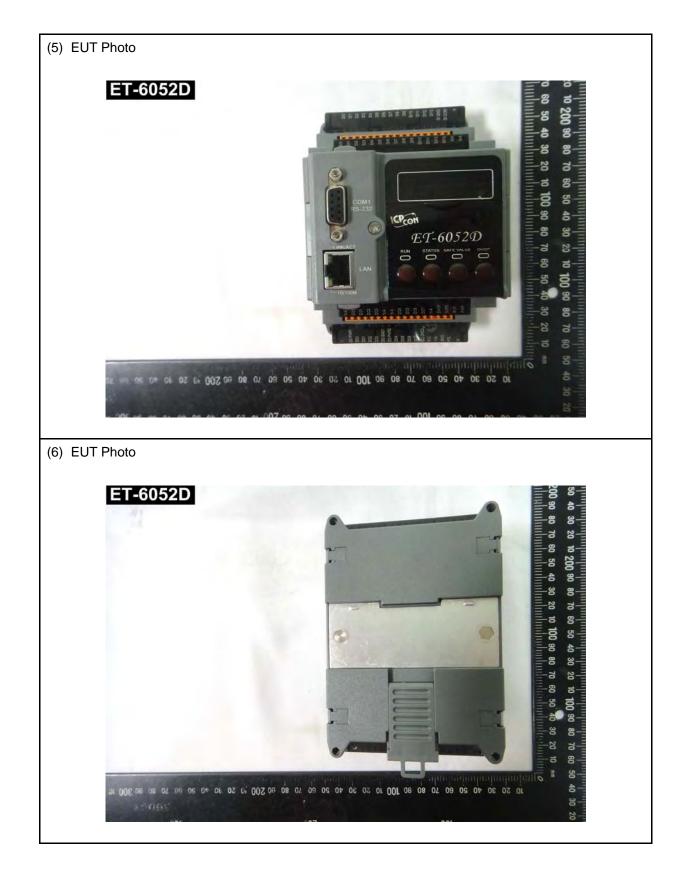

Additional Information

- EUT stopped operation and <u>could / could not</u> be reset by operator at _____dBuV(V) at frequency_____ MHz.
- \boxtimes No false alarms or other malfunctions were observed during or after the test.

Note 2: After test, EUT was restart and recover by manually.



5.7.6. Test Photograph


6 EUT Photograph

