
LP-51xx SDK Manual：1

SSooffttwwaarree GGuuiiddee

ICP DAS LP-51xx SDK

Implement industry control with Linux Technique

Warranty

All products manufactured by ICP DAS Inc. are warranted against defective materials for a

period of one year from the date of delivery to the original purchaser.

Warning

ICP DAS Inc. assumes no liability for any damages consequent to the use of this product.

ICP DAS Inc. reserves the right to change this manual at any time without notice. The

information furnished by ICP DAS Inc. is believed to be accurate and reliable. However, no

responsibility is assumed by ICP DAS Co., Ltd. for its use, nor for any infringements of

patents or other rights of third parties resulting from its use.

Copyright

Copyright © 2011 by ICP DAS Co., Ltd. All rights are reserved.

Trademark

Names are used for identification purposed and only maybe registered trademarks of their

respective companies.

License

The user can use, modify and backup this software on a single machine.

The user may not reproduce, transfer or distribute this software, or any copy, in whole or in

part.

LP-51xx SDK Manual：2

CCoonntteennttss

1. Introduction ... 4

2. Installation of LinPAC PXA270 SDK .. 6

2.1 Quick Installation of the LinPAC PXA270 SDK ... 7

2.1.1 Download/Install SDK on Linux .. 7

2.1.2 Download/Install SDK on Windows .. 8

2.1.3 Integrating SDK with Code::Blocks IDE ... 11

2.2 Introduction of the LinPAC PXA270 SDK ... 15

2.2.1 Introduction to Cygwin ... 15

2.2.2 Introduction to Cross-Compilation ... 15

2.2.3 Download the LinPAC PXA270 SDK ... 16

3. The Architecture of library in the LP-51xx ... 17

4. LP-51xx System Settings ... 19

4.1 LP-51xx Network Settings .. 19

4.1.1 Configuring the IP, Netmask and Gateway Addresses .. 19

4.1.2 DNS Setting ... 20

4.2 Usage a microSD Card .. 21

4.2.1 Mounting a microSD Card... 21

4.2.2 Unmounting the microSD Card ... 21

4.2.3 Scanning and repairing microSD Card .. 22

4.3 Using a USB Storage Device .. 23

4.3.1 Mounting a USB Storage Device ... 23

4.3.2 Unmounting a USB Storage Device ... 24

4.4 Adjusting the VGA Resolution .. 24

4.5 Automatically executing applications at startup .. 25

4.5.1 Configuring a program to run at boot time .. 26

4.5.2 Disabling a program from running at boot time .. 28

4.6 Automatic login ... 28

5. Instructions for the LP-51xx .. 29

5.1 Basic Linux Instructions .. 29

5.2 General GCC Instructions ... 32

5.2.1 Compile without linking to the LP-51xx library .. 32

5.2.2 Compile by linking to the LP-51xx library (libi8k.a) .. 33

5.3 A Simple Example – Helloworld.c ... 34

5.4 i-Talk Utility ... 39

6. LIBI8K.A .. 40

6.1 System Information Functions .. 41

6.2 Watch Dog Timer Functions ... 63

LP-51xx SDK Manual：3

6.3 EEPROM Read/Write Functions.. 66

6.4 Digital Input/Output Functions .. 70

6.4.1 I-7000 series modules ... 70

6.5 Analog Input Functions .. 92

6.5.1 I-7000 series modules ... 92

6.6 Analog Output Functions ... 106

6.6.1 I-7000 series modules ... 106

6.7 Error Code Explanation .. 118

7. Demo for LP-51xx Modules With C Language 119

7.1 DIO Control Demo for I-7k Modules ... 119

7.2 AIO Control Demo for I-7k Modules ... 125

7.3 Overview of the Module Control Demo Program ... 127

7.4 Timer Function Demo ... 127

8. Overview of the Serial Ports on the LP-51xx 128

8.1 COM1 Port ... 129

8.2 COM2 Port ... 130

8.3 COM3 Port ... 131

9. LP-51xx Library Reference in C Language ... 133

9.1 List Of System Information Functions ... 133

9.2 List Of Digital Input/Output Functions ... 134

9.3 List Of Watch Dog Timer Functions .. 134

9.4 List Of EEPROM Read/Write Functions ... 134

9.5 List Of Analog Input Functions ... 135

9.6 List Of Analog Output Functions ... 135

10. Additional Support ... 136

10.1 Support for GUI Functionality ... 136

10.1.1 Booting the LP-51xx without loading the X-window environment 137

10.1.2 Enabling the X-window environment to load at boot time .. 137

10.2 Support for ScreenShot functionality ... 138

10.3 Support for WebCAM functionality .. 138

10.4 Support for Touch Screen Devices .. 139

10.4.1 USB Touch Screen interface .. 139

10.4.2 Serial Touch Screen interface ... 142

10.5 Network Support ... 146

10.6 Audio Function ... 153

10.7 Support for USB to RS-232 Conversion ... 154

Appendix A. Service Information .. 158

Internet Service: .. 158

LP-51xx SDK Manual：4

1. Introduction

LP-51xx is the new generation Linux-based PAC from ICP DAS and is equipped with a

PXA270 CPU (520 MHz) running a Linux kernel 2.6.19 operating system, variant

connectivity (VGA, USB, Ethernet, RS-232/485 and audio port) and contains an optional I/O

expansion board that can be used for implementing various I/O functions, such as D/I, D/O,

A/D, D/A, Timer/Counter, UART, flash memory, etc.

The LP-51xx had the advantages of the good control system. These advantages include

stability, small core size, I/O expansion board optional, support for Web services

(Web/FTP/Telnet/SSH server), support for multiple development environments (LinPAC

SDK for Linux and Windows environment using the GNU C language, JAVA, GUI software),

etc. They give you all of the best features of both traditional PLCs and Linux capable PCs.

That‟s the most powerful and flexible embedded control system.

Compared with the first generation LinCon-8000, not only has the CPU performance been

improved and the OS upgraded from Linux kernel 2.4 to Linux kernel 2.6, but also many

reliability features have been added, including a dual LAN, audio ports, I/O expansion board

optional, etc., making the LP-51xx one of the most powerful control systems.

LP-51xx SDK Manual：5

ICP DAS also provides a library file, libi8k.a, which includes all the functions from

I-7000/8000/87000 series modules used in the LP-51xx Embedded Controller. The library is

specially designed for I-7000/8000/87000 series modules based on the Linux platform for

use with the LP-51xx controller. Custom applications can easily be developed for the

LP-51xx using either C or Java and .NET applications will also be supported in the future.

The various functions contained in the library are divided into sub-group functions for ease of

use within the different applications. The powerful functions of the embedded controller are

depicted below, including a VGA port, USB ports for Card Readers, Cameras, Mouse, or

Keyboard, microSD card, Series ports (RS-232/485), Ethernet (Hub…), etc. in the

picture. The LP-51xx controller contains built in HTTP, FTP, Telnet, SSH and SFTP Servers,

meaning the file transfer or remote control is much more convenient with the LP-51xx. For

network communication, wireless, Bluetooth transfer protocols and Modem, GPRS, ADSL,

Firewall functions are also supported. The architecture of the LP-51xx hardware is

illustrated in the figure below.

Fig. 1-1

Please note:

 The flash and microSD disk have a finite number of program-erase cycles.

Important information should always be backed up on other media or storage

device for long-term safekeeping.

 The Li-batterie can continually supply power to the 512 KB SRAM to retain the

data for 10 years (It is recommended that batteries are changed each 5~7 year.)

LP-51xx SDK Manual：6

2. Installation of LinPAC PXA270 SDK

The “LinPAC PXA270 SDK” is a development toolkit provided by ICP DAS, which can be

used to easily develop custom applications for the LP-51xx/ 8x3x/ 8x4x embedded controller

platform. The toolkit consists of the following items:

 LinPAC PXA270 SDK (GNU toolchain, Libraries, header, examples files, etc.)

 Code::Blocks project file (Windows platform only)

 Basic Linux commands (Windows platform only)

The topic provides LinPAC PXA270 SDK installation instructions for the following platforms:

 Linux

 Download/Install LinPAC PXA270 SDK on Linux

 Windows

 Download/Install LinPAC PXA270 SDK on Windows

 Integrating LinPAC PXA270 SDK with Code::Blocks IDE

NOTE:

 1. Start the Linux PXA270 build environment as an administrator.

2. The latest Linux PX270 SDK is integrate PXA270 series (LP-51xx/8x3x/8x4x) SDK.

3. The names of all the I/O module's API functions must begin with the prefix "I8K".

 4. More detailed information, user can refer to readme.txt file here:

C:\cygwin\LinPAC_PXA270_SDK\examples\readme.txt file, or

root@LinuxPC-ICPDAS:/lincon/i8k/examples/readme.txt.

The latest version of the LinPAC PXA270 SDK (LinPAC hereinafter referred to as "LP") can

be downloaded from: ftp://ftp.icpdas.com/pub/cd/linpac/napdos/lp-8x4x/sdk/.

Install the SDK by following the instructions below.

mailto:root@LinuxPC-ICPDAS:/icpdas/linpac_am335x_sdk/i8k/examples/readme.txt
ftp://ftp.icpdas.com/pub/cd/linpac/napdos/lp-8x4x/sdk/

LP-51xx SDK Manual：7

2.1 Quick Installation of the LinPAC PXA270 SDK

2.1.1 Download/Install SDK on Linux

1. Before installing the LinPAC PXA270 SDK, several tasks must be completed, as the root

user by „sudo‟ or „su‟ command.

2. Insert the installation CD into your CD-ROM driver (refer to Fig.2-1 and 2-2). Locate the

“linpac_pxa270_sdk_for_linux.tar.bz2” file in the \napdos\lp-8x4x\SDK\ folder, or visit

thre ICP DAS website to download the latest version.

Fig. 2-1 Fig. 2-2

3. Download SDK in "/ (the root directory)" , and try the following command to decompress

file (refer to Fig.2-3): $ tar jxvf linpac_pxa270_sdk_for_linux.tar

Fig. 2-3

4. Before compile the program, you need to set LinPAC PXA270 SDK path in environment

variables. To execute the shell startup script and set the environment variables, enter the

following command: $. /lincon/linpac.sh

LP-51xx SDK Manual：8

5. Type „make‟ on the command line it will execute the compile command according to the

Makefile (refer to Fig. 2-4).

Fig. 2-4

2.1.2 Download/Install SDK on Windows

The LinPAC_PXA270_SDK_for_Windows.exe provides compilers, library, header,

examples, and IDE workspace file (for Code::Blocks project). Following the step by step

procedure below will help users get started.

1. Insert the installation CD into your CD-ROM driver.

2. Open the \napdos\lp-8x4x\SDK\ folder and double-click the icon for the

“linpac_pxa270_sdk_for_windows.exe” file, when the Setup Wizard is displayed, click the

“Next>” button to continue, refer to Fig. 2-5.

3. Click the “I accept the agreement” option and then click the “Next” button, refer to Fig. 2-6

below.

Fig. 2-5 Fig. 2-6

4. The "LinPAC PXA270 SDK" files will be extracted and installed and a progress bar will be

displayed to indicate the status, refer to Fig 2-7.

LP-51xx SDK Manual：9

5. Once the software has been successfully installed, click the “Finish” button to complete

the development toolkit installation, refer to Fig. 2-8.

Fig. 2-7 Fig. 2-8

6. Open the LinPAC PXA270 SDK installation directory, the default data directory location is

“C:\cygwin\”, user can see the contents of folder. Refer to Fig 2-9.

Fig. 2-9

7. Open the “C:\cygwin\LinCon8k” folder and see the content. Refer to Fig 2-10.

Fig. 2-10

8. From the desktop, double-click the shortcut icon for the “LinPAC PXA270 Build

Environment” or click the “Start” > ”Programs” > ”ICPDAS” > ”LinPAC PXA270 Build

Environment.

A Command Prompt window will then be displayed that allows applications for the

LP-51xx to be compiled. Refer to Fig. 2-11.

LP-51xx SDK Manual：10

Fig. 2-11

9. Type “make” command (needs run as an administrator). A Command Prompt window will

then be displayed that allows applications for the LP-51xx to be compiled. Refer to Fig.

2-12.

Fig. 2-12

Once your Installation is complete, the library and demo files can be found in the following

locations:

The path for the Libi8k.a and libxwboard.a file is “C:\cygwin\LinCon8k\lib".

 The path for the include files file is “C:\cygwin\LinCon8k\include”

 The path for the demo file is “C:\cygwin\LinCon8k\examples”

LP-51xx SDK Manual：11

2.1.3 Integrating SDK with Code::Blocks IDE

This tutorial gives you easy-to-follow instructions, with screenshots, for setting up a compiler

(the Linaro GCC compiler), a tool that will let you turn the code that you write into programs,

and Code::Blocks IDE, a free development environment. This tutorial explains how to

integrate LinPAC PXA270 SDK with Code::Blocks IDE on Windows platform.

Step 1: Download Code::Blocks IDE

 Go to this website: http://www.codeblocks.org/downloads/binaries

 Go to the Windows 2000/ XP / Vista / 7 section, and download Windows version.

Step 2: Install Code::Block IDE

 The default install location is the C:\Program Files\CodeBlocks folder.

 A complete manual for Code::Blocks is available here:

http://www.codeblocks.org/user-manual

Step 3: Running in Code::Block IDE

 All files and settings that are included in a LinPAC_PXA270_SDK workspace file.

 Open the C:\cygwin\CodeBlock folder, and double click the

"LinPAC_PXA270_SDK" as below (refer to Fig. 2-13):

Fig. 2-13

http://www.codeblocks.org/downloads/binaries

LP-51xx SDK Manual：12

 Following window will come up (refer to Fig. 2-14):

Fig. 2-14

 Check Compiler settings for Linaro GCC cross compiler : Click "Settings" >

"Compiler" > "Toolchain executables tab" (refer to Fig. 2-15) :

Fig. 2-15

LP-51xx SDK Manual：13

 Check Link libraries for Linaro GCC cross compiler : Click "Settings" > "Compiler"

> "Linker Settings" (refer to Fig. 2-16) :

Fig. 2-16

 Check Makefile for Linaro GCC cross compiler : Click "Project" > "Properites"

(refer to Fig. 2-17) :

Fig. 2-17

LP-51xx SDK Manual：14

 Click Build options, and it will compile the LinPAC PXA270project completely (refer

to Fig. 2-18).

Fig. 2-18

【Note】

If you observer some characters may not display properly in cmd.exe, change the code

page for the console only, do the following:

 Double-click the shortcut icon for the “LinPAC PXA270 Build Environment”.

 Type command: chcp 65001 (Refer to Fig. 2-19 and Fig 2-20).

Fig. 2-19 Fig. 2-20

LP-51xx SDK Manual：15

2.2 Introduction of the LinPAC PXA270 SDK

This section will discuss some of the techniques that are adopted in the LinPAC PXA270

SDK, including detailed explanations that describe how to easily use the SDK. The LinPAC

PXA270 SDK is based on Cygwin and is also a Linux-like environment for Microsoft

Windows systems, and provides a powerful GCC cross-compiler and an IDE (Integrated

Development Environment) that enables LP-51xx applications to be quickly developed.

Therefore, once an application has been created, the LinPAC PXA270 SDK can be used to

compile it into an executable file that can be run on the LP-51xx embedded controller.

2.2.1 Introduction to Cygwin

Cygwin is a collection of free software tools originally developed by Cygnus Solutions to

allow various versions of Microsoft Windows to act somewhat like a UNIX system. Cygwin is

a Linux-like environment for Windows consisting of two parts:

(1) A DLL (cygwin1.dll) which acts as a Linux emulation layer providing substantial Linux API

functionality.

(2) A collection of tools that provide users with the Linux look and feel.

2.2.2 Introduction to Cross-Compilation

Generally, program compilation is performed by running a compiler on the build platform.

The compiled program will then run on the target platform. Usually these two processes are

intended for use on the same platform. However, if the intended platform is different, the

process is called cross compilation, where source code on one platform can be compiled

into executable files to be used on other platforms. For example, if the “arm-linux-gcc”

cross-compiler is used on an x86 windows platform, the source code can be compiled into

an executable file that can run on an arm-linux platform.

So why use cross compilation? In fact, cross compilation is sometimes more complicated

than normal compilation, and errors are easier to make. Therefore, this method is often only

employed if the program cannot be compiled on the target system, or if the program being

compiled is so large that it requires more resources than the target system can provide. For

many embedded systems, cross compilation is the only possible approach.

http://explanation-guide.info/meaning/Free-software.html
http://explanation-guide.info/meaning/Cygnus-Solutions.html
http://explanation-guide.info/meaning/Microsoft-Windows.html
http://explanation-guide.info/meaning/Unix.html
http://explanation-guide.info/meaning/Embedded-system.html

LP-51xx SDK Manual：16

2.2.3 Download the LinPAC PXA270 SDK

 For Windows system: (Extract the .exe file into to the C: driver)

 Download the linpac_pxa270_sdk_for_windows.exe file from:

 ftp://ftp.icpdas.com/pub/cd/linpac/napdos/lp-5000/lp-51xx/lp-514x/sdk/

 For Linux system : (Extract the .bz2 file into to the root(/) directory)

 Download the linpac_pxa270_sdk_for_linux.tar.bz2 file from:

 ftp://ftp.icpdas.com/pub/cd/linpac/napdos/lp-5000/lp-51xx/lp-514x/sdk/

Note: We recommend user to change user ID to become root by „sudo‟ or „su‟ command.

ftp://ftp.icpdas.com/pub/cd/linpac/napdos/lp-5000/lp-51xx/lp-513x/sdk/lp51xx_sdk_for_windows.exe
ftp://ftp.icpdas.com/pub/cd/linpac/napdos/lp-5000/lp-51xx/lp-514x/sdk/lp51xx_sdk_for_linux.tar.bz2

LP-51xx SDK Manual：17

3. The Architecture of library in the LP-51xx

The library file libi8k.a and libxboard.a are both a library file. The libi8k.a is designed for

I7000/8000/87000 applications and libxboard.a is designed for I/O expansion boards.

There are running on the LP-51xx Embedded Controller based on the Linux operating

system and can be applied when developing custom applications using the GNU C

language. ICP DAS provides a wide variety of demo programs that can be used to easily

understand how to implement the functions and ensure that custom projects and

applications can be quickly developed.

The relationships among the libi8k.a and user‟s applications are depicted in Fig. 3-1:

Fig. 3-1

Functions for LP-51xx Embedded Controller are divided into sub-groups for easy of use

within the different applications:

1. System Information Functions

2. EEPROM Read/Write Functions

3. Watch Dog Timer Functions

4. Digital Input Functions

5. Digital Output Functions

6. Analog Input Functions

7. Analog Output Functions

LP-51xx SDK Manual：18

The functions in the libi8k.a and libxwboard.a are specially designed for LP-51xx. For libi8k.a

usage, users can easily find the functions they need for their applications from the

descriptions in Chapter 6 and in the demo programs provided in Chapter 7. Another

driver-libxwboard.a, users can refer to LP-51xx_xwboard_user_guide.pdf.

LP-51xx SDK Manual：19

4. LP-51xx System Settings

The following is a guide to easily configuration the LP-51xx.

4.1 LP-51xx Network Settings

There are two methods of configuring the network settings for the LP-51xx. The first uses

DHCP and the second is based on an “Assigned IP”. The factory default configuration is

DHCP. However, if a DHCP server is not available on the network system, then the network

settings need to be configured using the “Assigned IP” method.

4.1.1 Configuring the IP, Netmask and Gateway Addresses

Boot up LP-51xx and click the “start/xterm” to open a “command line”. Type “vi

/etc/network/interfaces” to open the network setting file.

(1) Using DHCP:

Once the network settings file is loaded, remove the “#” comment from each line in the

dhcp block and add comment out the Assing IP block by adding “#” to each entry. Type

“:wq” to save the changes, and then type “ifup eth0” to activate the new settings. (Refer

to the Fig. 4-1 for more details)

(2) Using “Assigned IP”:

Once the network settings file is loaded, remove the “#” comment from each line in the

Assign IP block and comment out the dhcp block by adding “#” to each entry. Entry the

relevant IP, Netmask and Gateway details in the respective Assign IP block entries. Type

“:wq” to save the changes, and the type “ifup eth0” to activate the new settings. (Refer

to the Fig. 4-2)

Fig. 4-1 Fig. 4-2

LP-51xx SDK Manual：20

After configuring the LinPAC network settings, type “ifconfig” to verify that the network

settings are correct. Refer to the Fig. 4-3 for more details.

Fig. 4-3

4.1.2 DNS Setting

Boot the LP-51xx and click the “start/ xterm” to open a “command line”. Type “vi

/etc/resolv.conf” to open the DNS setting file. Once the DNS settings file is loaded, type

“DNS server” in the “nameserver” field. Type “:wq” to save the changes, and type

“reboot” to reboot the LP-51xx so that the new settings can take effect. Refer to the Fig. 4-4

for more details.

Fig. 4-4

LP-51xx SDK Manual：21

4.2 Usage a microSD Card

Files contained on a mounted microSD card can be accessed from the /mnt/hda directory

(Refer to Fig. 4-5).

Fig. 4-5

When using the microSD card, be sure to pay attention to the following notes:

1. Umount the microSD card before removing it.

2. Do not power off or reboot the LP-51xx while data is being written to or read from the

microSD card.

3. The microSD memory must be formatted in the VFAT/EXT2/EXT3 file system.

4.2.1 Mounting a microSD Card

To use a microSD card, insert the microSD card into the socket in the LP-51xx (Refer to Fig.

1-1), and it will be automatically mounted when the LP-51xx is booted. The files of microSD

card can then be accessed from the /mnt/hda directory.

If the card is not mounted automatically, type in “/etc/init.d/sd start ”, to mount it.

4.2.2 Unmounting the microSD Card

Before removing the microSD card from the LP-51xx, unmount the card by entering the

following steps:

 (1) /etc/init.d/apachect1 stop

 (2) /etc/init.d/startx stop

(3) umount /mnt/hda

The microSD card can then be safely removed to prevent damage to the card.

LP-51xx SDK Manual：22

4.2.3 Scanning and repairing microSD Card

After the LP-51xx is booted, the microSD card will be named “/dev/mmcblk0p1“. It is

recommended that the microSD card is unmounted first before attempting to perform a

scan or repair.

 blockdev: this command is used to call block device ioctls from the command line.

 fsck.minix: this command is used to perform a consistency check for the Linux MINIX

filesystem.

 fsck.vfat: this command is used to check and repair MS-DOS file systems.

 mkfs: this command is used to build a Linux file system on a device, usually a hard disk

partition.

 mkfs.minix: this command is used to make a MINIX filesystem

Parameter Description Example

--report print a report for device blockdev --report /dev/mmcblk0p1

-v
--getra
--getbz

get readhead and blocksize blockdev -v --getra --getbz /dev/mmcblk0p1

Parameter Description Example

-r performs interactive repairs fsck.minix -r /dev/mmcblk0p1

-s outputs super-block information fsck.minix -s /dev/mmcblk0p1

Parameter Description Example

-a automatically repair the file system fsck.vfat -a /dev/mmcblk0p1

-l list path names of files being processed fsck.vfat -l /dev/mmcblk0p1

Parameter Description Example

-t specifies the type of file system to be built mkfs -t vfat /dev/mmcblk0p1

-c
check the device for bad blocks before

building the file system
mkfs -c vfat /dev/mmcblk0p1

Parameter Description Example

 create a Linux MINIX file-system mkfs.minix /dev/mmcblk0p1

-c
check the device for bad blocks before

building the file system
mkfs.minix -c /dev/mmcblk0p1

LP-51xx SDK Manual：23

 mkfs.vfat: this command is used to make an MS-DOS filesystem

 mke2fs.ext2: this command is used to make an EXT2 filesystem

 mke2fs.ext3: this command is used to make an EXT3 filesystem

4.3 Using a USB Storage Device

USB storage devices are not automatically mounted to the LP-51xx, sot it must be manually

mounted before attempting to access the USB storage device.

4.3.1 Mounting a USB Storage Device

To mount a USB storage devices follow the procedure described below:

(1) Type “ mkdir /mnt/usb “ to create a directory named “usb”.

(2) Type “mount /dev/sda1 /mnt/usb“ to mount the USB storage device to the usb

directory and then type “ ls /mnt/usb ” to view the contents of the USB storage

device. (Refer to Fig. 4-6)

Parameter Description Example

-A
use Atari variation of the MS-DOS

filesystem
mkfs.vfat -A /dev/mmcblk0p1

-v verbose execution mkfs.vfat -v /dev/mmcblk0p1

Parameter Description Example

-t create a Linux EXT2 file-system mke2fs.ext2 –t ext2 /dev/mmcblk0p1

Parameter Description Example

-t create a Linux EXT3 file-system mke2fs.ext2 –t ext3 /dev/mmcblk0p1

LP-51xx SDK Manual：24

Fig. 4-6

4.3.2 Unmounting a USB Storage Device

Before removing the USB storage device from the LP-51xx, the device must be unmounted

to prevent any damage to the device. To unmount the device, type the “umount

/mnt/usb“ command and then remove the USB storage device.

4.4 Adjusting the VGA Resolution

The LinPAC supports two VGA resolutions -- 640x480 and 800x600, and the default setting

is 800x600. To change the VGA resolution, follow the procedure described below:

(1) Type “vi /etc/init.d/fbman” to open the VGA resolution configuration file.

(2) To set the resolution to be 640x480, comment out the reference to 800x600 by adding

“#” to the entry, and then remove the “#” comment from the 640x480 entry. (Refer to Fig.

4-7)

 For example, to set the resolution to 800x600, open the file “/etc/init.d/fbman”, the

code should be as follows:

 #/usr/sbin/fbset -n 640x480-60

 /usr/sbin/fbset -n 800x600-70

LP-51xx SDK Manual：25

 To change the resolution to 640x480, the code should be as follows:

 /usr/sbin/fbset -n 640x480-60

 #/usr/sbin/fbset -n 800x600-70

Fig. 4-7

(3) Type “:wq” to save the changes, and then type “shutdown –r now” to reboot the

LP-51xx, so that the new settings can take effect. (Refer to Fig. 4-8)

Fig. 4-8

4.5 Automatically executing applications at startup

A “run level” is an operation mode that is used to determine which programs are executed

during system startup. The default run level for the LP-51xx is level 2.

The run level file is located in the /etc/init.d directory and contains the scripts that will be

executed at boot time. These scripts are referenced by creating symbolic links in the

/etc/rc2.d directory.

LP-51xx SDK Manual：26

The format for the naming of these links is named S<2-digit-number><original-name>. The

2-digit number determines the order in which the scripts are executed. The valid range is

from 00 to 99 and the lower numbered file will be executed earlier. Scripts prefixed with an S

are called at startup, and those prefixed with either a K or an x are called when the system

is closed or shut down.

4.5.1 Configuring a program to run at boot time

To configure a program to run at boot time, create a startup script that runs the required

commands to be automatically executed then save it in the “/etc/init.d” directory. The script

must then be symbolically linked to the “/etc/rc2.d” directory.

The procedure for creating a script is described below:

(1) Create a script with the filename “hello” by typing “vi /etc/init.d/hello“. This will allow the

script that executes the programs edit. Type “:wq“ to save the script and quit. (Refer to

the Fig. 4-9)

Note: If necessary, the PATH and LD_LIBRARY_PATH environment variable should be

included in the script. Check the “/etc/init.d/webcam” file for an example. Refer to the Fig.

4-10 for more details.

Fig. 4-9

(2) Type “chmod 755 /etc/init.d/hello“ to change the access permissions for the file.

(3) Type “cd /etc/rc2.d“ to change directory to the default run level.

(4) Type ” ln -s ../init.d/hello /etc/rc2.d/S85hello “ to create a symbolic link to the

script file so that it will be automatically executed at boot time. Refer to the Fig. 4-11 for

more details.

LP-51xx SDK Manual：27

Fig. 4-10

Fig. 4-11

LP-51xx SDK Manual：28

4.5.2 Disabling a program from running at boot time

The procedure for disabling a script is described to the default run level.

(1) Type “ cd /etc/rc2.d “ to change directory to the default run level.

(2) Type “ mv S85hello xS85hello “ to rename the S85hello symbolic link and

prevent the program from automatically executing at boot time.

4.6 Automatic login

Automatic Login allows a specified user to log into the console (normally /dev/tty1) when the

system is first booted without displaying a prompt requesting a username or password. This

is achieved using the mingetty command, and the setup procedure is as follows:

(1) Login as root and open the “/etc/inittab” file for the LP-51xx.

(2) Modify the entry for the first terminal― tty1, as shown in Fig. 4-12, After rebooting the

LP-51xx, it will automatically login to the root account.

Fig. 4-12

LP-51xx SDK Manual：29

5. Instructions for the LP-51xx

This section provides an introduction to some of the more commonly used Linux instructions.

These Linux instructions are similar to those used in DOS and are generally expressed in

lower case letters.

5.1 Basic Linux Instructions

5.1.1 ls: lists the file information (Equivalent DOS Command: dir)

Parameter Description Example

–l Lists detailed information related to the files ls –l

–a Lists all files, including hidden files ls –a

–t Lists the files arranged in date/time order ls –t

5.1.2 cd directory: Changes directory (Equivalent DOS Command: cd)

Parameter Description Example

.. Move to the parent directory cd ..

~ Move back to the root directory cd ~

/ Path component separator cd /root/i8k

5.1.3 mkdir: creates a subdirectory (Equivalent DOS Command: md)

Parameter Description Example

-p No error if the subdirectory exists, and creates the parent

directories as needed

mkdir -p directory

5.1.4 rmdir: deletes the subdirectory which must be empty (Equivalent DOS

Command: rd)

Parameter Description Example

-p Removes the specified DIRECTORY, then attempts to

remove each parent directory component with the same

path name

rmdir -p directory

5.1.5 passwd: used to change the password

5.1.6 reboot: reboots the LinPAC (or use „shutdown –r now‟)

LP-51xx SDK Manual：30

5.1.7 rm: deletes (removes) the file or directory (Equivalent DOS Command: delete)

Parameter Description Example

–i Displays a warning message before deleting rm –i test.exe

–r Deletes the directory even if it isn‟t empty rm –r test.exe

–f No warning message displayed when deleting rm -f test.exe

5.1.8 cp: copies one or more files (Equivalent DOS Command: copy)

Parameter Description Example

–R Performs a recursive copy cp -R test bak

–i Displays a confirmation prompt before overwriting cp –i test bak

-l Links the files instead of copying them cp –l test bak

5.1.9 mv: moves or renames a file or directory (Equivalent DOS Command: move)

Parameter Description Example

-f Does not display a confirmation prompt before overwriting cp –f sour des

–i Displays a confirmation prompt before overwriting cp –i /sour /des

5.1.10 pwd: displays the full path of the current working directory

5.1.11 who: displays a list of the users current logged on

5.1.12 chmod: changes the access permissions for a file

 Syntax → chmod ??? file → ??? means owner: group: all users

 For example: chmod 754 test.exe

 7 5 4 → 111(read, write, execute)

 101(read, write, execute)

 100(read, write, execute)

 The first number 7: the owner can read and write and execute files

 The second number 5: the group can only read and execute files

 The third number 4: all users can only read files

5.1.13 uname: displays the Linux version information

5.1.14 ps: displays a list of the currently active procedures

LP-51xx SDK Manual：31

5.1.15 ftp: transfers a file using the file transfer protocol (FTP)

 ftp IPAdress (Example: ftp 192.168.0.200 → connet to ftp server)

 ！ : temporarily exits the FTP

 exit : back to the ftp

 bin : transfers files in “binary” mode

 get : downloads a file from the LinPAC to the Host (For example: get /mnt/hda/test.exe

 c:/test.exe)

 put : uploads a file from the host to the LinPAC (For example: put c:/test.exe

 /mnt/hda/test.exe)

 bye : exits FTP

5.1.16 telnet: establishes a connection to another PC via Telnet terminal

 Syntax: telnet IPAddress

 For example telnet 192.168.0.200 (will allow remote control of the LP-51xx)

5.1.17 date: prints or sets the system date and time

5.1.18 hwclock: queries and sets the hardware clock (RTC)

Parameter Description Example

-r
Reads the hardware clock and prints the time on a standard

output.
hwclock -r

–w Sets the hardware clock to the current system time hwclock -w

5.1.19 netstat: displays the current state of the network

 Parameters: [-a]: list all states (For example: netstat -a)

5.1.20 ifconfig: displays the ip and network mask information (Equivalent DOS

 Command: ipconfig)

5.1.21 ping: used to test whether the host in a network is reachable

 Syntax: ping IPAddress

 For example ping 192.168.0.1

5.1.22 clear: clears the screen

LP-51xx SDK Manual：32

5.2 General GCC Instructions

The GNU Compiler Collection (GCC) is a compiler system developed by the collaborative

GNU Project that can be used to compile source code written using either ANSIC or

Traditional C into executable files. Executable files compiled using GCC can be executed

within the different operating system and different hardware systems. The GCC is distributed

by the Free Software Foundation and is free of charge. Consequently, it has become very

popular with users of Unix-based systems.

Fig. 5-1 below provides an illustration of the compilation procedure within Linux.

Fig. 5-1

The following is an overview of some of the common GCC instructions that will provide a

guide for compiling *.c files to *.exe applications together with an explanation of the

parameters used by the GCC during the compilation process.

5.2.1 Compile without linking to the LP-51xx library

 Purpose: *. c to *. exe

Command: arm-linux-gcc –o target source.c

Parameter:

-o target: assigns the name of output file

source.c: the C source code file

Example: arm-linux-gcc –o helloworld.exe helloworld.c

Output File: helloworld.exe

Fig. 5-2

LP-51xx SDK Manual：33

5.2.2 Compile by linking to the LP-51xx library (libi8k.a)

(1) Purpose: *. c to *. o

Command: arm-linux-gcc –IincludeDIR -lm –c –o target source.c library

Parameter:

-IincludeDir: the path to the include files

-lm: includes the math library (libm.a)

-c: only compile *.c to *.o (object file)

-o target: assigns the name of output file

source.c: the C source code file

library: the path of library

Example: arm-linux-gcc –I. –I../include –lm –c –o test.o test.c ../lib/libi8k.a

Output File: test.o

(2) Purpose: *. o to *. exe

Command:arm-linux-gcc –IincludeDIR -lm –o target source.o library

Parameter:

-IincludeDir: the path of include files

-lm: includes the math library (libm.a)

-o target: assigns the name of the output file

source.o: the object file

library: the path to the library

Example: arm-linux-gcc –I. –I../include –lm –o test.exe test.o ../lib/libi8k.a

Output File: test.exe

 (3) Purpose: *. c to *. exe

Command: arm-linux-gcc –IincludeDIR -lm –o target source.c library

Parameter:

-IincludeDir: the path of include files

-lm: include math library (libm.a)

-o target: assign the name of output file

source.c: source code of C

library: the path of library

Example: arm-linux-gcc –I. –I../include –lm –o test.exe test.c ../lib/libi8k.a

Output File: test.exe

LP-51xx SDK Manual：34

5.3 A Simple Example – Helloworld.c

This section describes how to 1) compile the helloworld.c file to the helloworld.exe

executable file, 2) transfer the executable file (helloworld.exe) to the LP-51xx using FTP, and

3) execute this file via the Telnet Server on the LP-51xx.

This process can be accomplished using a single PC without requiring an additional monitor

for the LP-51xx. No ICP DAS modules are used in this example. However to use ICP DAS

modules to control the system, refer to the demo described in chapter 7.

The process can be divided into three steps, which are described below:

Step 1: Compile helloworld.c to helloworld.exe

(1) Open LP-51xx SDK Build environment (refer to step 8 in section 2.1) and then type “cd

examples/common” to change the path to C:/cygwin/LinCon8k/examples/common.

Type “dir/w” and to display the contents of the directory and confirm that the helloworld.c

file is present. Refer to Fig. 5-3 for more details.

Fig. 5-3

LP-51xx SDK Manual：35

(2) Type the command “arm-linux-gcc –o helloworld.exe helloworld.c“ to compile

helloworld.c into helloworld.exe, then type “dir/w“ to display the contents of the directory

and confirm that the helloworld.exe file has been created. (Refer to Fig. 5-4)

Fig. 5-4

Step 2: Transfer helloworld.exe to the LP-51xx

Two methods can be used to transfer files to the LP-51xx:

＜Method one＞ Using the “DOS Command Prompt”

(1) Open a “DOS Command Prompt” and type the ftp IP Address of the LP-51xx, for

example, ftp 192.168.0.200 to establish a connection to the FTP Server on the LP-51xx.

When prompted, type the User_Name and Password (“root” is the default value for

both) to establish a connection to the LP-51xx.

(2) Before transferring the files to the LP-51xx, type in the “bin” command to ensure that the

file transferred to the LP-51xx in binary mode. (refer to Fig.5-5)

Fig.5-5

LP-51xx SDK Manual：36

(3) Type the command “put C:/cygwin/LinCon8k/examples/common/helloworld.exe

helloworld.exe” to transfer the helloworld.exe file to the LP-51xx. Once the message

“Transfer complete” is displayed, then transfer process has been completed. To

disconnect from the LP-51xx, type the “bye” command to return to the PC console. (refer

to Fig. 5-6).

Fig.5-6

＜Method two＞ Using an FTP Client:

(1) Open the FTP Software and add an FTP Host to the LP-51xx. The default value for both

the User_Name and Password is “root”.

(2) Then click the “Quickconnect” button to establish a connection to the FTP server on the

LP-51xx. (refer to Fig. 5-7).

Fig.5-7

LP-51xx SDK Manual：37

(3) Upload the “Helloworld.exe” file to the LP-51xx. (refer to Fig.5-8).

Fig.5-8

(4) Click the helloworld.exe file in the LP-51xx to select it and then right click the file icon and

click the “File Permissions” option. In the Properties dialog box, type 777 into the

Numeric textbox, and then click the OK button. Refer to Fig. 5-9 and Fig. 5-10 for more

details.

Fig.5-9

LP-51xx SDK Manual：38

Fig.5-10

Step 3: Use telnet to access the LP-51xx and execute the program

(1) Open a “DOS Command Prompt” and type the IP Address of the LP-51xx, for example,

telnet 192.168.0.200, to establish a connection to the Telnet Server on the LP-51xx.

When prompted, type the User_Name and Password (“root” is the default value for

both) to establish a connection to the LP-51xx. If the “#” prompt character is displayed, it

signifies that a connection to the telnet server on the LP-51xx has been successfully

established. (refer to Fig. 5-11)

Fig.5-11

LP-51xx SDK Manual：39

(2) Type the “ls -l“ command to list all the files in the /root directory and verify that the

helloworld.exe file is present. Type the “chmod 777 helloworld.exe” command to

change the permissions for the helloworld.exe file if necessary. This means that the file is

executable. Execute the “./helloworld.exe“ file by typing and the message “Welcome to

LinPAC-5000” will be displayed.

 The compile, transfer and execution processes are now complete. (refer to Fig. 5-12)

Fig.5-12

5.4 i-Talk Utility

The i-Talk utility provides eleven instructions that make it convenient for users to access

the modules and hardware in the LP-51xx and can be found in the path–/usr/local/bin. An

overview of the i-Talk utility functions is given below (Refer to Fig. 5-13) Typing the name of

the instruction will display usage details for the instruction.

Instruction Description

getport Get port value by offset from a module

setport Set port value by offset to a module

setsend Send string from LP-51xx COM port

getreceive Receive string from LP-51xx COM port

getsendreceive Send/Receive string from LP-51xx COM port

read_sn Get Hardware Serial Number of LP-51xx

getlist_xw Get what‟s the xwboard plug-in LP-51xx

setexdo Set digital output value to xw-board and i-7k module

setexao Set analog output value to xw-board and i-7k module

getexdi Set digital input value to xw-board and i-7k module

getexai Get analog input value to xw-board and i-7k module

Fig.5-13

LP-51xx SDK Manual：40

6. LIBI8K.A

This section provides examples that focus on the description of and application of the

functions found in the Libi8k.a library. The functions contained in the Libi8k.a library can

be classified into three groups, as illustrated in Fig. 6-1.

Fig. 6-1

The functions node (1) and (2) in the diagram for the Libi8k.a library is the same as those of

the DCON.DLL Driver (including Uart.dll and I7000.dll) as used in the DCON modules

(I-7000/ I-8000/ I-87000 for serial communication). For more details, refer to the DCON.DLL

Driver manual which includes a description of how to use the functions on DCON modules.

The DCON.DLL Driver has now been included in the Libi8k.a library.

Functions (3) in the diagram contains the most important functions, as they are especially

designed for I-8000 modules inserted in the LP-51xx slots. They are different from functions

(1) and (2) because the communication method for I-8000 modules inserted in the LP-51xx

is based on parallel mode rather than serial mode. Accordingly, the I8000.c library has been

completely rewritten especially for I-8000 modules inserted in LP-51xx slots and has been

rename as slot.c. The following is an introduction to the functions for slot.c, which can be

arranged into six main categories:

1. System Information Functions;

2. Watch Dog Timer Functions;

3. EEPROM Read/Write Functions;

4. Digital Input/Output Functions;

5. Analog Input Functions;

6. Analog Output Functions;

LP-51xx SDK Manual：41

Note that when using a development tool to create develop applications, the msw.h file must

be included in the header of the source program, and the Libi8k.a library file must also be

linked. To control ICP DAS remote I/O modules such as the I-7K, I-8K and I-87K series

modules via the COM1 or COM2 or COM3 ports on the LP-51xx, the functions are the

same as those included in the DCON DLL. To control I-8K series modules that are inserted

in the slots of the LP-51xx, the functions are different and they are described in more detail

below:

6.1 System Information Functions

 Open_Slot

Description:

This function is used to open and initialize a specific slot on the LP-51xx, the I/O expansion

board(http://www.icpdas.com/products/PAC/up-5000/XW-board_Selection_Guide.htm) in the LP-51xx will

use this function. For example, to send or receive data from a specific slot, this function must

be called first before any other functions can be used.

Syntax:

[C]

 int Open_Slot(int slot)

Parameter:

slot: [Input] Specifies the slot where the I/O module is inserted.

Return Value:

0: The slot was successfully initialized.

Other: The initialization failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

 Int slot=1;

 Open_Slot(slot);

 // The first slot in the LP-51xx will be open and initiated, and only for XW-board.

http://www.icpdas.com/products/PAC/up-5000/XW-board_Selection_Guide.htm

LP-51xx SDK Manual：42

 Close_Slot

Description:

After using the of Open_Slot() function to open and initialize a specific slot on the LP-51xx, the

Close_Slot() function must also be used to close the slot. This function will be used by The I/O

expansion board in the LP-51xx. For example, the Close_Slot() function should be called after

sending or receiving data from the specified slot.

Syntax:

[C]

 void Close_Slot(int slot)

Parameter:

slot: [Input] Specifies the slot where the I/O module is inserted.

Return Value:

None

Example:

 int slot=1;

Close_Slot(slot);

 // The first slot in the LP-51xx will be closed, and only for XW-board.

Remark:

LP-51xx SDK Manual：43

 Open_SlotAll

Description:

This function is used to open and initialize all slots on the LP-51xx. For example, to send or

receive data from multiple slots, this function can be used to simplify the program, and other

functions can be used.

Syntax:

[C]

 int Open_SlotAll(void)

Parameter:

None

Return Value:

0: The slot was successfully initialized.

Other: The initialization failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

 Open_SlotAll();

 // All slots in the LP-51xx will be open and initiated.

Remark:

LP-51xx SDK Manual：44

 Close_SlotAll

Description:

If you the Open_SlotAll() function was used to open and initialize all the slots on the LP-51xx,

the Close_SlotAll() function can be used to quickly close them simultaneously. For example,

the Close_SlotAll() function can be called after sending or receiving data from multiple slots to

close all the slots at the same time.

Syntax:

[C]

 void Close_SlotAll(void)

Parameter:

None

Return Value:

None

Example:

Close_SlotAll();

 // All slots in the LP-51xx will be closed.

Remark:

LP-51xx SDK Manual：45

 Open_Com

Description:

This function is used to open and configure the COM port and must be called at least once

before sending/receiving a command via the COM port. For example, to send or receive data

from a specified COM port, this function should be called first, and then other series functions

can be used.

Syntax:

[C]

 WORD Open_Com(char port, DWORD baudrate, char cData, char cParity, char cStop)

Parameter:

port: [Input] COM1, COM2, COM3..., COM255.

baudrate: [Input] 1200/2400/4800/9600/19200/38400/57600/115200

cDate: [Input] Data5Bit, Data6Bit, Dat7Bit, Data8Bit

cParity: [Input] NonParity, OddParity, EvenParity

cStop: [Input] OneStopBit, TwoStopBit

Return Value:

0: The com port was successfully initialized.

Other: The initialization failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

Remark:

LP-51xx SDK Manual：46

 Close_Com

Description:

This function is used to closes and releases the resources of the COM port computer

resources. And it must be called before exiting the application program. The Open_Com

will return an error message if the program exit without calling Close_Com function.

Syntax:

[C]

 BOOL Close_Com(char port)

Parameter:

port : [Input] COM1,COM2, COM3...COM255.

Return Value:

None

Example:

 Close_Com (COM3);

Remark:

LP-51xx SDK Manual：47

 Send_Receive_Cmd

Description:

This function is used to sends a command string to RS-485 network and receives the

response from the RS-485 network. If the wChkSum=1, this function automatically adds the

two checksum bytes into the command string and also check the checksum status when

receiving the response from the modules. Note that the end of sending string is added [0x0D]

to mean the termination of every command.

Syntax:

[C]

 WORD Send_Receive_Cmd (char port, char szCmd[], char szResult[],

WORD wTimeOut, WORD wChksum, WORD *wT)

Parameter:

port: [Input] 1=COM1, 2=COM2, 3=COM3..., 255=COM255.

szCmd: [Input] Sending command string

szResult: [Input] Receiving the response string from the modules

wTimeOut:: [Input] Communicating timeout setting, the unit=1ms

wChkSum:: [Input] 0=Disable, 1=Enable

*wT: [Output] Total time of send/receive interval, unit=1 ms

Return Value:

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

 char m_port =1;

 DWORD m_baudrate=115200;

WORD m_timeout=100;

WORD m_chksum=0;

WORD m_wT;

char m_szSend[40], m_szReceive[40];

int RetVal;

m_szSend[0] = '$';

 m_szSend[1] = '0';

 m_szSend[2] = '0';

LP-51xx SDK Manual：48

 m_szSend[3] = 'M';

 m_szSend[4] = 0;

/* open device file */

Open_Slot(1);

 RetValue = Open_Com(m_port, m_baudrate, Data8Bit, NonParity, OneStopBit);

if (RetValue >0)

{

 printf("Open COM%d failed!\n", m_port);

 return FAILURE;

}

RetValue = Send_Receive_Cmd(m_port, m_szSend, m_szReceive, m_timeout,

m_chksum, &m_wT);

if (RetValue)

{

 printf("Module at COM%d Address %d error !!!\n", m_port, m_szSend[2]);

 return FAILURE;

}

Close_Com (m_port);

Remark:

LP-51xx SDK Manual：49

 Send_Cmd

Description:

This function only sends a command string to DCON series modules. If the wChkSum=1, it

automatically adds the two checksum bytes to the command string. And then the end of

sending string is further added [0x0D] to mean the termination of the command (szCmd).

And this command string cannot include space char within the command string. For example:

“$01M 02 03” is user‟s command string. However, the actual command send out is “$01M”.

Syntax:

[C]

 WORD Send_Cmd (char port, char szCmd[], WORD wTimeOut, WORD wChksum)

Parameter:

port: : [Input] 1=COM1, 2=COM2, 3=COM3..., 255=COM255.

szCmd: [Input] Sending command string

wTimeOut: [Input] Communicating timeout setting, the unit=1ms

wChkSum: [Input] 0=Disable, 1=Enable

Return Value:

None

Example:

 char m_port=1, m_szSend[40];

 DWORD m_baudrate=115200;

WORD m_timeout=100, m_chksum=0;

m_szSend[0] = '$';

 m_szSend[1] = '0';

 m_szSend[2] = '0';

 m_szSend[3] = 'M';

 Open_Slot(2); // The module is inserted in slot 2 and address is 0.

 Open_Com(m_port, m_baudrate, Data8Bit, NonParity, OneStopBit);

Send _Cmd(m_port, m_szSend, m_timeout, m_chksum);

Close_Com (m_port);

Remark:

LP-51xx SDK Manual：50

 Receive_Cmd

Description:

This function is used to obtain the responses string from the modules in the RS-485 network.

And this function provides a response string without the last byte [0x0D].

Syntax:

[C]

 WORD Receive_Cmd (char port, char szResult[], WORD wTimeOut,

WORD wChksum)

Parameter:

port: : [Input] 1=COM1, 2=COM2, 3=COM3..., 255=COM255.

szResult: : [Output] Sending command string

wTimeOut: [Input] Communicating timeout setting, the unit=1ms

wChkSum: [Input] 0=Disable, 1=Enable

Return Value:

None

Example:

 char m_port=3;

char m_Send[40], m_szResult[40] ;

 DWORD m_baudrate=115200;

WORD m_timeout=100, m_chksum=0;

m_szSend[0] = '$';

 m_szSend[1] = '0';

 m_szSend[2] = '1';

 m_szSend[3] = 'M';

 m_szSend[4] = 0;

 Open_Com (m_port, m_baudrate, Data8Bit, NonParity, OneStopBit);

Send _Cmd (m_port, m_szSend, m_timeout, m_chksum);

Receive_Cmd (m_port, m_szResult, m_timeout, m_chksum);

Close_Com (m_port);

// Read the remote module:I-7016D , m_ szResult : “!017016D”

Remark:

LP-51xx SDK Manual：51

 Send_Binary

Description:

Send out the command string by fix length, which is controlled by the parameter “iLen”. The

difference between this function and Send_cmd is that Send_Binary terminates the sending

process by the string length “iLen” instead of the character "CR"(Carry return). Therefore,

this function can send out command string with or without null character under the

consideration of the command length. Besides, because of this function without any error

checking mechanism (Checksum, CRC, LRC... etc.), users have to add the error checking

information to the raw data by themselves if communication checking system is required.

Note that this function is usually applied to communicate with the other device, but not for

ICP DAS DCON (I-7000/8000/87K) series modules.

Syntax:

[C]

 WORD Send_Binary (char port, char szCmd[], int iLen)

Parameter:

port: : [Input] 1=COM1, 2=COM2, 3=COM3..., 255=COM255.

szCmd: [Input] Sending command string

iLen: [Input] The length of command string.

Return Value:

None

Example:

 int m_length=4;

char m_port=3, char m_szSend[40];

 DWORD m_baudrate=115200;

m_szSend[0] = '0';

 m_szSend[1] = '1';

 m_szSend[2] = '2';

 m_szSend[3] = '3';

 Open_Com(m_port, m_baudrate, Data8Bit, NonParity, OneStopBit);

Send _Binary(m_port, m_szSend, m_length);

Close_Com (m_port);

Remark:

LP-51xx SDK Manual：52

 Receive_Binary

Description:

This function is applied to receive the fix length response. The length of the receiving

response is controlled by the parameter “iLen”. The difference between this function and

Receive_cmd is that Receive_Binary terminates the receiving process by the string length

“iLen” instead of the character "CR"(Carry return). Therefore, this function can be used to

receive the response string data with or without null character under the consideration of

receiving length. Besides, because of this function without any error checking mechanism

(checksum, CRC, LRC... etc.), users have to remove the error checking information from the

raw data by themselves if communication checking system is used. Note that this function is

usually applied to communicate with the other device, but not for ICP DAS DCON

(I-7000/8000/87K) series modules.

Syntax:

[C]

 WORD Receive_Binary (char cPort, char szResult[], WORD wTimeOut,

 WORD wLen, WORD *wT)

Parameter:

port: : [Input] 1=COM1, 2=COM2, 3=COM3..., 255=COM255.

szResult: [Input] Receiving the response string from the modules

wTimeOut:: [Input] Communicating timeout setting, the unit=1ms

wLen: [Input] The length of command string.

*wT: [Output] Total time of send/receive interval, unit=1 ms

Return Value:

None

Example:

 int m_length=10;

char m_port=3;

char m_szSend[40];

char m_szReceive[40];

 DWORD m_baudrate=115200;

 WORD m_wt;

 WORD m_timeout=10;

WORD m_wlength=10;

LP-51xx SDK Manual：53

m_szSend[0] = '0';

 m_szSend[1] = '1';

 m_szSend[2] = '2';

 m_szSend[3] = '3';

m_szSend[4] = '4';

m_szSend[5] = '5';

m_szSend[6] = '6';

m_szSend[7] = '7';

m_szSend[8] = '8';

m_szSend[9] = '9';

 Open_Com(m_port, m_baudrate, Data8Bit, NonParity, OneStopBit);

// send 10 character

Send _Binary(m_port, m_szSend, m_length);

// receive 10 character

Receive_Binary(m_port, m_szResult, m_timeout, m_wlength, &m_wt);

Close_Com (m_port);

Remark:

LP-51xx SDK Manual：54

 sio_open

Description:

This function is used to open and initiate a specified serial port in the LP-51xx. The n-port

modules in the LP-51xx will use this function. For example, if you want to send or receive

data from a specified serial port, this function must be called first. Then the other functions

can be used later.

Syntax:

[C]

 int sio_open(const char *port, speed_t baudrate, tcflag_t data, tcflag_t parity,

 tcflag_t stop)

Parameter:

port: [Input] device name: /dev/ttyS0, /dev/ttyS1…/dev/ttyS34

baudrate: [Input] B1200/ B2400/ B4800/ B9600/ B19200/ B38400/ B57600/

B115200

date: : [Input] DATA_BITS_5/ DATA_BITS_6/ DATA_BITS_7/ DATA_BITS_8

parity: : [Input] NO_PARITY / ODD_PARITY / EVEN_PARITY

stop: : [Input] ONE_STOP_BIT / TWO_STOP_BITS

Return Value:

This function returns int port descriptor for the port opened successfully.

ERR_PORT_OPEN is for Failure

Example:

 #define COM_M1 "/dev/ttyS0" // Defined the first port for COM2(RS-485)

char fd[5];

 fd[0]=sio_open(COM_M1, B9600, DATA_BITS_8, NO_PARITY,ONE_STOP_BIT);

 if (fd[0] == ERR_PORT_OPEN) {

 printf("open port_m failed!\n");

 return (-1);

 }

// The first port will be opened.

Remark:

LP-51xx SDK Manual：55

 sio_close

Description:

If you have used the function of sio_open() to open the specified serial port in the LP-51xx,

you need to use the sio_close() function to close the specified serial port in the LP-51xx. For

example, once you have finished sending or receiving data from a specified serial port, this

function would then need to be called.

Syntax:

[C]

 int sio_close(int port)

Parameter:

port : [Input] device name: /dev/ttyS0, /dev/ttyS1…/dev/ttyS34

Return Value:

None

Example:

 #define COM_M2 "/dev/ttyS1" // Defined the second port for COM3(RS-232)

char fd[5];

 fd[0]=sio_open(COM_M2, B9600, DATA_BITS_8, NO_PARITY,ONE_STOP_BIT);

sio_close (fd[0]);

 // The second port will be closed.

Remark:

LP-51xx SDK Manual：56

 sio_set_noncan

Description:

If you have used the function of sio_open() to open the specified serial port in the LP-51xx,

you need to use the sio_close() function to close the specified serial port in the LP-51xx. For

example, once you have finished sending or receiving data from a specified serial port, this

function would then need to be called set a opened serial port to non-canonical mode.

Syntax:

[C]

 int sio_set_noncan (int port)

Parameter:

port : [Input] device name: /dev/ttyS0, /dev/ttyS1…/dev/ttyS34

Return Value:

None

Example:

 #define COM_M2 "/dev/ttyS1" // Defined the second port for COM3(RS-232)

char fd[5];

 fd[0]=sio_open(COM_M2, B9600, DATA_BITS_8, NO_PARITY,ONE_STOP_BIT);

sio_close (fd[0]);

 // The second port will be closed.

Remark:

LP-51xx SDK Manual：57

 Read_SN

Description:

This function is used to retrieves the hardware serial identification number on the LP-51xx

main controller. This function supports the control of hardware versions by reading the serial

ID chip.

Syntax:

[C]

 void Read_SN(unsigned char serial_num[])

Parameter:

serial_num: [Output] Receive the serial ID number.

Return Value:

None

Example:

 int slot;

 unsigned char serial_num[8];

 Open_Slot(0);

Read_SN(serial_num);

printf("SN=%x%x%x%x%x%x%x%x\n",serial_num[0],serial_num[1], serial_ num[2]

,serial_num[3],serial_num[4],serial_num[5],serial_num[6],serial_num[7]);

 Remark:

LP-51xx SDK Manual：58

 SetLED

Description:

This function is used to turn the LP-51xx LED‟s on/off.

Address L4 L3 L2 RUN/L5 PWR L1

Color Green Yellow Green Red Green Red

Programmable Yes Yes Yes Yes No Yes

Function None None None Start Power None

Syntax:

[C]

 void SetLED(unsigned int addr, unsigned int value)

Parameter:

addr: [Input] Range of programmable LED display is 1 to 5

value: [Input] 1 : Turn on the LED

0 : Turn off the LED

Return Value:

None

Example:

 unsigned int addr,value;

 addr=4;

 value=1;

SetLED(addr, value);

// Turn on the LED4.

Remark:

LP-51xx SDK Manual：59

 GetBackPlaneID

Description:

This function is used to retrieve the back plane ID number in the LP-51xx.

Syntax:

[C]

 int GetBackPlaneID()

Parameter:

None

Return Value:

Backplane ID number.

Example:

 int id;

id=GetBackPlaneID();

printf("GetBackPlanel =%d \n", id);

 // Get the LP-51xx backplane id . Returned Value: GetBackPlanel = 2

Remark:

LP-51xx SDK Manual：60

 GetRotaryID

Description:

This function is used to retrieve the rotary ID number in the LP-51xx.

Syntax:

[C]

 int GetRotaryID(int type, &id)

Parameter:

slot: [input] number of slot.

id: [Output] Rotary ID mumber

Return Value:

0: The slot was successfully initialized.

Other: The initialization failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

 int id, slot, type, wRetVal;

 type = 2; // for LP-5000

 wRetVal = Open_Slot(slot);

 if (wRetVal > 0) {

 printf("open Slot%d failed!\n",slot);

 return (-1);

 }

id= GetRotaryID(type, &id);

printf("GetRotaryID =%d \n",id); // Get the LP-51xx rotary id. If user turn the rotary

switch to the 1 position, would get the returned value: GetRotaryID = 78

Remark:

LP-51xx SDK Manual：61

 GetSDKversion

Description:

This function is used to retrieve the version of LP-51xx SDK.

Syntax:

[C]

 float GetSDKversion(void)

Parameter:

None

Return Value:

Version number.

Example:

 printf(" GetSDKversion = %4.2f \n ", GetSDKversion());

// Get the LP-51xx SDK version number.

// Returned Value: GetSDKversion = 1.0

Remark:

LP-51xx SDK Manual：62

 GetNameOfModule

Description:

This function is used to retrieve the name of an XWboard series I/O module, which is

plugged into a slot in the LP-51xx. This function supports the collection of system hardware

configurations.

Syntax:

[C]

 int GetNameOfModule_xw()

Parameter:

slot: [Input] Specifies the slot where the I/O module is inserted.

Return Value:

I/O module ID. For Example, the XW107 module will return XW107.

Example:

 int slot;

int moduleID;

Open_Slot(1);

 moduleID=GetNameOfModule_xw();

 Close_Slot(1);

 // The XW107 card plugged in slot 1 of LP-51xx

 // Returned Value: moduleName=” XW107 ”

Remark:

 One LP-51xx can only plug only one XW-board.

LP-51xx SDK Manual：63

6.2 Watch Dog Timer Functions

 EnableWDT

 DisableWDT

Description:

This function can be used to enable the watch dog timer (WDT) and users need to reset

WDT in the assigned time set by users. Or LinPAC will reset automatically.

Syntax:

 [C]

 void EnableWDT(unsigned int msecond)

void DisableWDT(void)

Parameter:

milliseconds: LinPAC will reset in the assigned time if users don‟t reset WDT.

 The unit is mini-second.

Return Value:

None

Example:

EnableWDT(10000); //Enable WDT interval 10000ms=10s

 while (getchar()==10)

{

 printf("Refresh WDT\n");

 EnableWDT(10000); //Refresh WDT 10s

 }

 printf("Disable WDT\n");

 DisableWDT();

Remark:

LP-51xx SDK Manual：64

 WatchDogSWEven

Description:

This function is used to read the LinPAC Reset Condition and users can reinstall the initial

value according to the Reset Condition.

Syntax:

[C]

 unsigned int WatchDogSWEven (void)

Parameter:

None

Return Value:

Just see the last number of the return value – RCSR (Reset Controller Status Register).

For example, RCSR is “20009a4”, so just see the last number “4”. 4 is 0100 in bits and it

means:

Bit 0: Hardware Reset (Like Power Off, Reset Button)

Bit 1: Software Reset (Like Type ”shutdown –r now “or “reboot” in command prompt)

Bit 2: WDT Reset (Like Use “EnableWDT(1000)”)

Bit 3: Sleep Mode Reset (Not supported in the LinPAC)

Example:

 printf("RCRS = %x\n", WatchDogSWEven());

Remark:

LP-51xx SDK Manual：65

 ClearWDTSWEven

Description:

This function is used to clear RCSR value.

Syntax:

[C]

 void ClearWDTSWEven (unsigned int rcsr)

Parameter:

rcsr : Clear bits of RCSR. Refer to the following parameter setting：

 1 : clear bit 0

 2 : clear bit 1

 4 : clear bit 2

 8 : clear bit 3

 F : clear bit 0 to bit 3

Return Value:

None

Example:

 ClearWDTSWEven(0xF) ; // Used to clear bit 0 to bit 3 of RCRS to be zero.

Remark:

LP-51xx SDK Manual：66

6.3 EEPROM Read/Write Functions

 Enable_EEP

Description:

This function is used to make EEPROM able to read or write. It must be used before using

Read_EEP or Write_EEP. This total size for the EEPROM is 0x0 ~ 0x3FFF (16,384 bytes; 16K)

capacity.

Syntax:

[C]

 void Enable_EEP(void)

Parameter:

None

Return Value:

 None

Example:

 Enable_EEP();

 // After using this function, you can use Write_EEP or Read_EEP to write or read

// data of EEPROM.

Remark:

LP-51xx SDK Manual：67

 Disable_EEP

Description:

This function is used to make EEPROM unable to read or write. You need to use this

function after using Read_EEP or Write_EEP. Then it will protect you from modifying your

EEPROM data carelessly.

Syntax:

[C]

 void Disable_EEP(void)

Parameter:

None

Return Value:

 None

Example:

 Disable_EEP();

 // After using this function, you will not use Write_EEP or Read_EEP to write or read

data of EEPROM.

Remark:

LP-51xx SDK Manual：68

 Read_EEP

Description:

This function will read one byte data from the EEPROM. There is a 16K-byte (0~0x3fff)

EEPROM in the main control unit in the LP-51xx system. This EEPROM with its accessing

APIs provides another mechanism for storing critical data inside non-volatile memory.

Syntax:

[C]

 unsigned char Read_EEP(int block, int offset)

Parameter:

block: [Input] this is reserved for the system, and the default value is 0.

offset: [Input] specifies the memory address where read from.

Return Value:

 Data read from the EEPROM.

Example:

 int block=0, offset;

 unsigned char data;

Enable_EEP();

 data= ReadEEP(block, offset);

Disable_EEP();

 // Returned value: data= read an 8-bit value from the EEPROM (block & offset)

Remark:

LP-51xx SDK Manual：69

 Write_EEP

Description:

To write one byte of data to the EEPROM. There is a 16K-byte (0~0x3fff) EEPROM in the main

control unit of the LP-51xx system. This EEPROM is divided into 64 blocks (block 0 to 63), and

each block has 256 bytes in length from the offset of 0 to 255. This EEPROM with its

accessing APIs provides another mechanism for storing critical data inside non-volatile

memory.

Syntax:

[C]

 void Write_EEP(int block, int offset, unsigned char data)

Parameter:

block: [Input] this is reserved for the system, and the default value is 0.

offset: [Input] specifies the memory address where write from.

Data: [Input] data to write to EEPROM.

Return Value:

None

Example:

 int block, offset;

 unsigned char data=10;

Enable_EEP()

 WriteEEP(block, offset, data);

Disable_EEP();

 // Writes a 10 value output to the EEPROM (block & offset) location

Remark:

LP-51xx SDK Manual：70

6.4 Digital Input/Output Functions

6.4.1 I-7000 series modules

 DigitalOut

Description:

This function is used to output the value of the digital output module for I-7000 series

modules.

Syntax:

[C]

 WORD DigitalOut(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7011/12/14/42/43/44/50/60/63/65/66/67/80

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

 wBuf[5]: : [Input] 16-bit digital output data

 wBuf[6]: [Input] 0  no save to szSend &szReceive

 1  Save to szSend &szReceive

 fBuf: Not used.

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

Return Value:

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

 char szSend[80];

char szReceive[80];

float fBuf[12];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=100;

LP-51xx SDK Manual：71

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0] = m_port;

 wBuf[1] = m_address;

 wBuf[2] = 0x7050;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

 wBuf[5] = 0x0f; // 8 DO Channels On

 wBuf[6] = 0;

 DigitalOut(wBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：72

 DigitalBitOut

Description:

This function is used to set the digital output value of the channel No. of I-7000 series

modules. The output value is “0” or “1”.

Syntax:

[C]

 WORD DigitalBitOut(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7042/43/44/50/60/63/65/66/67

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

 wBuf[5]: : Not used

 wBuf[6]: [Input] 0  no save to szSend &szReceive

 1  Save to szSend &szReceive

 wBuf[7]: [Input] The digital output channel No.

 wBuf[8]: [Input] Logic value(0 or 1)

 fBuf: Not used.

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

Return Value:

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

 char szSend[80];

char szReceive[80];

float fBuf[12];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=100;

WORD m_checksum=0;

LP-51xx SDK Manual：73

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0] = m_port;

 wBuf[1] = m_address;

 wBuf[2] = 0x7065;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

 wBuf[6] = 0;

wBuf[7] = 0x08; //RL4 relay On

wBuf[8] = 1;

 DigitalBitOut (wBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：74

 DigitalOutReadBack

Description:

This function is used to read back the digital output value of I-7000 series modules.

Syntax:

[C]

 WORD DigitalOutReadBack(WORD wBuf[], float fBuf[],char szSend[],

char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7042/43/44/50/60/63/65/66/67/80

 wBuf[3]: [Input] 0=Checksum disable; 1=Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

 wBuf[5]: : [Output] 16-bit digital output data read back

 wBuf[6]: [Input] 0  no save to szSend &szReceive

 1  Save to szSend & szReceive

 fBuf: Not used.

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

Return Value:

0 is for Success

Not 0 is for Failure

Example:

 char szSend[80];

char szReceive[80];

float fBuf[12];

WORD DO;

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=100;

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0] = m_port;

LP-51xx SDK Manual：75

 wBuf[1] = m_address;

 wBuf[2] = 0x7050;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

 wBuf[6] = 0;

 DigitalOutReadBack (wBuf, fBuf, szSend, szReceive);

 DO=wBuf[5];

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：76

 DigitalOut_7016

Description:

This function is used to set the digital output value of the specified channel No. of I-7016

module. If the parameter of wBuf[7] is “0”, it means to output the digital value through Bit0

and Bit1 digital output channels. If wBuf[7] is “1”, it means to output the digital value through

Bit2 and Bit3 digital output channels.

Syntax:

[C]

 WORD DigitalOut_7016(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7016

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

 wBuf[5]: : [Input] 2-bit digital output data in decimal format

 wBuf[6]: [Input] 0  no save to szSend &szReceive

 1  Save to szSend &szReceive

 wBuf[7]: [Input] 0 : Bit0, Bit1 output

 1 : Bit2, Bit3 output

fBuf: Not used.

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

Return Value:

0 is for Success

Not 0 is for Failure

Example:

 char szSend[80];

char szReceive[80];

float fBuf[12];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=100;

LP-51xx SDK Manual：77

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0] = m_port;

 wBuf[1] = m_address;

 wBuf[2] = 0x7016;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

wBuf[5] = 1;

 wBuf[6] = 0;

wBuf[7] = 1; // Set the Bit2, Bit3 digital output

 DigitalOut_7016(wBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：78

 DigitalIn

Description:

This function is used to obtain the digital input value from I-7000 series modules.

Syntax:

[C]

 WORD DigitalIn(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7041/44/50/52/53/55/58/60/63/65

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

 wBuf[5]: : [Output] 16-bit digital output data

 wBuf[6]: [Input] 0  no save to szSend &szReceive

 1  Save to szSend &szReceive

 fBuf: Not used.

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

Return Value:

0 is for Success

Not 0 is for Failure

Example:

 char szSend[80];

char szReceive[80];

float fBuf[12];

WORD DI;

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=100;

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0] = m_port;

 wBuf[1] = m_address;

LP-51xx SDK Manual：79

 wBuf[2] = 0x7050;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

 wBuf[6] = 0;

 DigitalIn(wBuf, fBuf, szSend, szReceive);

 DI=wBuf[5];

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：80

 DigitalInLatch

Description:

This function is used to obtain the latch value of the high or low latch mode of the digital input

module.

Syntax:

[C]

 WORD DigitalInLatch(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7041/44/50/52/53/55/58/60/63/65/66

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

 wBuf[5]: : [Input] 0: low Latch mode ; 1:high Latch mode

 wBuf[6]: [Input] 0  no save to szSend &szReceive

 1  Save to szSend &szReceive

wBuf[7]: [Output] Latch value

 fBuf: Not used.

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

Return Value:

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

 char szSend[80];

char szReceive[80];

float fBuf[12];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=100;

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

LP-51xx SDK Manual：81

 wBuf[0] = m_port ;

 wBuf[1] = m_address ;

 wBuf[2] = 0x7050;

 wBuf[3] = m_checksum ;

 wBuf[4] = m_timeout ;

wBuf[5] = 1; // Set the high Latch mode

 wBuf[6] = 0;

 wBuf[7] = 0x03; // Set the Latch value

 DigitalInLatch(wBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：82

 ClearDigitalInLatch

Description:

This function is used to clear the latch status of digital input module when latch function has

been enabling.

Syntax:

[C]

 WORD ClearDigitalInLatch(WORD wBuf[], float fBuf[],char szSend[],

char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7011/12/14/42/43/44/50/55/58/60/63/65/66/67

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

 wBuf[5]: : Not used.

 wBuf[6]: [Input] 0  no save to szSend &szReceive

 1  Save to szSend &szReceive

 fBuf: Not used.

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules .

Return Value:

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

 char szSend[80];

char szReceive[80];

float fBuf[12];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=100;

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

LP-51xx SDK Manual：83

 wBuf[0] = m_port;

 wBuf[1] = m_address;

 wBuf[2] = 0x7050;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

 wBuf[6] = 0;

 ClearDigitalInLatch(wBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：84

 DigitalInCounterRead

Description:

This function is used to obtain the counter event value of the channel number of the digital

input module.

Syntax:

[C]

 WORD DigitalInCounterRead(WORD wBuf[], float fBuf[], char szSend[],

char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7041/44/50/51/52/53/55/58/60/63/65

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

 wBuf[5]: : [Input] The digital input Channel No.

 wBuf[6]: [Input] 0  no save to szSend &szReceive

 1  Save to szSend &szReceive

wBuf[7]: [Output] Counter value of the digital input channel No.

fBuf: Not used.

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

Return Value:

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

 char szSend[80];

char szReceive[80];

float fBuf[12];

WORD DI_counter;

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=100;

LP-51xx SDK Manual：85

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0] = m_port;

 wBuf[1] = m_address;

 wBuf[2] = 0x7050;

 wBuf[3] = m_checksum;

 wBuf[4] = 100;

 wBuf[5] = 0; // Set the digital input channel No.

 wBuf[6] = 0;

 DigitalInCounterRead(wBuf, fBuf, szSend, szReceive);

DI_counter=wBuf[7];

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：86

 ClearDigitalInCounter

Description:

This function is used to clear the counter value of the channel number of the digital input

module.

Syntax:

[C]

 WORD ClearDigitalInCounter(WORD wBuf[], float fBuf[],char szSend[],

 char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7041/44/50/51/52/53/55/58/60/63/65

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

 wBuf[5]: : [Input] The digital input channel No.

 wBuf[6]: [Input] 0  no save to szSend &szReceive

 1  Save to szSend &szReceive

 fBuf: Not used.

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

Return Value:

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

 char szSend[80];

char szReceive[80];

float fBuf[12];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=100;

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

LP-51xx SDK Manual：87

 wBuf[0] = m_port;

 wBuf[1] = m_address;

 wBuf[2] = 0x7050;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

 wBuf[5] = 0; // Set the digital input channel No.

 wBuf[6] = 0;

 ClearDigitalInCounter(wBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：88

 ReadEventCounter

Description:

This function is used to obtain the value of event counter of I-7000 series modules. This

function only supports I-7011, I-7012, I-7014 and I-7016 modules.

Syntax:

[C]

 WORD ReadEventCounter(WORD wBuf[], float fBuf[],char szSend[],

char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument table

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7011/12/14/16

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

 wBuf[5]: : Not used

 wBuf[6]: [Input] 0  no save to szSend &szReceive

 1  Save to szSend &szReceive

 wBuf[7]: [Output] The value of event counter

fBuf: Not used.

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

Return Value:

0 is for Success

Not 0 is for Failure

Example:

 char szSend[80];

char szReceive[80];

float fBuf[12];

WORD Counter;

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=100;

WORD m_checksum=0;

LP-51xx SDK Manual：89

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0] = m_port;

 wBuf[1] = m_address;

 wBuf[2] = 0x7012;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

 wBuf[6] = 0;

 ReadEventCounter (wBuf, fBuf, szSend, szReceive);

Counter=wBuf[7];

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：90

 ClearEventCounter

Description:

This function is used to clear the value of event counter of I-7000 series modules. This

function only supports I-7011, I-7012, I-7014 and I-7016 modules.

Syntax:

[C]

 WORD ClearEventCounter(WORD wBuf[], float fBuf[], char szSend[],

char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7011/12/14/16

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

 wBuf[5]: : Not used

 wBuf[6]: [Input] 0  no save to szSend &szReceive

 1  Save to szSend &szReceive

 fBuf: Not used.

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules .

Return Value:

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

 char szSend[80];

char szReceive[80];

float fBuf[12];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=100;

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

LP-51xx SDK Manual：91

 wBuf[0] = m_port;

 wBuf[1] = m_address;

 wBuf[2] = 0x7012;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

 wBuf[6] = 0;

 ClearEventCounter (wBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：92

6.5 Analog Input Functions

6.5.1 I-7000 series modules

 AnalogIn

Description:

This function is used to obtain input value from I-7000 series modules.

Syntax:

[C]

 WORD AnalogIn (WORD wBuf[], float fBuf[],char szSend[],char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7005/11/12/13/14/15/16/17/18/19/33

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

 wBuf[5]: : [Input] Channel number for multi-channel

 wBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Float Input/Ouput argument table.

fBuf[0]: :: :: [Output] Analog input value return

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

 Note : “wBuf[6]” is the debug setting. If this parameter is set as “1”, user can get whole

command string and result string from szSend[] and szReceive[] respectively.

Return Value:

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

float AI;

 float fBuf[12];

char szSend[80];

LP-51xx SDK Manual：93

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=100;

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0] = m_port;

 wBuf[1] = m_address;

 wBuf[2] = 0x7016;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

 wBuf[5] = 0;

 wBuf[6] = 1;

 AnalogIn (wBuf, fBuf, szSend, szReceive); // szSend=”#02” , szReceive=”>+001.9”

AI = fBuf[0]; // AI = 1.9

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：94

 AnalogInHex

Description:

This function is used to obtain the analog input value in “Hexadecimal” form I-7000 series

modules.

Syntax:

[C]

 WORD AnalogInHex (WORD wBuf[], float fBuf[],char szSend[],char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7005/11/12/13/14/15/16/17/18/19/33

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

 wBuf[5]: : : [Input] Channel number for multi-channel

 wBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 wBuf[7]: [Ouput] The analog input value in “Hexadecimal “ format

 fBuf: Not used.

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

 Note : Users have to use DCON utility to set up the analog input configuration of the

module in hex format.

Return Value:

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

float AI;

 float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

LP-51xx SDK Manual：95

WORD m_timeout=100;

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0] = m_port;

 wBuf[1] = m_address;

 wBuf[2] = 0x7012;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

 wBuf[5] = 0;

 wBuf[6] = 1;

 AnalogInHex (wBuf, fBuf, szSend, szReceive);

AI = wBuf[7]; // Hex format

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：96

 AnalogInFsr

Description:

This function is used to obtain the analog input value in “FSR” format from I-7000 series

modules. The “FSR” means “Percent” format.

Syntax:

[C]

 WORD AnalogInFsr (WORD wBuf[], float fBuf[],char szSend[],char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7005/11/12/13/14/15/16/17/18/19/33

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

 wBuf[5]: : : [Input] Channel number for multi-channel

 wBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend &szReceive

 fBuf: Float Input/Output argument table.

fBuf[0]: ::: [Output] Analog input value return

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

 Note : Users have to use DCON utility to set up the analog input configuration of the

module in hex format.

Return Value:

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

float AI;

 float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

LP-51xx SDK Manual：97

WORD m_timeout=100;

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0] = m_port;

 wBuf[1] = m_address;

 wBuf[2] = 0x7012;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

 wBuf[5] = 0;

 wBuf[6] = 1;

 AnalogInFsr (wBuf, fBuf, szSend, szReceive);

AI = wBuf[7];

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：98

 AnalogInAll

Description:

This function is used to obtain the analog input value of all channels from I-7000 series

modules.

Syntax:

[C]

 WORD AnalogInAll (WORD wBuf[], float fBuf[],char szSend[],char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7005/15/16/17/18/19/33

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

 wBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Float Input/Output argument table.

fBuf[0]: ::: [Output] Analog input value return of channel_0

fBuf[1]: ::: [Output] Analog input value return of channel_1

fBuf[2]: ::: [Output] Analog input value return of channel_2

fBuf[3]: ::: [Output] Analog input value return of channel_3

fBuf[4]: ::: [Output] Analog input value return of channel_4

fBuf[5]: ::: [Output] Analog input value return of channel_5

fBuf[6]: ::: [Output] Analog input value return of channel_6

fBuf[7]: ::: [Output] Analog input value return of channel_7

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

 Note : Users have to use DCON utility to set up the analog input configuration of the

module in hex format.

Return Value:

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

LP-51xx SDK Manual：99

float AI[12];

 float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=100;

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0] = m_port;

 wBuf[1] = m_address;

 wBuf[2] = 0x7017;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

 wBuf[6] = 1;

 AnalogInAll (wBuf, fBuf, szSend, szReceive);

AI[0] = fBuf[0];

AI[0] = fBuf[1];

AI[0] = fBuf[2];

AI[0] = fBuf[3];

AI[0] = fBuf[4];

AI[0] = fBuf[5];

AI[0] = fBuf[6];

AI[0] = fBuf[7];

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：100

 ThermocoupleOpen_7011

Description:

This function is used to detect the thermocouple state of I-7011 modules for the supporting

type “J, K, T, E, R, S, B, N, C” is open or close. If the response value is “0”, thermocouple

I-7011 is working in close state. If the response value is “1”, thermocouple I-7011 is working

in open state. For more information please refer to user manual.

Syntax:

[C]

 WORD ThermocoupleOpen_7011(WORD wBuf[], float fBuf[],char szSend[],

char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7011

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

wBuf[5]: : : [Output] response value 0  the thermocouple is close

:response value 1  the thermocouple is open

 wBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Not used.

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

Return Value:

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

WORD state;

 float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

LP-51xx SDK Manual：101

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=100;

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0] = m_port;

 wBuf[1] = m_address;

 wBuf[2] = 0x7011;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

 wBuf[5] = 0;

 wBuf[6] = 1;

 ThermocoupleOpen_7011(wBuf, fBuf, szSend, szReceive);

state = wBuf[5];

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：102

 SetLedDisplay

Description:

This function is used to configure LED display for specified channel of I-7000 analog input

serial modules.

Syntax:

[C]

 WORD SetLedDisplay (WORD wBuf[], float fBuf[],char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7013/16/33

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

wBuf[5]: : : [Input] Set display channel

 wBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Not used.

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

Return Value:

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

 float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=100;

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0] = m_port;

LP-51xx SDK Manual：103

 wBuf[1] = m_address;

 wBuf[2] = 0x7033;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

 wBuf[5] = 1; // Set channel 1 display

 wBuf[6] = 1;

 SetLedDisplay (wBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：104

 GetLedDisplay

Description:

This function is used to get the current setting of the specified channel for LED display

channel for specified channel of I-7000 analog input serial modules.

Syntax:

[C]

 WORD GetLedDisplay (WORD wBuf[], float fBuf[],char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7013/16/33

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

wBuf[5]: : : [Output] Current channel for LED display

 0 = channel_0

 1 = channel_1

 wBuf[6]: [Input] 0  no save to szSend & szReceive

 1  Save to szSend & szReceive

 fBuf: Not used

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

Return Value:

0 is for Success

Not 0 is for Failure

Example:

 WORD led;

float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=100;

WORD m_checksum=0;

LP-51xx SDK Manual：105

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0] = m_port;

 wBuf[1] = m_address;

 wBuf[2] = 0x7033;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

 wBuf[6] = 1;

 GetLedDisplay (wBuf, fBuf, szSend, szReceive);

 Led = wBuf[5];

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：106

6.6 Analog Output Functions

6.6.1 I-7000 series modules

 AnalogOut

Description:

This function is used to obtain analog value from analog output module of I-7000 series

modules.

Syntax:

[C]

 WORD AnalogOut(WORD wBuf[], float fBuf[],char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7016/21/22/24

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

 wBuf[5]: : [Input] The analog output channel number

 wBuf[6]: [Input] 0  no save to szSend &szReceive

 1  Save to szSend &szReceive

 fBuf: Float Input/Ouput argument table.

fBuf[0]: :: :: [Input] Analog output value

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

Return Value:

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

 float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

LP-51xx SDK Manual：107

WORD m_address=1;

WORD m_timeout=100;

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0] = m_port;

 wBuf[1] = m_address;

 wBuf[2] = 0x7016;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

 // wBuf[5] = 0; // I-7016 no used

 wBuf[6] = 1;

fBuf[0] = 3.5 // Excitation Voltage output +3.5V

 AnalogOut (wBuf, fBuf, szSend, szReceive); ”

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：108

 AnalogOutReadBack

Description:

This function is used to obtain read back the analog value of analog output modules of

I-7000 series modules. There are two types of reading back functions, as described in the

following:

1. Last value is read back by $AA6 command.

2. The analog output of current path is read back by $AA8 command.

Syntax:

[C]

 WORD AnalogOutReadBack(WORD wBuf[], float fBuf[],char szSend[],

 char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7016/21/22/24

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

 wBuf[5]: : [Input] 0: command $AA6 read back

 : 1: command $AA8 read back

 Note 1) When the module is I-7016: Don‟t care.

 :: 2) When the module is I-7021/22, analog output of current path

read back ($AA8)

 : 3) When the module is I-7024, the updating value in a specific

Slew rate ($AA8)

(For more information, please refer to I-7021/22/24 manual)

 wBuf[6]: [Input] 0  no save to szSend &szReceive

 1  Save to szSend &szReceive

 wBuf[7]: [Input] The analog output channel No. (0 to 3) of module I-7024

 No used for single analog output module

fBuf: Float Input/Ouput argument table.

fBuf[0]: :: :: [Output] Analog output read back value

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

LP-51xx SDK Manual：109

Return Value:

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

 Float Volt;

float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=100;

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0] = m_port;

 wBuf[1] = m_address;

 wBuf[2] = 0x7021;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

 wBuf[5] = 0; // $AA6 command

 wBuf[6] = 1;

wBuf[7] = 1;

 AnalogOutReadBack (wBuf, fBuf, szSend, szReceive);

 Volt = fBuf[0]; // Receive: “!01+2.57” excitation voltage , Volt=2.57

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：110

 AnalogOutHex

Description:

This function is used to obtain analog value of the analog output modules through Hex

format.

Syntax:

[C]

 WORD AnalogOutHex(WORD wBuf[], float fBuf[],char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7021/21P/22

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

 wBuf[5]: : [Input] The analog output channel number

 (No used for single analog output module)

 wBuf[6]: [Input] 0  no save to szSend &szReceive

 1  Save to szSend &szReceive

 wBuf[7]: :: :[Input] Analog output value in Hexadecimal data format

fBuf: Not used.

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

Return Value:

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

 float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=100;

WORD m_checksum=0;

LP-51xx SDK Manual：111

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0] = m_port;

 wBuf[1] = m_address;

 wBuf[2] = 0x7022;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

 wBuf[5] = 1; // channel 1

 wBuf[6] = 1;

wBuf[7] = 0x250

 AnalogOutHex (wBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：112

 AnalogOutFsr

Description:

This function is used to obtain the analog value of analog output modules through % of span

data format. This function only can be used after analog output modules is set as “FSR”

output mode.

Syntax:

[C]

 WORD AnalogOutFsr(WORD wBuf[], float fBuf[],char szSend[], char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7021/21P/22

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

 wBuf[5]: : [Input] The analog output channel number

 (No used for single analog output module)

 wBuf[6]: [Input] 0  no save to szSend &szReceive

 1  Save to szSend &szReceive

 fBuf: Float Input/Output argument table.

FBuf[0]: [Input] Analog output value in % of Span data format.

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

Return Value:

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

Example:

 float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

LP-51xx SDK Manual：113

WORD m_timeout=100;

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0] = m_port;

 wBuf[1] = m_address;

 wBuf[2] = 0x7022;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

 wBuf[5] = 1; // channel 1

 wBuf[6] = 1;

fBuf[0] = 50

 AnalogOutFsr (wBuf, fBuf, szSend, szReceive);

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：114

 AnalogOutReadBackHex

Description:

This function is used to obtain read back the analog value of analog output modules in Hex

format for I-7000 series modules. There are two types of reading back functions, as

described in the following:

1. Last value is read back by $AA6 command.

2. The analog output of current path is read back by $AA8 command.

Syntax:

[C]

 WORD AnalogOutReadBackHex(WORD wBuf[], float fBuf[],char szSend[],

 char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7021/21P/22

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

 wBuf[5]: : [Input] 0: command $AA6 read back

 : 1: command $AA8 read back

 wBuf[6]: [Input] 0  no save to szSend &szReceive

 1  Save to szSend &szReceive

 wBuf[7]: [Input] The analog output channel No.

 No used for single analog output module

wBuf[9]: ::: [Output] Analog output value in Hexadecimal data format.

fBuf: Not used.

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

Return Value:

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

LP-51xx SDK Manual：115

Example:

 WORD Volt;

float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=100;

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0] = m_port;

 wBuf[1] = m_address;

 wBuf[2] = 0x7021;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

 wBuf[5] = 0; // command $AA6

 wBuf[6] = 1;

wBuf[7] = 0;

 AnalogOutReadBackHex (wBuf, fBuf, szSend, szReceive);

 Volt = wBuf[9];

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：116

 AnalogOutReadBackFsr

Description:

This function is used to obtain read back the analog value of analog output modules through

% of span data format for I-7000 series modules. There are two types of reading back

functions, as described in the following:

1. Last value is read back by $AA6 command.

2. The analog output of current path is read back by $AA8 command.

Syntax:

[C]

 WORD AnalogOutReadBackFsr(WORD wBuf[], float fBuf[],char szSend[],

 char szReceive[])

Parameter:

 wBuf: WORD Input/Output argument talbe

wBuf[0]: [Input] COM port number, from 1 to 255

 wBuf[1]: [Input] Module address, form 0x00 to 0xFF

 wBuf[2]: [Input] Module ID, 0x7021/21P/22

 wBuf[3]: [Input] 0= Checksum disable; 1= Checksum enable

 wBuf[4]: [Input] Timeout setting , normal=100 msecond

 wBuf[5]: : [Input] 0: command $AA6 read back

 : 1: command $AA8 read back

 wBuf[6]: [Input] 0  no save to szSend &szReceive

 1  Save to szSend &szReceive

 wBuf[7]: [Input] The analog output channel No.

 No used for single analog output module

fBuf: Float input/output argument table.

fBuf[0]: ::::: [Output] Analog output value in % Span data format.

 szSend: [Input] Command string to be sent to I-7000 series modules.

 szReceive: [Output] Result string receiving from I-7000 series modules.

Return Value:

0: The function was successfully processed.

Other: The processing failed.

Refer to Chapter 6.7: “Error Code Definitions” for details of other returned values.

LP-51xx SDK Manual：117

Example:

 float Volt;

float fBuf[12];

char szSend[80];

char szReceive[80];

WORD wBuf[12];

WORD m_port=3;

WORD m_address=1;

WORD m_timeout=100;

WORD m_checksum=0;

 Open_Com(COM3, 9600, Data8Bit, NonParity, OneStopBit);

 wBuf[0] = m_port;

 wBuf[1] = m_address;

 wBuf[2] = 0x7021;

 wBuf[3] = m_checksum;

 wBuf[4] = m_timeout;

 wBuf[5] = 0; // command $AA6

 wBuf[6] = 1;

wBuf[7] = 0;

 AnalogOutReadBackFsr (wBuf, fBuf, szSend, szReceive);

 Volt = fBuf[0];

 Close_Com(COM3);

Remark:

LP-51xx SDK Manual：118

6.7 Error Code Explanation

Error Code Explanation

0 NoError

1 FunctionError

2 PortError

3 BaudrateError

4 DataError

5 StopError

6 ParityError

7 CheckSumError

8 ComPortNotOpen

9 SendThreadCreateError

10 SendCmdError

11 ReadComStatusError

12 StrCheck Error

13 CmdError

14 X

15 TimeOut

16 X

17 ModuleId Error

18 AdChannelError

19 UnderRang

20 ExceedRange

21 InvalidateCounterValue

22 InvalidateCounterValue

23 InvalidateGateMode

24 InvalidateChannelNo

25 ComPortInUse

LP-51xx SDK Manual：119

7. Demo for LP-51xx Modules With C Language

In this section, we will focus on examples for the description and application of the control

functions on the I-7000/I-8000/I-87k series modules for use in the LP-51xx. After installing

the LP-51xx SDK, the demo programs provided below can be found in the

“c:/cygwin/LinCon8k/examples” folder.

7.1 DIO Control Demo for I-7k Modules

The i7kdio.c demo application illustrates how to control DI/DO function using an I-7050

module (8 DO channels and 7 DI channels) connected to an RS-485 network. The address

of the module is 02 and the Baud Rate is 9600 bps.

The result of executing this demo program is that DO channels 0 to 7 on the I-7050 module

will be set as the output channels, and DI channel 2 on the I-7050 module will be set as the

input channel. The source code for the demo program is as follows:

#include<stdio.h>

#include<stdlib.h>

#include "msw.h"

char szSend[80], szReceive[80], ans;

WORD wBuf[12];

float fBuf[12];

/* --- */

int main()

{

 int wRetVal;

 // Check Open_Com2

 wRetVal = Open_Com(COM2, 9600, Data8Bit, NonParity, OneStopBit);

LP-51xx SDK Manual：120

 if (wRetVal > 0) {

 printf("open port failed!\n");

 return (-1);

 }

 // ***** 7050 DO && DI Parameter *******

 wBuf[0] = 2; // COM Port

 wBuf[1] = 0x02; // Address

 wBuf[2] = 0x7050; // ID

 wBuf[3] = 0; // CheckSum disable

 wBuf[4] = 100; // TimeOut , 100 msecond

 wBuf[5] = 0x0f; // 8 DO Channels On

 wBuf[6] = 0; // string debug

 // 7050 DO Output

 wRetVal = DigitalOut(wBuf, fBuf, szSend, szReceive);

 if (wRetVal)

 printf("DigitalOut_7050 Error !, Error Code=%d\n", wRetVal);

 printf("The DO of 7050 : %u \n", wBuf[5]);

 // 7050 DI Input

 DigitalIn(wBuf, fBuf, szSend, szReceive);

 printf("The DI of 7050 : %u \n", wBuf[5]);

 Close_Com(COM2);

 return 0;

}

Follow the procedure below to achieve the desired results:

Step 1: Write i7kdio.c

Copy the above source code above to a blank text file and save it using the name – i7kdio.c

or open the file from the C:\cygwin\LinCon8k\examples\i7k folder.

Step 2: Compile i7kdio.c to an executable file – i7kdio.exe

Two methods can be used to compile the program, each of which is introduced here:

Method One – Using a Batch File (lcc.bat)

Open the LP-51xx Build Environment by clicking the Start > Programs > ICPDAS > LP-51xx

SDK > LP-51xx Build Environment to open LP-51xx SDK window, and change the path to

C:\cygwin\LinCon8k\examples\i7k. To compile the i7kdio.c file to an executable file, type lcc

i7kdio. (refer to Fig. 7-1)

LP-51xx SDK Manual：121

Fig. 7-1

Method Two – Using Compile Instructions

When using this method, type cd C:\cygwin\LinCon8k\examples\i7k command prompt to

change the path. To compile i7kdio.c to an executable file, type

arm-linux-gcc –I../../include –lm –o i7kdio.exe i7kdio.c ../../lib/libi8k.a (refer to Fig. 7-2).

Fig. 7-2

LP-51xx SDK Manual：122

Step 3: Transfer i7kdio.exe to the LP-51xx

Two methods can be used to transfer the executable file to the LP-51xx, each of which is

introduced here.

Method One – Using an FTP application

(1) Open a FTP application and create a new FTP connection. Enter the login details for the

LP-51xx, including the Host name (or IP address), Username and Password. The default

value for both the User_Name and the Password is “root”. Click the “Connect” button to

connect to the FTP server on the LP-51xx. Refer to Fig.7-3 below for more details.

Fig.7-3

(2) Upload the file i7kdio.exe file to the LP-51xx. (refer to Fig.7-4).

Fig.7-4

LP-51xx SDK Manual：123

(3) Choose i7kdio.exe in the LP-51xx and Click the right mouse button to select the

“Permissions” option for the menu. Enter “777” in the Numeric textbox to set the file

permissions to readable, writeable, and executable. Refer to Fig.7-5 and 7-6 below.

Fig.7-5 Fig.7-6

Method Two – Using a DOS Command Prompt

Open DOS Command Prompt and enter the IP Address of the server on the LP-51xx in

order to connect to the FTP server of the LP-51xx. Enter the User Name and Password (the

default value is root) to login to the LP-51xx FTP server.

Files must be transferred in binary mode, so type “bin” to set the mode.

At Command Prompt, type put c:/cygwin/lincon8k/examples/i7k/i7kdio.exe i7kdio.exe to

transfer the i7kdio.exe file to the LP-51xx. Once the file has been transferred, the “Transfer

complete” message will be displayed. Refer to Fig. 7-7 below for more details.

Fig. 7-7

LP-51xx SDK Manual：124

Step 4: Use Telnet to the LP-51xx to execute i7kdio.exe

At the Command Prompt, type telnet IP Address of the LP-51xx to establish a connection to

the LP-51xx. Enter User Name and Password (the default value is root) to login to the

LP-51xx.

At Command Prompt, type chmod 777 i7kdio.exe to set the i7kdio.exe file to executable, and

then type i7kdio.exe to execute the i7kdio.exe file. Refer to Figs. 7-8 and 7-9 below for more

details.

Fig. 7-8

Fig. 7-9

The message “The DO of I-7050: 255 (=2 ^ 8 – 1)” indicates that DO channels 0 to 7 will be

used to output data, and the message “The DI of I-7050: 123 (=127 – 2 ^ 2)” indicates that

DI channel 2 will be used as the input channel.

LP-51xx SDK Manual：125

7.2 AIO Control Demo for I-7k Modules

The i7kaio.c demo application illustrates how to control the AI/AO functions using an I-7017

module (8 AI channels) and an I-7021 module (1 AO channel) connected to an RS-485

network. The addresses for the I-7021 and I-7017 modules are 05 and 03, respectively, and

the baud rate for both modules is 9600 bps.

The result of executing this demo program is that the AO channel on the I-7021 module will

be set to output a voltage of 3.5V, and AI channel 2 on the I-7017 module will be set as the

input channel. The source code for this demo program is as follows:

#include<stdio.h>

#include<stdlib.h>

#include "msw.h"

char szSend[80], szReceive[80];

WORD wBuf[12];

float fBuf[12];

/* --- */

int main()

{

 int i,j, wRetVal;

 DWORD temp;

 wRetVal = Open_Com(COM2, 9600, Data8Bit, NonParity, OneStopBit);

 if (wRetVal > 0) {

 printf("open port failed!\n");

 return (-1);

 }

 //--- Analog output ---- **** 7021 -- AO ****

 i = 0;

 wBuf[0] = 2; // COM Port

 wBuf[1] = 0x05; // Address

 wBuf[2] = 0x7021; // ID

 wBuf[3] = 0; // CheckSum disable

 wBuf[4] = 100; // TimeOut , 100 msecond

 //wBuf[5] = i; // Not used if module ID is 7016/7021

 // Channel No.(0 to 1) if module ID is 7022

 // Channel No.(0 to 3) if module ID is 7024

LP-51xx SDK Manual：126

 wBuf[6] = 0; // string debug

 fBuf[0] = 3.5; // Analog Value

 wRetVal = AnalogOut(wBuf, fBuf, szSend, szReceive);

 if (wRetVal) // There was an error with the Analog Output on the I-7021

 printf("AO of 7021 Error !, Error Code=%d\n", wRetVal);

 else

 printf("AO of 7021 channel %d = %f \n",i,fBuf[0]);

 //--- Analog Input ---- **** 7017 -- AI ****

 j = 1;

 wBuf[0] = 2; // COM Port

 wBuf[1] = 0x03; // Address

 wBuf[2] = 0x7017; // ID

 wBuf[3] = 0; // CheckSum disable

 wBuf[4] = 100; // TimeOut , 100 msecond

 wBuf[5] = j; // Channel of AI

 wBuf[6] = 0; // string debug

 wRetVal = AnalogIn(wBuf, fBuf, szSend, szReceive);

 if (wRetVal) // There was an error with the Analog Input on the I-7017

 printf("AI of 7017 Error !, Error Code=%d\n", wRetVal);

 else

 printf("AI of 7017 channel %d = %f \n",j,fBuf[0]);

 Close_Com(COM2);

 return 0;

}

For this example, the programming and execution procedures are the same as those

described in section 7.1. Fig. 7-10 below illustrates the result of the execution.

Fig. 7-10

LP-51xx SDK Manual：127

7.3 Overview of the Module Control Demo Program

Fig. 7-11 provides a summary of the various communication functions that can be used

depending on the for the different locations of the I-7000/I-8000/I-87000 modules when

using the ICP DAS modules in conjunction with the LP-51xx, which can be helpful in

understanding which communication functions should be used.

I-87k

in Expansion Unit
I-8k or I-87k in

I-8000 Controller
I-7k

Open_Com()   

Close_Com()   

Fig. 7-11

Fig. 7-12 provides an overview of the source files from the libi8k.a library that can be used

depending on the different locations of I-7000/I-8000/I-87000 modules when using ICP DAS

modules in conjunction with the LP-51xx, which can be helpful in understanding which

source files should be called.

I7000.c I8000.c I87000.c

I-7K 

I-8K or I-87K in I-8000 Controller 

I-87K in Expansion Unit 

Fig. 7-12

7.4 Timer Function Demo

For an example of how to use the “Timer” function in conjunction with the LP-51xx, refer to

the – timer.c and time2.c demo programs provided in the LinPAC SDK –

(C:\cygwin\LinCon8k\examples\common) folder. The timer.c program can be used when the

execution period is between 0.5 to 10 ms (Real-Time) and the timer2.c program can be

used when the execution is period greater than 10 ms (General).

Communication
Functions

Module
Location

Source
File Module

Loaction

LP-51xx SDK Manual：128

8. Overview of the Serial Ports on the LP-51xx

The following is a description of the three serial ports contained in the LP-51xx embedded

controller, and are based on the RS-232 or RS-485 interfaces. Fig 8-1 illustrates the ports

contained on the LP-5141. The information in this section is organized as follows:

 COM1 Port ─ Internal communication with the XW-board modules

 COM2 Port ─ RS-485 (D2+,D2-) ; 2500VDC isolation

 COM3 Port ─ RS-232 (RXD, TXD, and GND); Non-isolation

 Console Port ─ RS-232 (RXD, TXD, and GND); Non-isolation (For console)

COM port Definitions in LP-51xx SDK Device name Default baudrate

None COM1 None 115200
1 (RS-232/console) None ttySA0 115200
2 (RS-485) COM2 ttyS0 9600
3 (RS-232) COM3 ttyS1 115200

1 USB Port 6 COM 1 (RS-232) 11 LED Indicator

2 Ethernet Port 1 7 COM 2 (RS-485) 12 microSD socket

3 USB Port 8 COM 3 (RS-232) 13 VGA Port

4 Microphone-In 9 Power 14 XWboard (optional)

5 Earphone-Out 10 Frame Ground 15 Operating Modes Selector

Fig. 8-1

Use the stty command to query or configure the COM port. For example, to modify the baud

rate 9600 to 115200 bps via COM2 port:

stty -F /dev/ttyS0 ispeed 115200 ospeed 115200

LP-51xx SDK Manual：129

8.1 COM1 Port

COM1 is the internal I/O expansion port on the LP-51xx and is used to connect to an I-87KW

series module inserted into the LP-51xx embedded controller. A serial command must be

used to control the I-87KW series module.

To control the I-87KW module, the Com port parameters and call the Open_Com() function

to open the COM1 port based on the appropriate settings.

Finally, call the ChangeToSlot(slot) function to specify which slot will be controlled. This is

like the serial address, meaning that control commands can be sent to an I/O module that is

inserted in the specified slot. Consequently, the serial address for the slot that contains the

module is 0. A detailed example is provided below:

For Example:

 int slot=1;

 unsigned char port=1; // for all modules in COM1 port of LP-51xx

 DWORD baudrate=115200;

 char data=8, parity=0, stopbit=1 ;

 Open_Slot(slot);

 Open_Com(port, baudrate, data, parity, stopbit);

// send command...

Close_Com(port);

Close_Slot(slot);

LP-51xx SDK Manual：130

8.2 COM2 Port

This COM2 port provides RS-485 serial communication functionality (DATA+ and DATA-)

and is located on the bottom-right corner on the LP-51xx. This port allows a connection to be

made to modules that contain an RS-485 interface such as the I-7000 serial modules

(DCON Module), meaning that ICP DAS I-7000 series modules can be directly controlled

via this port with any converter. ICP DAS provides a very easy to use the library of functions

(libi8k.a) that can use to easily communicate with I-7000 series modules. Below is an

application example of the program code demo.

 Test using C language:

 unsigned char port=2; data=8, parity=0, stopbit=1;

 DWORD baudrate=9600;

 Open_Com(port, baudrate, data, char parity, stopbit);

 // send command…

Close_Com(port);

 Fig. 8-2

 Test using command line: (PC  i-7520  COM2 of LP-51xx)

A) Open “Hyper Terminal” of the Host PC to monitor the test process. The default

settings for the COM2 port are 9600, 8, N, 1

B) Send data via COM2 port:

On the LP-51xx:

Type command: echo send-485>/dev/ttyS0

Check that the word “send-485” is displayed on the “Hyper Terminal” screen on the

PC.

C) Receive data via COM2 port:

On the LP-51xx:

Type the command: cat /dev/ttyS0

On the PC:

Enter some words in the “Hyper Terminal” screen on the PC. Check that the same

text displayed on the LP-51xx.

LP-51xx SDK Manual：131

LP-51xx send information via COM2 port Receive data from COM1 port of PC

Receive data via the COM2 port Send information via COM1 por of PC

Fig. 8-3

8.3 COM3 Port

This COM3 port is located on the right-upper corner on the LP-51xx and is a standard

RS-232 serial port that provides TxD, RxD, GND, non-isolated.

This port can also be used to connect to an I-7520 module in order to provide general

RS-485 communication functionality. The COM3 port can also be used to connect to a

wireless modem so that the module can be controlled from a remote device. The application

example and the code are demonstrated below:

 Test using C language:

 unsigned char port=3; data=8, parity=0, stopbit=1;

 DWORD baudrate=9600;

 Open_Com(port, baudrate, data, parity, stopbit);

// send command...

Close_Com(port);

Fig. 8-4

LP-51xx SDK Manual：132

 Test using the command line interface:

 (PC connected to COM3 on the LP-51xx)

A) Open “Hyper Terminal” on the Host PC to monitor

the test process. The default settings for COM3 port are 9600, 8, N, 1

B) Send data via COM3 port:

On the LP-51xx:

Type the command: echo send-232>/dev/ttyS1

Check that the word “send-232” is displayed on the “Hyper Terminal” screen on the

PC.

C) Receive data via the COM3 port:

On the LP-51xx:

Type the command: cat /dev/ttyS1

On the PC:

Enter some text in the “Hyper Terminal” screen on the PC.

Check that some words on the LP-51xx.

LP-51xx send information via COM3 port Receive data from COM1 port of PC

Receive data via the COM3 port Send information via COM1 por of PC

Fig. 8-5

LP-51xx SDK Manual：133

9. LP-51xx Library Reference in C Language

In this chapter, all the functions of libi8k.a will be listed to allow users to able to look them up

quickly.

9.1 List Of System Information Functions

int Open_Slot(int slot)

void Close_Slot(int slot)

int Open_Slot(void)

void Close_SlotAll(void)

void ChangeToSlot(char slot)

WORD Open_Com(char port, DWORD baudrate, char cData, char cParity, char cStop)

BOOL Close_Com(char port)

WORD Send_Receive_Cmd (char port, char szCmd[], char szResult[], WORD wTimeOut,

WORD wChksum, WORD *wT)

WORD Send_Cmd (char port, char szCmd[], WORD wTimeOut, WORD wChksum)

 WORD Receive_Cmd (char port, char szResult[], WORD wTimeOut, WORD wChksum)

WORD Send_Binary(char port, char szCmd[], int iLen)

WORD Receive_Binary(char cPort, char szResult[], WORD wTimeOut, WORD wLen,

 WORD *wT)

int sio_open(int slot)

int sio_close(int slot)

int sio_set_noncan(int port)

int GetModuleType(char slot)

void Read_SN(unsigned char serial_num[])

int GetNameOfModule(char slot)

void setLED(unsigned int addr, unsigned int value)

int GetBackPlaneID()

int GetRotaryID()

float GetSDKversion(void)

LP-51xx SDK Manual：134

9.2 List Of Digital Input/Output Functions

 For I-7000 modules via serial port

WORD DigitalOut(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

WORD DigitalBitOut(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

WORD DigitalOutReadBack(WORD wBuf[], float fBuf[],char szSend[], char szReceive[])

WORD DigitalOut_7016(WORD wBuf[], float fBuf[], char szSend[],char szReceive[])

WORD DigitalIn(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

WORD DigitalInLatch(WORD wBuf[], float fBuf[], char szSend[], char szReceive[])

WORD ClearDigitalInLatch(WORD wBuf[], float fBuf[],char szSend[],char szReceive[])

WORD DigitalInCounterRead(WORD wBuf[], float fBuf[], char szSend[],char szReceive[])

WORD ClearDigitalInCounter(WORD wBuf[], float fBuf[],char szSend[],char szReceive[])

WORD ReadEventCounter(WORD wBuf[], float fBuf[],char szSend[],char szReceive[])

WORD ClearEventCounter(WORD wBuf[], float fBuf[], char szSend[],char szReceive[])

9.3 List Of Watch Dog Timer Functions

void EnableWDT(unsigned int msecond)

void DisableWDT(void)

unsigned int WatchDogSWEven(void)

void ClearWDTSWEven(unsigned int rcsr)

9.4 List Of EEPROM Read/Write Functions

void Enable_EEP(void)

void Disable_EEP(void)

unsigned char Read_EEP(int block, int offset)

void Write_EEP(int block, int offset, unsigned char data)

LP-51xx SDK Manual：135

9.5 List Of Analog Input Functions

 For I-7000 modules via serial port

WORD AnalogIn(wBuf, fBuf, szSend, szReceive)

WORD AnalogInHex(wBuf, fBuf, szSend, szReceive)

WORD AnalogInFsr (wBuf, fBuf, szSend, szReceive)

WORD AnalogInAll (wBuf, fBuf, szSend, szReceive)

WORD ThermocoupleOpen_7011(wBuf, fBuf, szSend, szReceive)

WORD SetLedDisplay (wBuf, fBuf, szSend, szReceive)

WORD GetLedDisplay (wBuf, fBuf, szSend, szReceive)

9.6 List Of Analog Output Functions

 For I-7000 modules via serial port

WORD AnalogOut(wBuf, fBuf, szSend, szReceive);

WORD AnalogOutReadBack(wBuf, fBuf, szSend, szReceive)

WORD AnalogOutHex(wBuf, fBuf, szSend, szReceive)

WORD AnalogOutFsr(wBuf, fBuf, szSend, szReceive)

WORD AnalogOutReadBackHex(wBuf, fBuf, szSend, szReceive)

WORD AnalogOutReadBackFsr(wBuf, fBuf, szSend, szReceive)

LP-51xx SDK Manual：136

10. Additional Support

This chapter provides additional information related to the modules supported, together with

instructions that can be used to enhance the functionality and efficiency of the LP-51xx

module.

10.1 Support for GUI Functionality

Now “X-window“ is supported the VGA solution. After the LP-51xx boots, a GUI

environment similar to a standard „Windows screen‟ desktop will be displayed, as illustrated

in Fig.10-1. This means that custom GUI applications can be created and then executed on

the LP-51xx. The GUI Library in the LP-51xx is provided by the GTK+ Library (v1.2 and

v2.0), which is a multi-platform toolkit for creating the graphical user interface, allowing

custom SCADA screens to be designed using the GTK+ Library on the LP-51xx.

ICP DAS provides a number of demo programs that illustrate how to use the GUI to control

I/O modules and assist in quickly developing custom GUI programs.

Once the LP-51xx SDK has been installed, these demo programs can be found in the

C:\cygwin\LinCon8k\examples\gui folder.

In addition to the GTK+ GUI functionality, the “Java GUI” is also supported on the LP-51xx.

This means that developers familiar with the Java environment can also develop custom

GUI applications. However, only the Awe and Swing v1.1 elements are supported on the

LP-51xx.

To execute the Stylepad.jar Java GUI program on the LP-51xx, open a Xterm window by

clicking the „Start‟ button and choose „Xterm‟. At the Xterm window, enter “java –jar

Stylepad.jar –cp .: Stylepad.jar”. Note that it may take some time to execute the Java GUI

program.

LP-51xx SDK Manual：137

Fig. 10-1

10.1.1 Booting the LP-51xx without loading the X-window environment

The LP-51xx can be configurated to boot without loading the X-window environment by

following the procedure described below:

(1) Enter the command “cd /etc/rc2.d “ to switch to the default run level.

(2) Enter the command ”ls -al ” to list the S98Xserver link information into ../init.d/startx.

(3) To disable X-windows environment, enter the command ” mv S98Xserver

Xs98Xserver “ to rename the S98Xserver then exit the Xterm window and reboot

the LP-51xx to apply the new configuration.

10.1.2 Enabling the X-window environment to load at boot time

To enable the X-windows environment, enter the command “ls –al /etc/rc2.d“ at the

Command Prompt to view the S98Xserver link information ../init.d/startx, and then enter the

command “mv Xs98Xserver S98Xserver“ to rename and enable the Xs98Xserver. If the

S98Xserver link is not listed, follow the procedure described below:

(1) Enter the command “cd /etc/rc2.d “ to switch to the default run level.

(2) Enter the command ”ln –s ../init.d/startx /etc/rc2.d/S98Xserver“ to create a symbolic

link to the X-window script file, which will enable the X-window environment and then exit

the Command Prompt and reboot the LP-51xx to apply the new configuration.

LP-51xx SDK Manual：138

10.2 Support for ScreenShot functionality

The “fbshot” screenshot application is an embedded program that enables an image of the

screen for the LP-51xx to be conveniently captured, as illustrated in Fig. 10-2 below.

Open a Xterm window by clicking the Start button and then clicking Xterm. At the Command

Prompt, enter the command “fbshot –d /dev/fb0 /mnt/hda/catch1.png” and an image of

the current screen will be captured and saved to a file － catch1.png, and will be stored in

the /mnt/hda/.directory, as illustrated in Fig. 10-2 below.

To view the image, enter the command “vi /mnt/hda/catch1.png”. Note that vi application is

included in the path: /mnt/hda/opt/bin directory, so a microSD card must be inserted into the

LinPAC before attempting to save the file. To view details of the parameters that can be used

in conjunction with the fbshot application, enter the command “fbshot –help” at the

Command Prompt.

Fig. 10-2

10.3 Support for WebCAM functionality

The LP-51xx embedded Controller provides support for WebCAM functionality. Logitech

brand cameras have been tested and have been found to work successfully. If a different

brand of camera is to use, testing should be performed first to ensure compatibility.

Follow the procedure described below to ensure that the Webcam is configured correctly:

(1) Connect the webcam to the LP-51xx using the “USB Interface”.

(2) Reboot the LP-51xx.

(3) Open a “Command Prompt” by clicking the Start button and then clicking Xterm. At the

Command Prompt, enter the command “insmod pwc.ko” to load the gqcam program

LP-51xx SDK Manual：139

decompressor, as illustrated in Fig. 10-3 and then enter the command “gqcam” to view

the webcam screen. To view details of the parameters that can be used in conjunction

with the gqcam application, enter the command “gqcam –help” at the Command

Prompt.

Fig. 10-3

The gqcam program can also be used to capture an image via a webcam. To capture an

image, follow the procedure described below:

(1) Click “File/ Save Image…”.

(2) On the “Gqcam: Save Image” screen, enter the path to the folder where the image is to

be stored in the “File Field”, together with the file name, and then click the “OK “ button.

10.4 Support for Touch Screen Devices

The LP-51xx embedded Controller provides support for both USB and Serial Touch Screen

devices, each of which is discussed in more detail below:

10.4.1 USB Touch Screen interface

Before a USB touch screen can be used, it must first be calibrated. There are seven steps

involved in adjusting the calibration for a touch screen connected to an LP-51xx via the USB

interface, as follows:

Step 1: To execute the script at startup and shutdown.

 By default, scripts of USB touch screen are disabled at startup, if the else user can use

„mv‟ command to rename files in /etc/rc2.d. After reboot, it will be executed

automatically at boot time (Refer to the Fig. 10-4).

LP-51xx SDK Manual：140

Fig. 10-4

Step 2: Open a “Xterm windows” by clicking the Start button and then clicking Xterm. At the

Command Prompt, ensure that the usbtouchscreen.ko and tsdev.ko files have been

mounted, enter the command „lsmod‟ as illustrated in Fig. 10-5.

Fig. 10-5

Step 3: At the Command Prompt, ensure that a microSD card has been mounted, enter the

command „mount‟ as illustrated in Fig. 10-6.

Fig. 10-6

LP-51xx SDK Manual：141

Step 4: At the Command Prompt, edit the /etc/init.d/fbman file by modifying the settings so

that they are the same as below:

 After opening the file: /etc/init.d/fbman, users can see the following lines :

 /usr/sbin/fbset -n 640x480-60

 #/usr/sbin/fbset -n 800x600-70

 These lines indicate that the resolution is currently set to 640*480. The # character

indicates that a setting is not currently being used.

 To change the resolution settings to 800*600, remove the “#” character in line 2

and add the “#” character in line 1 as indicated below:

 #/usr/sbin/fbset -n 640x480-60

 /usr/sbin/fbset -n 800x600-70

Step 5: At the Command Prompt, enter the command „cat /proc/bus/input/devices‟ to view

a list of devices that are currently connected and the associated device can be

obtained as illustrated in Fig. 10-7.

Fig. 10-7

LP-51xx SDK Manual：142

Step 6: We are providing the calibration program to test and get the calibration data. For

example, open a „Xterm windows‟ and execute the command „calibrator

/dev/input/event2‟, and then the calibration windows displayed as illustrated in Fig.

 10-8)

Fig. 10-8

Step 7: Rebooting the LP-51xx to apply the new configuration.

10.4.2 Serial Touch Screen interface

There are three kinds of Touch Screen LCD monitor, so the relevant driver needs to be

installed before it can be used. An overview of the respective device drivers and the

installation location is provided below:

Module name Install loadable kernel module

ADP-1080T /lib/modules/2.6.19/pm9000.ko

TPM-4100 / TP-4100 /lib/modules/2.6.19/pm6000.ko

Before a Serial touch screen device and be used, it must first be calibrated. There are nine

steps involved in adjusting the calibration for a touch screen calibrated to an LP-51xx via the

serial interface, as follows:

Step 1: Open a “Xterm windows” by clicking the Start button and then clicking Xterm. At the

Command Prompt, enter the command „cat /etc/init.d/penmount_serial‟ to check

that the penmount serial driver has been mounted from /etc/init.d/penmount_serial,

as illustrated in Fig. 10-9.

LP-51xx SDK Manual：143

Fig. 10-9

Step 2: Edit the /etc/init.d/tsdev_serial script to modify the device mode. By default, the

serial interface is COM3 port, and device mode is ttyS1, as illustrated in Fig. 10-10.

Fig. 10-10

Step 3: Configure the script to be executed at startup and shutdown.

 By default, the scripts for serial touch screens are disabled at startup. The „mv‟

command can be used to rename the files in /etc/rc2.d, which is the file

containing instructions used to start processes. The file will be automatically

executed when LP-51xx is rebooted, as illustrated in Fig. 10-11.

LP-51xx SDK Manual：144

Fig. 10-11

Step 4: At the Command Prompt, enter the command „lsmod‟ to check that the pm9000.ko

or pm6000.ko have been mounted, as illustrated in Fig. 10-12.

Fig. 10-12

Step 5: At the Command Prompt, enter the command „mount | grep mmc‟ and „ls

/mmt/had‟ to check the microSD card has been mounted, as illustrated in Fig.

10-13 and 10-14.

Fig. 10-13 Fig. 10-14

Step 6: At the Command Prompt, enter the command „vi /etc/init.d/fbman‟ to edit the

/etc/init.d/fbman file by modifying the setting so that that are the sam as below:

 After opening the file locate the following lines:

 #/usr/sbin/fbset -n 640x480-60

 /usr/sbin/fbset -n 800x600-70

LP-51xx SDK Manual：145

 These lines indicate that the resolution is currently set to 640*480. The #

character indicates that a setting is not currently being used.

 To change the resolution setting to be 640*480, remove the “#” character in line

1 and add it to line 2, as indicated below:

 /usr/sbin/fbset -n 640x480-60

 #/usr/sbin/fbset -n 800x600-70

Step 7: At the Command Prompt, enter the command „cat /proc/bus/input/devices‟ to view

a list of devices that are currently connected and the associated device can be

obtained, as illustrated in Fig. 10-15.

Fig. 10-15

Step 8: We are providing the calibration program to test and get the calibration data, as

 illustrated in Fig. 10-16. For example, open a „Xterm‟ windows and execute the

 command „calibrator /dev/input/event3‟, and then the calibration windows will be

 displayed, correct 4 point locations on screen with the panel, as illustrated in Fig.

 10-17

LP-51xx SDK Manual：146

Fig. 10-16 Fig. 10-17

Step 9: Reboot the LP-51xx to apply the new configuration.

10.5 Network Support

The LP-51xx embedded controller already includes a variety of network functions. The

following is an overview of the network functions supported in the LP-51xx:

(1) UpnP

UpnP refers to “Universal Plug and Play” which is a set of networking protocols that allows

other devices to escription y discover and control of services available on a network, without

the need for user intervention. Devices that act as servers can advertise their services to

clients. Client systems, known as control points, are able to search for devices that provide

specific services on the network. When a device that provides the desired service is

discovered, the Control Points is able to retrieve a detailed descriptions of the devices and

services allowing the server and client devices to interact from that point on.

(2) VPN

VPN refers to “Virtual Private Network” and is used to securely extend a private network

across a public network, as illustrated in Fig. 10-18. VPN describes a network that includes

secure remote access for client devices, enabling data to be securely sent and received

across shared or public networks as if the device was directly connected to the private

network.

LP-51xx SDK Manual：147

The term “Virtual” refers to the fact that the devices on the network do not need to be

physically connected.

The term “Private” implies that the data is encrypted and can only be viewed by a defined

group connected to the VPN, meaning that it is extremely difficult for the unauthorized user

to access confidential information. The last word, “Network”, means that the users

configured for VPN can be connected and share files or information. So it‟s extremely

difficult for anyone to snoop on confidential information through VPN.

Fig. 10-18

(3) QoS

QoS refers to “Quality of Service” and describes the overall performance of a network,

particularly that send by users of the network. QoS is based on a set of techniques that are

used to manage network resources. For example, if there are a number of packets that need

to be sent to a network device, the device has to first determine a transmission priority, i.e.,

which packets to send first, which ones to delay, and, if necessary, which ones to drop. The

transmission is then performed based on that priority, thereby achieving the required QoS by

managing the delay, jitter, bandwidth, and packet loss parameters on the network. Using the

Linux QoS subsystem, it is possible to create a highly flexible traffic control system that

ensures the flow rate to an assigned port can be effectively controlled, improving network

quality in the process.

LP-51xx SDK Manual：148

(4) Wireless LAN (WLAN)

A “Wireless Local Area Network (WLAN)” is a network technology that allows the

connection of two or more devices without requiring the installation of any wires or cables,

mostly using radio technology, and sometimes infrared. The range of the WLAN is targeted

on a limited area, generally within an office building, a commercial area, a small campus, or

a home, etc. As technology has become more prevalent, Linux has adopted many of the

technologies and tools that take advantage of wireless networking.

If a wireless card is inserted into a slot on the LP-51xx, the parameters contained in the

„/etc/network/interfaces‟ file need to be modified.

(5) Dual LAN

The Dual LAN functionality provided on the LP-51xx allows a wireless network and a cable

network to be combined through the LP-51xx, meaning that it is possible to establish

communication between the cabled LAN and the wireless LAN. This ensures that as long as

either of the two LANs can connect to the Internet, then all devices connected to the network

will be able to access the Internet as illustrated in Fig. 10-19.

Fig. 10-19

LP-51xx SDK Manual：149

(6) BlueTooth

Bluetooth is a worldwide specification for a small-form factor, the low-cost wireless

technology that is used for exchanging data over short distances between both fixed and

mobile computers, mobile phones, and other portable handheld devices, as well as

providing connectivity to the Internet. “BlueZ” is a Bluetooth stack designed for Linux

operating system that is now embedded in the LP-51xx, providing support for the core

Bluetooth layers and protocols. Bluetooth technology is flexible and efficient and based on a

modular implementation.

(7) Modem / GPRS / ADSL Connectivity

GPRS modem selection guide:

Module Install loadable kernel module Execute command

GTM-201-USB
/lib/modules/2.6.19/usbserial.ko
/lib/modules/2.6.19/sim5218.ko

pppd call 3g &

GTM-201-RS232 /lib/modules/2.6.19/ ftdi_sio.ko pppd call wavecom &

For more information, please refer to http://m2m.icpdas.com/m2m_layer2_gprs.html

Note: If user want to try GTM-201-USB, please type “insmod usbserial.ko” first, and “insmod

sim5218.ko” to load the program decompressor.

The following is a description of the procedure for configuring the GPRS modem, a

GTM-201-RS232 GPRS Modem for example.

 Part 1

In order to connect a GPRS modem to the COM3 port on an LP-51xx, the

/etc/ppp/peers/wavecom file must first be modified to define the COM port. Connect the

GTM-201-RS232 (GPRS Modem) using an RS-232 interface by following the instructions

below:

(1) Open a “Xterm windows” by clicking the Start button and then clicking Xterm. At the

Command Prompt, enter the command “vi /etc/ppp/peers/wavecom” to edit the file.

(2) Locate the statement “Serial device to which the GPRS phone is connected:”, and add

the device name for the COM port, as illustrated in Fig. 10-20.

(3) At the Command Prompt, enter the command “:wq “ to save the changes and close the

script.

Note: In order to provide support for 2G GPRS Modems the ― ftdi_sio.ko loadable kernel

module must be installed using the insmod command.

http://m2m.icpdas.com/m2m_layer2_gprs.html

LP-51xx SDK Manual：150

Fig. 10-20

 Part 2

The default baud rate for GPRS chip is “115200” bps. Consequently, both the GPRS

module and the device node, such as /dev/ttyS2, should be configured to use the same

baudrate. User the „stty‟ command to set the input and output speed of the device node, as

illustrated in Fig. 10-21.

Fig. 10-21

Before starting the GPRS modem, the network interfaces for both eth0 and eth1 must first be

deactivated. Remove the Ethernet cable, and then enter the command “ifdown eth0” and

“ifdown eth1” at the Command Prompt to deactivate the interfaces.

At the Command Prompt, enter the command “pppd call wavecom &”. The LP-51xx will

then be automatically connected to the internet. It should be remembered that the network

interface for the LinPAC device must be deactivated first. Enter the command “ifconfig” at

the Command Prompt to display the “ppp0” section, as illustrated in Fig. 10-22.

LP-51xx SDK Manual：151

Fig. 10-22

Fig. 10-23 below provides an example of a routing table.

Fig. 10-23

[ADSL]

To use an ADSL modem, the ADSL option must be configured first. To do this, enter the

command “adsl-setup” at the Command Prompt, then enter the command

“adsl-connect ” to establish an Internet connection on the LP-51xx. To disable the ADSL

connection, enter the command “adsl-stop” at the Command Prompt.

LP-51xx SDK Manual：152

(8) Firewall (ip tables function)

A firewall is used to control unauthorized access to a local network, even against an

intentional attack from an external network, locking out intruders and ensuring that both the

system and the data is safe.

(9) Web Browser

The LP-51xx contains an embedded Web Browser that can be used to access the Internet.

Open a “Dillo windows” by click the “Start” > ”Programs” button and then clicking „Dillo‟. At

the Command Prompt to open the web browser and then enter the address of a web site, as

illustrated in Fig. 10-24.

Note that the dillo command is located in the path: /mnt/hda/opt/bin, so a microSD card

must first be inserted into the SD socket on the LinPAC.

Fig. 10-24

LP-51xx SDK Manual：153

(10) Apache Server

The LP-51xx contains an embedded “Apache” Web Server, which will be automatically

loaded when the module is booted up. The files for the server can be found in the

/opt/apache2 directory. To connect to the web server embedded on the LP-51xx, enter the

URL “http://192.168.0.200”. If a web page is successfully displayed, it means that the web

page on the LP-51xx has been started. The index page for the Apache Server can be found

in the “/opt/apache2/htdocs/ “ directory.

The files that provide the full functions of the Apache Server are located on the microSD card.

This means it other Apache Server function needs to be used that are not supported on the

LP-51xx, this files can be copied from the microSD card to the /opt/apache2 directory from

the microSD card. The new or additional functions will then be available once the LP-51xx is

rebooted.

10.6 Audio Function

LP-5131-OD and LP-5141-OD support audio function― MAD(MP3 Audio Recorder, MAD),

the MP3 Audio Recorder is a powerful sound recording and playing program. With the user

can record sound from microphone and play sound from the speaker. Recorded sound can

be saved in Wav-file, MP3, WMA format, etc. There are three major types of audio functions:

 Volume adjustment

The smixer is a command-line and scriptable program to control and display the mixer

volume levels on a sound card in LP-51xx. If users want to adjust the MIC/Speaker

volume, please follow the steps:

(1) Type “vi /etc/smixer.conf” to adjust the volume of Mic, Igain, Spkr, Rec, etc.

(2) Type ”smixer –a /etc/smixer.conf” to set settings from the file.

If users want to know the detailed parameters of madplay, just type in “smixer help” or

refer to http://centerclick.org/programs/smixer/man.html.

 Sound player

In LP-51xx, the madplay is a command-line MPEG audio decoder and player. After users

download music files into LP-51xx, please refer to the following ways for play:

http://192.168.0.200/
http://centerclick.org/programs/smixer/man.html

LP-51xx SDK Manual：154

 Sound recorder

Please follow the steps to make the sound recoder function work smoothly:

(1) Type “cat /dev/dsp > /dev/dsp” to listen to the speaker from microphone.

(2) Type “cat /dev/dsp > /var/test.wav” to save file from microphone recorder.

(3) Type “cat /var/test.wav > /dev/dsp” to listen to the test.wav from speaker.

10.7 Support for USB to RS-232 Conversion

The LP-51xx provides support for USB to RS-232 converter modules, such as the I-7560 for

example. The I-7560 module contains a Windows serial COM port that is implemented via its

USB connection and is compatible with both new and legacy RS-232 devices. USB

Plug-and-Play allows easy serial port expansion and requires no IRQ, DMA, or I/O port

resources. For more details related to the I-7560 module, refer to

http://www.icpdas.com/products/Remote_IO/i-7000/i-7560.htm. Follow the procedure

described below to ensure the successful operation of the USB to RS-232 converter:

(1) Connect the I-7560 to the LP-51xx using a “USB Interface”, as illustrated in Fig. 10-25.

Fig. 10-25

Parameter / Function Description Example

Normal Normal volume madplay test.mp3

-a
amplify signal by DECIBELS (+) increase 10 decibels madplay test.mp3 –a +10

attenuate signal by DECIBELS (-) decrease 10 decibels madplay test.mp3 –a –10

Note: Apply to OS version 1.9 and earlier then version only.

Parameter / Function Description Example

Normal Normal volume madplay test.mp3 –a –50

-a
amplify signal by DECIBELS increase 10 decibels madplay test.mp3 –a –40

attenuate signal by DECIBELS decrease 10 decibels madplay test.mp3 –a –60

Note: Apply to OS version 2.0 and later then version only.

LP-51xx SDK Manual：155

(2) Power on the LP-51xx.

(3) Open a “Xterm windows” by clicking the Start button and then clicking Xterm. At the

Command Prompt, enter the command Open a “Command Prompt” by clicking

“insmod usbserial.ko”, and then enter the command “insmod pl2303.ko” to load the

program decompressor.

(4) After successfully executing the insmod command, a new /dev/ttyUSB0 serial device

will be created. Use the ”echo” and “cat” commands to send and receive messages, as

illustrated in Fig. 10-26 and 10-27 below.

Fig. 10-26 Fig. 10-27

10.8 Additional Optional Functions

The LP-51xx provides support for a number of additional functions, a description of which is

listed below. To activate any of these functions so that they can be used in combination with

the LP-51xx, copy the relevant directory to the “opt“ directory on the microSD card. After

rebooting LP-51xx, the new function will be loaded automatically.

(1) MySQL

MySQL is a small open source “Relational DataBase Management System” RDBMS that

provides support for a wide range of platforms, including UNIX, Linux or Windows, allowing

data to be easily added or deleted.

 Start the MySQL service

To install MySQL for use in combination with the LP-51xx, check the “mysql“ directory

in the /opt directory of microSD card, and then choose one of the following installation

methods:

LP-51xx SDK Manual：156

a) Manual b) Auto

mysql_install_db

mysqld_safe --user=root &

mysql

cd /etc/rc2.d

ln -s ../init.d/mysql.server S88mysql

cd /etc/rc0.d

ln -s ../init.d/mysql.server K15mysql

cd /etc/rc6.d

ln -s ../init.d/mysql.server K15mysql

shutdown -r now

∶

mysql

Fig. 10-28

Fig. 10-29

 Compile a mysql demo program

 Follow the procedure described below to compile a MySQL demo program using the

LinPAC SDK:

(1) Copy the mysql directory from the /opt directory on the microSD card to C:\cygwin\opt\,

as illustrated in Fig. 10-30.

(2) Coding a demo program in the C:\cygwin\LinCon8k\examples directory, as illustrated

in Fig. 10-31.

Fig. 10-30 Fig. 10-31

(3) Double click the “LP-51xx Build Environment” to compile the applications.

(4) Compile the demo program, as illustrated in Fig. 10-32:

At the Command Prompt, enter the following:

C:\cygwin\LinCon8k\examples> arm-linux-gcc -I..\..\opt\mysql\include\mysql\

-L..\..\opt\mysql\lib\mysql\ insert_test.c -o insert_test.exe -lmysqlclient

LP-51xx SDK Manual：157

Fig. 10-32

(2) PHP

PHP is a server-side open source scripting language that can be used to design dynamic

web pages. When PHP is implemented in combination with MySQL, the resulting

applications are cross-platform, which means that applications can be developed on a

Windows-based system and served on a Linux platform, as illustrated in Fig. 10-33 below.

PHP functionality has been embedded into the kernel on the LP-51xx, meaning that PHP

can be used on the LP-51xx directly after booting the device.

Fig. 10-33

(3) Perl Support

Perl（ Practical Extraction and Report Language ） is also an “open source scripting

language“ and has been embedded into the kernel on the LP-51xx, meaning that Perl can

be used on the LP-51xx directly after booting the LP-51xx.

LP-51xx SDK Manual：158

Appendix A. Service Information

This appendix will show how to contact ICP DAS when you have problems in the LP-51xx or

other products.

Internet Service:

The internet service provided by ICP DAS will be satisfied and it includes Technical Support,

Driver Update, OS_Image, LP-5000 SDK and User‟s Manual Download etc. Users can refer

to the following web site to get more information:

1. ICP DAS Web Site: http://www.icpdas.com

2. Software Download: http://www.icpdas.com/download/index.htm

3. Java Supported Document: http://www.icpdas.com/download/java/index.htm

4. E-mail for Technical Support: service@icpdas.com or service.icpdas@gmail.com

 Manual Revision:

Manual Edition Revision Date Revision Details

v1.0 2010. 11
1. Modify the LP-5000 SDK installation path
2. Add demo description in chapter 7

V1.1 2010. 12

1. Add mysql description
2. Add microSD card instruction
3. Add 4.2.3 scan and repair microSD card
4. Add e-mail account (gmail)
5. Add quick installation guide for Linux
6. Add USB to serial support

V1.2 2011. 12
1. Add SDK guide in Linux PC
2. Add detailed description for GPRS usage

V1.3 2012. 02
1. Update 8250_linpac.ko and modify the COM

port definition in chapter 8

V1.4 2012. 06
1. Rename the product name and change the

FTP download site.
2. Add USB Touch screen support

V1.5 2012. 09
1. Add Touch screen support for USB and serial

interface

V1.6 2017. 06

1. Add notes for flash and microSD disk.
2. Add Code::block IDE application
3. Add description for new Auidio version: AIC33x

usange

V2.0 2018. 03 1. Upgrade I/O Library and LinPAC PXA270 SDK

http://www.icpdas.com/download/download-list.htm
http://www.icpdas.com/download/download-list.htm
http://www.icpdas.com/download/java/index.htm
mailto:service@icpdas.com
mailto:service@icpdas.com;info@icpdas.com?subject=Contact%20ICP%20DAS%20Taiwan

