

PIO-DIO 系列 DLL 软件使用手册

1.2版,2014年6月

支援

模块包含 PIO-D24/D24U/D56/D56U, PIO-D48/D48U/D48SU, PIO-D64/D64U, PIO-D96/D96U/D96SU, PIO-D144/D144U/D144LU, PIO-D168A/D168/D168U, PEX-D24/D56, PEX-D48, PEX-D96S 及 PEX-D144LS。

承诺

郑重承诺: 凡泓格科技股份有限公司产品从购买后, 开始享有一年保固, 除人为使用 不当的因素除外。

责任声明

凡使用本系列产品除产品质量所造成的损害, 泓格科技股份有限公司不承担任何的法 律责任。泓格科技股份有限公司有义务提供本系列产品详细使用资料,本使用手册所 提及的产品规格或相关信息, 泓格科技保留所有修订之权利, 本使用手册所提及之产 品规格或相关信息有任何修改或变更时,恕不另行通知,本产品不承担用户非法利用 资料对第三方所造成侵害构成的法律责任,未事先经由泓格科技书面允许,不得以任 何形式复制、修改、转载、传送或出版使用手册内容。

版权

版权所有 © 2014 泓格科技股份有限公司,保留所有权利。

商标

文件中所涉及所有公司的商标,商标名称及产品名称分别属于该商标或名称的拥有者 所持有。

联系我们

如有任何问题欢迎联系我们,我们将会为您提供完善的咨询服务。 Email: service@icpdas.com; service@icpdas.com; service@icpdas.com; service@icpdas.com; service@icpdas.com; service@icpdas.com; service@icpdas@gmail.com

<u>目录</u>

1.	简	5介	
1	. 1	开始安装使用──取得 P10-D10 驱动函式库	4
1	. 2	安装 PI0-DI0 驱动程序函式裤	5
1	. 3	即插即用驱动安装	8
1	. 4	移除 PI0-DI0 驱动函式库	10
2.	DL	LL 动态链接函数库明说	11
2	. 1	错误码列表	14
2	. 2	Sug IDs 列表	15
2	. 3	测试函式集	16
	PIC	IODIO_GetDIIVersion	
	PI	IODIO_ShortSub	
	PI	IODIO_FloatSub	
2	. 4	驱动函式集	
	PI	IODIO_GetDriverVersion	
	PI	IODIO_DriverInit	
	PI	IODIO_SearchCard	
	PI	IODIO_GetConfigAddressSpace	
	PI	IODIO_DriverClose	21
	PI	IODIO_ActiveBoard	
	PI	IODIO_WhichBoardActive	
2	. 5	数字输出入函式集	23
	PI	IODIO_OutputByte	
	PI	IODIO_InputByte	
	PI	IODIO_OutputWord	
	PI	IODIO_InputWord	
2	. 6	中断功能函式集	25
	PI	IODIO_IntResetCount	
	PI	IODIO_IntGetCount	
	PI	IODIO_IntInstall	
	PIC	IODIO_IntRemove	
	中	^b 断模式结构	
2	. 7	中断功能函式集(PI0-D48 系列卡)	
	PI	IOD48_IntGetCount	

	PIOD48_IntInstall	31
	PIOD48_IntGetActiveFlag	33
	PIOD48_IntRemove	34
2	8 计数功能函式集(PI0-D48 系列卡)	35
	PIOD48_SetCounter	35
	PIOD48_ReadCounter	36
	PIOD48_SetCounterA	37
	PIOD48_ReadCounterA	38
2	9 频率功能函式集(PIO-D48 系列卡)	39
	PIOD48_Freq	39
	PIOD48_FreqA	40
2	10 计数功能函式集(PIO-D64 系列卡)	41
	PIOD64_SetCounter	41
	PIOD64_ReadCounter	42
	PIOD64_SetCounterA	43
	PIOD64_ReadCounterA	44
3.	DOS LIB 功能函式集	.46
3	1 错误码列表	46
	PIO_DriverInit	47
	PIO_GetDriverVersion	48
	PIO_GetConfigAddressSpace	48
	ShowPIOPISO	50
4.	范列程序	.51
4	1 MICROSOFT WINDOWS 操作系统	.51
4	2 DOS 操作系统	54
5.	编程结构	.57
6	问题回报	EO
0.	1) 22 1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (.58

1. 简介

PIO-DIO 系列卡提供了可调用的 PIODIO.DLL 动态链接函数库,且能够在 Linux、Windows 98/NT/2000、32-Bit Windows XP/2003/Vista/2008/7/8 等操作系统环境下使用。

PIODIO.DLL 动态链接函数库使开发更加容易及简单易懂的各种语言范例程序,如 Turbo C++、 Borland C++、Microsoft C++、Visual C++、Borland Delphi、Borland C++ Builder、Visual Basic、Visual C#.NET、Visual Basic.NET...等,让用户能够快速的上手来使用。应用结构如下图。

1.1 开始安装使用--取得 PIO-DIO 驱动函式库

PIODIO 驱动函式库能够在 Linux、Windows 98/NT/2000、32-Bit Windows XP/2003/Vista/2008/7/8 等操作系统环境下使用,且支持即插即用驱动安装,使安装过程便利又快速。

用户能够从随机出货的配件软件 CD 光盘或从泓格的软件下载网站中来取得 PIODIO 驱动函式 库。详细取得/下载位置如下:

请选择适合的操作系统来安装 PIODIO 驱动函式库:

驱动程序名称	操作系统
PIO-DIO_Win_xxx.exe	支援 Windows 95, Windows 98, Windows NT, Windows 2000, 32-bit Windows XP, 32-bit Windows 2003, 32-bit Windows Vista, 32-bit Windows 7 及 32-bit Windows 8.
Ixpio.tar.gz	支援 Linux Kernel 2.4.x, 2.6.x 及 3.12.x. 详细 Linux 软件安装程序,请参考至 Linux 软件安装手册。 手册下载位置如下: <u>http://www.icpdas.com/download/pci/linux/</u>

1.2 安装 PIO-DIO 驱动程序函式裤

请先将 PIO-DIO 系列卡安装至您的计算机,然后在执行 PIO-DIO 驱动程序安装。详细 PIO-DIO 系列卡硬件安装,可参考至硬件使用手册。

PIO-DIO 系列卡硬件使用手册下载位置如下:

CD:\NAPDOS\PCI\PIO-DIO \Manual\

http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/pio-dio/manual/

请依照下列步骤来执行安装:

PIO_DIO_Win_v212.exe

步骤 1: 双击 **"PIO-DIO_Win_xxxx.exe"** 安装驱动 函式库。

步骤 2: 按"<u>N</u>ext>"按钮到下一个画面。

步骤 3: 选择安装目录, 默认为 C:\DAQPro\PIO-DIO, 确认后按"Next>"按钮到下一个画面。

1 ¹ / ₂ Setup - PIO_DIO_Win
Select Destination Location Where should PI0_DI0_Win be installed?
Setup will install PIO_DIO_Win into the following folder.
To continue, click Next. If you would like to select a different folder, click Browse.
C:\DAQPro\PIO-DIO Browse
At least 1.0 MB of free disk space is required.
< Back Next > Cancel

步骤 4: 按 "<u>I</u>nstall" 按钮开始安装。

🔂 Seti	hap - PIO_DIO_Win	×
Re	eady to Install Setup is now ready to begin installing PIO_DIO_Win on your computer.	B
1	Click Install to continue with the installation, or click Back if you want to review or change any settings.	
	Destination location: C:\DAQPro\PI0-DI0	
	✓	
	< Back Install Cancel	

步骤 5:选择 "Yes, restart computer now"后,按下 "<u>F</u>inish" 按钮,系统会自动重新启动,在 重新启动之后, 泓格 PIO-DIO 驱动函式库安装完成。

1.3即插即用驱动安装

步骤 1: 操作系统将找到新硬件, 然后将续继完成即插即用安装步骤。

注意: 有些作系统 (如, Windows Vista/7) 会 找到新硬件后, 将自动完成即插即用驱动安 装, 因此将会跳过步骤2 到步骤4。

步骤 2:选择"自动安装软件 (建议选项)(I)"后,按下"下一步(N)>"按钮到下个页面。

步骤 4: 将显示"找到新硬件"讯息,板卡已成功完成安装。

1.4 移除 PIO-DIO 驱动函式库

泓格驱动函式库包括反安装工具来协助您从计算机上移除软件,如果您想要移除软件请完成下列 的流程来执行反安装工具。

步骤 1: 请至安装路径的 PIO-DIO 文件夹下(默认安 装路径: C:\DAQPro\PIO-DIO),双击 unins000.exe 反 安装执行档。

PIO_DIO_Win Uninstall	
Are you sure you want to completely remove PIO_DIO_Win and all of its components?	步骤 2: 将会跳出一个对话框,并 按下"是(<u>Y)</u> "按钮开始执反安装。

步骤 3: 按下 "Yes to <u>A</u>ll" 按钮, 来完全移除 PIODIO.dll 档案, 之后将会完成移除软件的 动作。

2. DLL 动态链接函数库明说

下列函数定义表提供了 PIO-DIO 系列函数更详细信息,表 2-1 至表 2-8 部分将介绍每个函数。 在使用 DLL 动态链接函数库前请注意下表关键词。以方便您的阅读:

关键词	呼叫函式前需由使用者设定该参数	使用者呼叫函式后,会回传参数值	
[Input]	Yes	No	
[Output]	Νο	Yes	
[Input, Output]	Yes	Yes	

表 2-1: 测试函式集 (PIO-D24/D56/D48/D64/D96/D144/D168 系列卡适用)

节章	功能函数
2.3	测试函式集
	WORD PIODIO_GetDIIVersion(void);
	short PIODIO_ShortSub (shor nA , short nB);
	float PIODIO_FloatSub(float fA, float fB);

表 2-2: 驱动函式集 (PIO-D24/D56/D48/D64/D96/D144/D168 系列卡适用)

章节	功能函数
2.4	驱动函式集
	WORD PIODIO_GetDriverVersion(WORD *wDriverVersion);
	WORD PIODIO_DriverInit (void);
	WORD PIODIO_SearchCard(WORD *wBoards, DWORDn dwPIOCardID);
	WORD PIODIO_GetConfigAddressSpace(WORD wBoardNo, DWORD
	*wAddrBase, WORD *wIrqNo, WORD *wSubVendor, WORD
	*wSubDevice, WORD *wSubAux, WORD *wSlotBus, WORD
	*wSlotDevice);

viod PIODIO_DriverClose(void);
WORD PIODIO_ActiveBoard(WORD wBoardNo);
WORD PIODIO_WhichBoardActive(void);

表 2-3: 数字输出入函式集(PIO-D24/D56/D48/D64/D96/D144/D168 系列卡适用)

节 章	功能函数
2.5	数字输出入函式集
	<pre>void PIODIO_OutputByte(DWORD wPortAddr, WORD bOutputValue);</pre>
	WORD PIODIO_InputByte(DWORD wPortAddr);
	void PIODIO_OutputWord(DWORD wPortAddress, DWORD wOutData);
	DWORD PIODIO_InputWord(DWORD wPortAddress);

表 2-4: 中断功能函式集(PIO-D24/D56/D48/D64/D96/D144/D168 系列卡适用)

章节	功能函数
2.6	中断功能函式集
	WORD PIODIO_IntResetCount(void);
	WORD PIODIO_IntGetCount(DWORD *dwIntCount);
	WORD PIODIO_IntInstall(WORD wBoardNo, HANDLE *hEvent, WORD
	wInterruptSource, WORD wActiveMode);
	WORD PIODIO_IntRemove(void);

表 2-5:中断功能函式集 (PIO-D48 系列卡适用)

节 章	功能函数
2.7	PIO-D48 系列卡中断功能函式集
	WORD PIOD48_IntGetCount (DWORD *dwIntCount);
	WORD PIOD48_IntInstall(WORD wBoardNo, HANDLE *hEvent, WORD
	wlrqMask, WORD wActiveMode);
	WORD PIOD48_IntGetActiveFlag(WORD *bActiveHighFlag, WORD
	*bActiveLowFlag);
	WORD PIOD48_IntRemove(void);

表 2-6:计数功能函式集(PIO-D48 系列卡适用)

章节	功能函数
2.8	PIO-D48 系列卡计数功能函式集
	void PIOD48_SetCounter(DWORD dwBase, WORD wCounterNo, WORD
	bCounterMode, DWORD wCounterValue);
	DWORD PIOD48_ReadCounter(DWORD dwBase, WORD wCounterNo,
	WORD bCounterMode);
	void PIOD48_SetCounterA(WORD wCounterNo, WORD bCounterMode,
	DWORD wCounterValue);
	DWORD PIOD48_ReadCounterA(WORD wCounterNo, WORD
	bCounterMode);

表 2-7:频率功能函式集(PIO-D48 系列卡适用)

节章	功能函数
2.9	PIO-D48 系列卡频率功能函式集
	DWORD PIOD48_Freq(DWORD dwBase);
	DWORD PIOD48_FreqA();

表 2-8:计数功能函式集(PIO-D64 系列卡适用)

节 章	功能函数
2.10	PIO-D64 系列卡计数功能函式集
	void PIOD64_SetCounter(DWORD dwBase, WORD wCounterNo, WORD
	bCounterMode, DWORD wCounterValue);
	DWORD PIOD64_ReadCounter(DWORD dwBase, WORD wCounterNo,
	WORD bCounterMode);
	void PIOD64_SetCounterA(WORD wCounterNo, WORD bCounterMode,
	DWORD wCounterValue);
	DWORD PIOD64_ReadCounterA(WORD wCounterNo, WORD
	bCounterMode);

2.1错误码列表

当应用程序回传错误码时,建议参考下列几点来确认及检查:

- 1. 设备驱动程序是否安装成功?
- 2. 板卡是否有堵塞?
- 3. 板卡是否与其它设备冲突?
- 4. 关闭其它应用程序,以释放系统资源。
- 5. 赏试使用另一个插槽来插上板卡。
- 6. 再次重新启动系统。

错误码	Error ID	Error String
0	PIODIO_NoError	正常
1	PIODIO_DriverOpenError	驱动程序开起错误
2	PIODIO_DriverNoOpen	驱动程序没有被开起,必需先执行 PIODIO_DriverInit()功能函式
3	PIODIO_GetDriverVersionError	取得驱动程序版本错误
4	PIODIO_InstallIrqError	安装 IRQ 错误 error
5	PIODIO_ClearIntCountError	清除 Counter Value 错误
6	PIODIO_GetIntCountError	取得 Interrupt Counter 错误
7	PIODIO_RegisterApcError	取得 Register APC 错误
8	PIODIO_RemoveIrqError	移除 IRQ 错误
9	PIODIO_FindBoardError	找不到板卡
10	PIODIO_ExceedBoardNumber	板卡数量超过最大值。最大值为8。
11	PIODIO_ResetError	不能重启 Interrupt Count
12	PIODIO_IrqMaskError	Irq-Mask: 1, 2, 4, 8 或 1-0xF
13	PIODIO_ActiveModeError	Active 模式:1,2 或 1-3
14	PIODIO_GetActiveFlagError	无法取得 Interrupt Active Flag
15	PIODIO_ActiveFlagEndOfQueue	空的 Flag Queue

2.2Sub IDs 列表

PIO-DIO 系列卡	Sub_Vendor ID	Sub_Device ID	Sub_AUX ID
PIO-D168	0x9880	0x01	0x50
PIO-D168A	0x80	0x01	0x50
PIO-D168U	0x9880	0x01	0x50
PIO-D144	0x80	0x01	0x00
PIO-D144 (Rev 4.0 or above)	0x5C80	0x01	0x00
PIO-D144U	0x1C80	0x01	0x00
PIO-D144LU	0x1C80	0x01	0x00
PEX-D144LS	0x1C80	0x01	0x00
PIO-D96	0x80	0x01	0x10
PIO-D96 (Rev 4.0 or above)	0x5880	0x01	0x10
PIO-D96U	0x5880	0x01	0x10
PIO-D96SU	0x1880	0x01	0x10
PEX-D96S	0x1880	0x01	0x10
PIO-D64	0x80	0x01	0x20
PIO-D64 (Rev 2.0 or above)	0x4080	0x01	0x20
PIO-D64U	0x4080	0x01	0x20
PIO-D56	0x80	0x01	0x40
PIO-D56 (Rev 5.0 or above)	0x8080, 0xC080	0x01	0x40
PIO-D56U	0x8080, 0xC080	0x01	0x40
PEX-D56	0x8080, 0xC080	0x01	0x40
PIO-D48	0x80	0x01	0x40
PIO-D48U	0x0080	0x01	0x40
PIO-D48SU	0x0080	0x01	0x40
PEX-D48	0x0080	0x01	0x30
PIO-D24	0x80	0x01	0x40
PIO-D24 (Rev 5.0 or above)	0x8080, 0xC080	0x01	0x40
PIO-D24U	0x8080, 0xC080	0x01	0x40
PEX-D24	0x8080, 0xC080	0x01	0x40

2.3测试函式集

PIODIO_GetDIIVersion

取得 PIODIO.DLL 函式库的版本编号。

▶ 语法:

WORD **PIODIO_GetDIIVersion**(void);

▶ 参数:

无

▶ 回传值:

PIODIO.DLL 函式库的版本编号。如,传回值为 200 (hex),意旨版本为 2.00。

PIODIO_ShortSub

短整数据类型执行减法运算,例: nA-nB。该函数用来测试 DLL 是否链接成功。

▶ 语法:

short PIODIO_ShortSub(short nA, short nB);

▶ 参数:

<u>nA</u> [Input] 2 bytes 短整数值

<u>nB</u> [Input] 2 bytes 短整数值

▶ 回传值:

运算 nA – nB 之值

PIODIO_FloatSub

对浮点数据类型执行减法运算,例:fA-fB。该函数用来测试 DDL 是否链接成功。

▶ 语法:

float PIODIO_FloatSub(float fA, float fB);

▶ 参数:

<u>fA</u> [Input] 4 bytes 浮点数值

<u>fB</u>

[Input] 4 bytes 浮点数值

▶ 回传值:

运算fA-fB之值

2.4驱动函式集

PIODIO_GetDriverVersion

取得 PIO-DIO 驱动程序的版本编号。

▶ 语法:

WORD PIODIO_GetDriverVersion(WORD *wDriverVersion);

▶ 参数:

<u>wDriverVersion</u> [Output] 取得 PIO-DIO 驱动程序的版本值。

≻ 传回值:

请参考第2.1章错误码列表回传值定义。

PIODIO_DriverInit

呼叫此函式时会向系统要求分配资源,并且开始寻找所有 PIO-DIO 有支持的板卡,而对每一张板卡作初使化动作,最后取得板卡的数量。需在程序起始点,使用其他的函式之前呼叫。

▶ 语法:

WORD PIODIO_DriverInit();

▶ 参数:

无

▶ 传回值:

请参考<u>第2.1章错误码列表</u>回传值定义。

PIODIO_SearchCard

此函式提供使用者取得特定的版卡的数量,使用此函式后,此后其余需透过板卡编号来 I/O 的 函式将会以此板卡的排序为基准。

▶ 语法:

WORD PIODIO_SearchCard(WORD *wBoards, DWORDn dwPIOCardID);

▶ 参数:

<u>wBoardNo</u>

[Output] 由用户设定的板卡模块识别号码,取得该板卡的数量。

DwPIOCardID

[Input] 用户设定板卡模块识跑号码(Sub IDs),此号码可参考第 2.2 节 Sub IDs 列表。

不同版本的 PIO-DIO 板卡能有不同的 Sub IDs。该函数将检测所有不同版本 PIO-DIO 板卡总数,故任何版本 Sub ID 均可适用。 范例参考如下:

wRtn=PIODIO_SearchCard(&wBoards, 0x800100);

以上范例,将传回安装至 PC 上所有不同版本 PIO-D144 板卡总数。

▶ 回传值:

请参考<u>第2.1章错误码列表</u>回传值定义。

PIODIO_GetConfigAddressSpace

取得 PIO-DIO 系列卡的 I/O 地址...等信息名称。

▶ 语法:

WORD PIODIO_GetConfigAddressSpace (WORD wBoardNo,

DWORD ***wAddrBase**, WORD ***wIrqNo**, WORD ***wSubVendor**, WORD ***wSubDevice**, WORD ***wSubAux**, WORD ***wSlotBus**, WORd ***wSlotDevice**);

▶ 参数:

<u>wBoardNo</u>

[Input] 由使用者指定的板卡编号,第一张板卡的 wBoardNo 为 0,第二张板卡的 wBoardNo 为 1,依此类推。

<u>wAddrBase</u>

[Output] PIO-DIO 系列板卡的基础地址。仅低 WORD 有效。

<u>wIrqNo</u>

[Output] PIO-DIO 系列板卡正在使用的 IRQ。

<u>wSubVendor</u> [Output] Sub Vendor ID 值。

<u>wSubDevice</u> [Output] Sub Device ID 值。

<u>wSubAux</u> [Output] Sub Aux ID 值。

<u>wSlotBus</u>

[Output] Slot Bus 编码值。

<u>wSlotDevice</u>

[Output] Sub Device ID 值。

▶ 回传值:

请参考<u>第 2.1 章错误码列表</u>回传值定义。

PIODIO_DriverClose

呼叫此函式时,会将占用的资源释放归还给系统。需在程序终结前呼叫。

语法:

 void PIODIO_DriverClose();

 参数:

 无

 D传值:

 无

PIODIO_ActiveBoard

安装至计算机上的 PIO-DIO 系列板卡被激活来使用。该函数必须在 DI/O 和中断功能程序前执行。

▶ 语法:

void PIODIO_ActiveBoard(WORD wBoardNo);

▶ 参数:

<u>wBoardNo</u>

[Input] 由使用者指定的板卡编号,第一张板卡的 wBoardNo 为 0,第二张板卡的 wBoardNo 为 1,依此类推。

▶ 回传值:

请参考<u>第 2.1 章错误码列表</u>回传值定义。

PIODIO_WhichBoardActive

传回被激活的板卡码。

▶ 语法:

WORD PIODIO_WhichBoardActive(void);

▶ 参数:

无

▶ 回传值:

传回被激活的板卡码

2.5数字输出入函式集

PIODIO_OutputByte

发送 8 bits 数据到指定的 I/O 口。

▶ 语法:

void PIODIO_OutputByte(DWORD wPortAddr, WORD bOutputVal);

▶ 参数:

<u>wPortAddr</u>

[Input] I/O 端口地址,可参考至 PIODIO GetConfigAddressSpace() 功能函数。仅低位WORD 效。

<u>bOutputVal</u>

[Input] 发送 8 bits 数据到指定 I/O 口,仅低位 BYTE 有效。

▶ 回传值:

无

PIODIO_InputByte

从指定 I/O 口读取 8 bits 数据。

▶ 语法:

WORD PIODIO_InputByte(DWORD wPortAddr);

▶ 参数:

<u>wPortAddr</u>

[Input] I/O 端口地址,可参考至 PIODIO GetConfigAddressSpace()功能函数。仅低位 WORD 效。

▶ 回传值:

16 bits 数据,前 8 bits 全为 0。(仅低 8 位 BYTE 有效)

使用手册, 1.2版本, 2014年6月,第23页

PIODIO_OutputWord

发送 16 bits 数据到指定 I/O 口。

语法:
void PIODIO_OutputWord(DWORD wPortAddr, WORD wOutputVal);
参数:
<u>wPortAddr</u> [Input] I/O 端口地址,可参考至 <u>PIODIO GetConfigAddressSpace()</u> 功能函数。仅低位 WORD 效。
<u>wOutputVal</u> [Input] 发送 16 bits 数据到指定的 I/O 口。仅低 WORD 有效。
回传值:

PIODIO_InputWord

从指定 I/O 信道获得 16 bits 数据。

▶ 语法:

无

WORD PIODIO_InputWord(DWORD wPortAddr);

▶ 参数:

```
<u>wPortAddr</u>
```

[Input] I/O 端口地址,可参考至 PIODIO GetConfigAddressSpace()功能函数。仅低位 WORD 效。

▶ 回传值:

16 bits 数据,仅低 WORD 有效。

使用手册, 1.2版本, 2014年6月,第24页

2.6中断功能函式集

PIODIO_IntResetCount

清除中断上设备对应值。

▶ 语法:

WORD PIODIO_IntResetCount(void);

▶ 参数:

无

▶ 回传值:

请参考第 2.1 章错误码列表 回传值定义。

PIODIO_IntGetCount

读取设备驱动中断的 dwIntCount 值。

▶ 语法:

WORD PIODIO_IntGetCount(WORD *dwIntCount);

▶ 参数:

<u>*dwIntCount</u> [Output] dwIntCount 地址, 用于保存中断的计数值。

▶ 回传值:

请参考第2.1章错误码列表回传值定义。

使用手册, 1.2版本, 2014年6月,第25页

PIODIO_IntInstall

安装 IRQ 服务程序。

▶ 语法:

WORD **PIODIO_IntInstall**(WORD **wBoardNo**, HANDLE ***hEvent**, WORD **wInterruptSource**, WORD **wActiveMode**);

▶ 参数:

<u>wBoardNo</u>

[Input] 由使用者指定的板卡编号, 第一张板卡的 wBoardNo 为 0, 第二张板卡的 wBoardNo 为 1, 依此类推。

*hEvent

[Input] 事件处理地址。用户程序须调用 Windows API 函数 "CreateEvent()"来建立事件对象。

wInterruptSource

[Input] 使用中的中断源 (详情请参考硬件用户手册),参考至下表:

名称	wInterruptSource	说明
PIO-D48 系列	0	PC3/PC7 from Port-2
	1	PC3/PC7 from Port-5
	2	Cout0
	3	Cout2
PIO-D56/D24 系列	0	PCO
	1	PC1
	2	PC2
	3	PC3
PIO-D64 系列	0	EXTIRQ
	1	EVTIRQ
	2	TMRIRQ
PIO-D96 系列	0	P2C0
	1	P5C0
	2	P8C0
	3	P11C0

使用手册, 1.2版本, 2014年6月,第26页

名称	wInterruptSource	说明
PIO-D144/D168 系列	0	P2C0
	1	P2C1
	2	P2C2
	3	P2C3

<u>wActiveMode</u>

[Input] 中断触发。

wActiveMode	说明	
0	PIODIO_ActiveLow	
1	PIODIO_ActiveHigh	

▶ 回传值:

请参考<u>第2.1章错误码列表</u>回传值定义。

PIODIO_IntRemove

▶ 语法:

WORD PIODIO_IntRemove(void);

▶ 参数:

无

▶ 回传值:

请参考<u>第2.1章错误码列表</u>回传值定义。

中断模式结构

请参考下面 Windows API 函数:

以下部分描述这些功能是参考至 MSDN 。更多更详细的 MSDN 讯息参考到至 MSDN。

CreateEvent()

CreateEvent 函数建立或打开一个事件对象。

CreateThread()

CreateThread 函数建立一个线程来执行呼叫程序的虚空间地址。 建立一线程便可在另一个程序的虚空间地址中,使用 CreateRemoteThread 函数。

WaitForSingleObject()

当发生下列情况,WaitForSingleObject 函数将返回:

- 指定的对象是在信号状态
- 时间已经超时

进入一个等待状态,使用 WaitForSingleObjectEx 函数。要等待多个对像,使用 WaitForMultipleObjects。

DWORD **WaitForSingleObject**(HANDLE **hHandle**, DWORD **dwMilliseconds**

// handle to object to wait for
// time-out interval in milliseconds

);

2.7中断功能函式集(PI0-D48系列卡)

下列 PIOD48_XXX 系列函数是为 PIO-D48 系列卡专用。此系列函数不适用于其它板卡。

PIO-DIO 和 PIO-D48 他们中断函数最大的不同为 PIO-DIO 仅支持 1 个中断源,而 PIO-D48 可同时支持 4 个中断源。

PIOD48_IntGetCount

该函数将读取设备驱动上 Interrupt-Counter 值。当中断触发器激活时,中断服务程序将增加 Interrupt-Counter。若中断被设置为仅高电平激活或仅低电平激活中,部分中断信号将被忽略 而 Interrupt-Counter 将不会。

▶ 语法:

WORD PIOD48_IntGetCount(DWORD *dwIntCount);

▶ 参数:

<u>*dwIntCount</u> [Output] dwIntCount 地址, 用于保存中断的计数值。

▶ 回传值:

请参考<u>第2.1章错误码列表</u>回传值定义。

PIOD48_IntInstall

该子程序将安装中断服务程序。该函数支持多路中断源并可支持"低电平激活"、"高电平激活" 和"低电平及高电平激活"三种激活模式。

▶ 语法:

WORD PIOD48_IntInstall(WORD wBoardNo, HANDLE *hEvent, WORD wIrqMask, WORD wActiveMode);

▶ 参数:

<u>wBoardNo</u>

[Input] 由使用者指定的板卡编号, 第一张板卡的 wBoardNo 为 0, 第二张板卡的 wBoardNo 为 1, 依此类推。

<u>hEvent</u>

[Input] 事件句柄地址。支持用户可程序,须调用 Windows API 函数 "CreateEvent()"创建事件。

<u>wIrqMask</u>

[Input] 使用中的中断资源号,如下列 (详情请参考硬件用户手册)

wIrqMask	说明
1	NT_CHAN_0: PC3/PC7 from Port-2
2	INT_CHAN_1: PC3/PC7 from Port-5
4	INT_CHAN_2: Cout0
8	INT_CHAN_3: Cout2

该函数可同时支持4个中断源信号,因此用户可使用多路中断源,如:1+2+4+8。

<u>wActiveMode</u>

[Input] 何时启动中断服务程序的中断服务。

wActiveMode	说明	
1	PIOD48_ActiveLow	
	(当中断源状态为低电平时,中断信号产生)	
2	PIOD48_ActiveHigh	
	(当中断源状态为高电平时,中断信号产生)	

该函数可支持 1 (Active- Low), 2(Active- High) 或 1 + 2 (低电平和高电平同时激活中断 信号)。

▶ 回传值:

请参考<u>第2.1章错误码列表</u>回传值定义。

PIOD48_IntGetActiveFlag

该函数将从设备驱动存储堆栈中读 Active-High 和 Active-Low 取标记符(先进先出)。

Active-Flag 用于记录当中断重现时中断源激活状态的改变。Active-High-Flag 记录哪些中断源改 变为高电平状态,而 Active-Low-Flag 则记录哪些中断源改变为低电平状态。用户可使用这两种标记符判别何种中断源已改变。

若 Active-Mode 设置为仅低(或高)电平激活,则相应的 Active-Low(/Active-High)值即为"0"。 那么,中断服务程序将不再增加 interrupt-counter 值,并且 Active-Flag 高低电平标记符也不会 改变。

若用户并不用该函数检索设备驱动存储堆栈中的标记符,则当存储空间用满后,系统不再记录标记符(丢失数据)。而只要中断服务程序产生中断, interrupt-counter 将仍然持续记数。

▶ 语法:

WORD PIOD48_IntGetActiveFlag(WORD *bActiveHighFlag, WORD *bActiveLowFlag);

▶ 参数:

<u>bActiveHighFlag</u> [Output] 返回标记符,以哪些中断源变为 High-State。

<u>bActiveLowFlag</u>

[Output] 返回标记符,以哪些中断源变为 Low-State。

▶ 回传值:

请参考<u>第2.1章错误码列表</u>回传值定义。

PIOD48_IntRemove

移除中断服务程序。

- 语法:
 WORD PIOD48_IntRemove(void);
 参数:
 无
 D传值:
 - 请参考第 2.1 章错误码列表回传值定义。

2.8计数功能函式集(PI0-D48 系列卡)

下列 PIOD48_XXX 系列函数是为 PIO-D48 系列卡专用。此系列函数不适用于其它板卡。

PIOD48_SetCounter

设置 8254 记数器模式及相应的值。

▶ 语法:

WORD PIOD48_SetCounter(WORD dwBase, WORD wCounterNo, WORD bCounterMode, DWORD wCounterValue);

▶ 参数:

<u>dwBase</u> [Input] I/O 端口地址,可参考至 <u>PIODIO GetConfigAddressSpace()</u> 功能函数。仅低位WORD 效。

<u>wCounterNo</u> [Input] 8254 Counter-Number: 0 ~ 2。

<u>wCounterMode</u>

[Input] 8254 Counter-Mode: 0~5。详细请参考至 PIO-D48 系列硬件手册。

<u>wCounterValue</u> [Input] 记数器记数的 16 bits 值 (仅低 WORD 有效)。

▶ 回传值:

无

PIOD48_ReadCounter

读取 8254 计数器之值。

▶ 语法:

WORD PIOD48_ReadCounter(WORD dwBase, WORD wCounterNo, WORD bCounterMode);

▶ 参数:

<u>dwBase</u>

[Input] I/O 端口地址,可参考至 PIODIO GetConfigAddressSpace() 功能函数。仅低位WORD 效。

<u>wCounterNo</u> [Input] 8254 Counter-Number: 0 ~ 2。

<u>wCounterMode</u> [Input] 8254 Counter-Mode: 0~5。详细请参考至 PIO-D48 系列硬件手册。

▶ 回传值:

记数器记数的 16 bits 值(仅低 WORD 有效)。

PIOD48_SetCounterA

设置 8254 记数器模式及相应的值。在使用该函数前,须调动函数 PIODIO_ActiveBoard()。

▶ 语法:

WORD PIOD48_SetCounterA(WORD wCounterNo, WORD bCounterMode, WORD wCounterValue);

▶ 参数:

<u>wCounterNo</u> [Input] 8254 Counter-Number: 0 ~ 2。

wCounterMode

[Input] 8254 Counter-Mode: 0~5。详细请参考至 PIO-D48 系列硬件手册。

<u>wCounterValue</u> [Input] 记数器记数的 16 bits 值(仅低 WORD 有效)。

▶ 回传值:

无

PIOD48_ReadCounterA

读取 8254 计数器之值。在使用该函数前,须调动函数 PIODIO_ActiveBoard()。

▶ 语法:

WORD PIOD48_ReadCounterA(WORD wCounterNo, WORD bCounterMode);

▶ 参数:

<u>wCounterNo</u> [Input] 8254 Counter-Number: 0 ~ 2。

<u>wCounterMode</u> [Input] 8254 Counter-Mode: 0~5。详细请参考至 PIO-D48 系列硬件手册。

记数器记数的 16 bits 值(仅低 WORD 有效)。

2.9频率功能函式集(PI0-D48 系列卡)

下列 PIOD48_XXX 系列函数是为 PIO-D48 系列卡专用。此系列函数不适用于其它板卡。

PIOD48_Freq

测量信号频率。用户须将 signal(+)与 CN1.Pin29 及 signal(-)与 CN1.Pin19 分别相连接。这样可以 调用 Counter-0 和 Counter-1 来测量频率,而用户将不能使 Counter-0 和 Counter-1 用作它途。

▶ 语法:

WORD PIOD48_Freq(WORD dwBase);

▶ 参数:

<u>dwBase</u>

[Input] I/O 端口地址,可参考至 PIODIO GetConfigAddressSpace() 功能函数。仅低位WORD 效。

▶ 回传值:

返回频率值(仅低 WORD 有效)。

PIOD48_FreqA

请参考函数"PIOD48_Freq()"说明。在使用该函数前,须调动函数 PIODIO_ActiveBoard()。

➢ 语法: WORD PIOD48_FreqA();

- .

▶ 参数:

无

▶ 回传值:

返回频率值(仅低 WORD 有效)。

2.10 计数功能函式集(PI0-D64 系列卡)

下列 PIOD64_XXX 系列函数是为 PIO-D64 系列卡专用。此系列函数不适用于其它板卡。

PIOD64_SetCounter

设置 8254 计数器的模式和值。

▶ 语法:

WORD PIOD64_SetCounter(WORD dwBase,

WORD wCounterNo, WORD bCounterMode, DWORD wCounterValue);

▶ 参数:

<u>dwBase</u>

[Input] I/O 端口地址,可参考至 PIODIO GetConfigAddressSpace() 功能函数。仅低位WORD 效。

<u>wCounterNo</u>

[Input] 8254 Counter-Number: 0 ~ 5。 (0 ~ 2: Chip-0, 3 ~ 5: Chip-1)

<u>wCounterMode</u>

[Input] 8254 Counter-Mode: 0~5。详细请参考至 PIO-D64 系列硬件手册。

<u>wCounterValue</u>

[Input] 记数器记数的 16 bits 值 (仅低 WORD 有效)。

▶ 回传值:

无

PIOD64_ReadCounter

读取 8254 计数器的值。

▶ 语法:

WORD PIOD64_ReadCounter(WORD dwBase, WORD wCounterNo, WORD bCounterMode);

▶ 参数:

<u>dwBase</u>

[Input] I/O 端口地址,可参考至 PIODIO GetConfigAddressSpace() 功能函数。仅低位 WORD 效。

<u>wCounterNo</u>

[Input] 8254 Counter-Number: 0 ~ 5。 (0 ~ 2: Chip-0, 3 ~ 5: Chip-1)

<u>wCounterMode</u>

[Input] 8254 Counter-Mode: 0~5。详细请参考至 PIO-D64 系列硬件手册。

▶ 回传值:

记数器记数的 16 bits 值(仅低 WORD 有效)。

PIOD64_SetCounterA

设置 8254 计数器的模式和值。用户在调用这个函数之前需要调用 PIODIO_ActiveBoard()函数。

▶ 语法:

WORD PIOD64_SetCounterA(WORD wCounterNo, WORD bCounterMode, WORD wCounterValue);

▶ 参数:

<u>wCounterNo</u> [Input] 8254 Counter-Number: 0 ~ 5。 (0 ~ 2: Chip-0, 3 ~ 5: Chip-1)

<u>wCounterMode</u> [Input] 8254 Counter-Mode: 0~5。详细请参考至 PIO-D64 系列硬件手册。

<u>wCounterValue</u>

[Input] 记数器记数的 16 bits 值(仅低 WORD 有效)。

▶ 回传值:

无

PIOD64_ReadCounterA

读取 8254 计数器的值。用户在调用这个函数之前需要调用函数 PIODIO_ActiveBoard()。

➢ 语法: WORD PIOD64_ReadCounterA(WORD wCounterNo, WORD bCounterMode);

▶ 参数:

<u>wCounterNo</u> [Input] 8254 Counter-Number: 0 ~ 5。 (0 ~ 2: Chip-0, 3 ~ 5: Chip-1)

<u>wCounterMode</u> [Input] 8254 Counter-Mode: 0~5。详细请参考至 PIO-D64 系列硬件手册。

记数器记数的 16 bits 值(仅低 WORD 有效)。

使用手册, 1.2 版本, 2014 年 6 月, 第 45 页

3. DOS Lib 功能函式集

3.1 错误码列表

错误码	Error ID	Error String
0	NoError	正常
1	DriverHandleError	驱动程序开起错误
2	DriverCallError	呼叫驱动程序错误
3	FindBoardError	操作系统上找不到板卡
4	TimeOut	Timeout
5	ExceedBoardNumber	无效的板卡数 (有效板卡数范围 0~TotalBoard -1)
6	NotFoundBoard	在系统上没有发现板卡

PIO_DriverInit

这个函数能检测所有系统中 PIO/PISO 板卡。它是基于 PCI 即插即用装置上。它将找到所有安装 在系统中的 PIO/PISO 板卡和保存所有它们的资源在库中。

WORD PIO_DriverInit(WORD *wBoards, WORD wSubVendorID, WORD wSubDeviceID, WORD wSubAuxID);

参数:

<u>wBoards</u> [Output]取得该板卡的数量。

<u>wSubVendorID</u> [Input] PIO/PISO 系列卡的 SubVendor ID 值。

<u>wSubDeviceID</u> [Input] PIO/PISO 系列卡 SubDevice ID 值。

<u>wSubAuxID</u> [Input] PIO/PISO 系列卡 SubAux ID 值。

▶ 回传值:

请参考第3.1章错误码列表回传值定义。

PIO_GetDriverVersion

这个函数将读取 PIO/PISO 系列驱动版本号。

▶ 语法:

WORD PIO_GetDriverVersion(WORD *wDriverVersion);

▶ 参数:

*wDriverVersion

[Output] 取得 PIO/PISO 系列驱动程序的版本值。

▶ 回传值:

请参考第3.1章错误码列表回传值定义。

PIO_GetConfigAddressSpace

用户能够使用这个函数去得到安装在系统中所有 PIO/PISO 板卡资源信息。那么应用程序就能够很方便的去调用 PIO/PISO 函数。

WORD PIO_GetConfigAddressSpace(wBoardNo,

- *wBase,
- *wlrq,
- wSubVendor,
- *wSubDevice,
- *wSubAux,
- *wSlotBus,
- *wSlotDevice);

▶ 参数:

<u>wBoardNo</u>

[Input] 由使用者指定的板卡编号, 第一张板卡的 wBoardNo 为 0, 第二张板卡的 wBoardNo 为 1, 依此类推。

<u>*wBase</u>

[Output] PIO/PISO 系列板卡的基础地址。

*wlrq

[Output] PIO/PISO 系列板卡正在使用的 IRQ。

<u>wSubVendor</u>

[Output] PIO/PISO 系列板卡的 SubVendor ID 值。

*wSubDevice

[Output] PIO/PISO 系列板卡的 SubDevice ID 值。

*wSubAux

[Output] PIO/PISO 系列板卡的 SubAux ID 值。

*wSlotBus

[Output] PIO/PISO 系列板卡的 Slot Bus 编码值。

*wSlotDevice

[Output] PIO/PISO 系列板卡的 Slot Device ID 值。

▶ 回传值:

请参考<u>第3.1章错误码列表</u>回传值定义。

ShowPIOPISO

这个函数将显示一个专用的 Sub_ID 文本字符串。这个文本字符串同 PIO.H 中定义的一样。

▶ 语法:

WORD ShowPIOPISO(wSubVendor, wSubDevice, wSubAux);

- ▶ 参数:
 - <u>wSubVendor</u>

[Input] PIO/PISO 系列卡的 SubVendor ID 值。

<u>wSubDevice</u>

[Input] PIO/PISO 系列卡的 SubDevice ID 值。

<u>wSubAux</u>

[Input] PIO/PISO 系列卡的 SubAux ID 值。

请参考<u>第3.1章错误码列表</u>回传值定义。

4. 范列程序

4.1Microsoft Windows 操作系统

PIO-DIO 系列驱动函式库集成了各种函式,用户可以利用它们来开发各种应用程序在泓格的装置上。这些 API 函式支持各种开发环境及程序语言,包括了 Microsoft Visual C++, Visual Basic, Borland Delphi, Borland C Builder++, Microsoft Visual C++.NET, Microsoft Visual C#.NET, Microsoft Visual VB.NET。

用户能够从随机出货的配件软件 CD 光盘或从泓格的软件下载网站中来取范例程序。详细取得 /下载位置如下:

 CD:\NAPDOS\PCI\PIO-DIO\DLL_OCX\Demo\

 Image: http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/pio-dio/dll_ocx/demo/

¢	BCB4 → for Borland C ⁺⁺ Builder 4 PIODIO.H → Header files PIODIO.LIB → Linkage library for BCB only	¢	Delphi4 \rightarrow for Delphi 4 PIODIO.PAS \rightarrow Declaration files
¢	VC6 → for Visual C ⁺⁺ 6 PIODIO.H → Header files PIODIO.LIB → Linkage library for VC only	¢	VB6 \rightarrow for Visual Basic 6 PIODIO.BAS \rightarrow Declaration files
¢	VB.NET2005 \rightarrow for VB.NET2005 PIODIO.vb \rightarrow Visual Basic Source files	¢	CSharp2005 \rightarrow for C#.NET2005 PIODIO.cs \rightarrow Visual C# Source files

依据您的 PIO-DIO 系列卡,选择适合的范例程序。

文件夹	艺例程序行表
D24 ↔	h PIO-D24/D24U, PEX-D24 系列适用 DIO Demo Int Demo IntAPC demo
メ D56 サ の の の の の の の の の の の の の の の の の の	h PIO-D56/D56U, PEX-D56 系列适用 → DIO_1 Demo → DIO_2 Demo → Int Demo → IntAPC Demo
→ → → → → → → → → → → → → →	 b PIO-D48/D48U/D48SU, PEX-D48 系列适用 DIO Demo Freq Demo Int Demo Int Demo Int1APC Demo Int2 Demo Int2APC Demo Int3 Int3APC Demo Int4 Int4APC Demo Read Counter Demo
火 ⊕ ● ● ● ● ●	 b PIO-D64/D64U 系列适用 b DIO Demo b Int Demo counter Demo b 32bitCounter Demo
サ D96 ◆	b PIO-D96/D96U/D96SU, PEX-D96S 系列适用 → DIO Demo → Int Demo → IntAPC Demo

D144	为 PIO-D144/D144U/D144LU, PEX-D144S 系列适用 DIO Demo DIO2 Demo DO Demo Int Demo Int APC Demo
D168	为 PIO-D168/D168A/D168U 系列适用 ◆ DIO Demo ◆ DIO2 Demo ◆ DO Demo ◆ Int Demo ◆ IntAPC Demo

注意: 范例程序中所需的硬件配置、接线...等,请用户参考至各 PIO-DIO 系列硬 件手册来自行设定。

4.2 DOS 操作系统

范例程序,下载位置如下:

CD:\NAPDOS\PCI\PIO-DIO\DOS\

http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/pio-dio/dos/

Ð $TC^*.* \rightarrow$ for Turbo C 2.xx or above \oplus \MSC*.* \rightarrow for MSC 5.xx or above \oplus \BC*.* \rightarrow for BC 3.xx or above Ð \TC\LIB*.* \rightarrow for TC Library Ð $TCDEMO*.* \rightarrow for TC demo program$ Ð \TC\DIAG*.* \rightarrow for TC diagnostic program Φ \TC\LIB\Large\PIO.H \rightarrow TC Declaration File Ð \TC\LIB\Large\TCPIO_L.LIB → TC Large Model Library File Ð $TCLIBHugeTCPIO_H.LIB \rightarrow TC Huge Model Library File$ Ð \MSC\LIB\Large\PIO.H → MSC Declaration File Ð \MSC\LIB\Large\MSCPIO_L.LIB → MSC Large Model Library File Ð \MSC\LIB\Huge\MSCPIO_H.LIB → MSC Huge Model Library File Ð \BC\LIB\Large\PIO.H \rightarrow BC Declaration File Ð \BC\LIB\Large\BCPIO_L.LIB → BC Large Model Library File Ð \BC\LIB\Huge\BCPIO_H.LIB → BC Huge Model Library File

依据您的 PIO-DIO 系列卡,选择适合的范例程序。

文件夹	范例程序行表
diag	为 PISO/DIO 系列适用。 ◆ PIO_PISO.exe
D2456	 为 PIO-D24/D24U/D56/D56U, PEX-D24/D56 系列适用。 ◆ Demo1: DO demo of CON3 ◆ Demo2: DI/O demo of CON1, CON2 and CON3 ◆ Demo3: Count high pulse of PC0 (Initial low & active high) ◆ Demo4: Count high pulse of PC0 (Initial high & active low) ◆ Demo5: Four Interrupt Source
D48	 为 PIO-D48/D48U/D48SU, PEX-D48 系列适用。 Demo1: DO demo of CN1 and CN2 Demo2: DI demo of CN1 and CN2 Demo3: DI/O demo of CN1 and CN2 Demo3: DI/O demo of CN1 and CN2 Demo4: INT_CHAN_3, timer interrupt Demo5: INT_CHAN_2, 16-bit event counter (no interrupt), init_HIGH & active_LOW signal to PC0 of port-2. Demo6: INT_CHAN_2, 16-bit event counter (no interrupt), init_LOW & active_HIGH signal to PC0 of port-2. Demo7: INT_CHAN_2, 16-bit down-counter (using interrupt), init_HIGH & active_LOW signal to PC3 of port-2. Demo7: INT_CHAN_2, 16-bit down-counter (using interrupt), init_HIGH & active_LOW signal to PC3 of port-2. (Note: The PC7 of port_2 is used to enable the interrupt) Demo8: INT_CHAN_0, interrupt demo, init_HIGH & active_LOW signal to PC3 of port-2. (Note: The PC7 of port_2 is used to enable the interrupt) Demo9: INT_CHAN_0, interrupt demo, init_HIGH & active_LOW signal to PC3 of port-2. (Note: The PC7 of port_2 is used to enable the interrupt) Demo10: INT_CHAN_1, interrupt demo, init_HIGH & active_LOW signal to PC3 of port-5. (Note: The PC7 of port_5 is used to enable the interrupt) Demo11: INT_CHAN_0 & INT_CHAN_1, interrupt demo, init_HIGH & active_LOW signal to PC3 of port-2. (Note: The PC7 of port-2 (port-5). (Note: The PC7 of port-2 (port-5). is don't care)

D64	 为 PIO-D64/D64U 系列适用。 Demo1: DO demo Demo2: DI/O demo Demo3: Use external int. to measure pulse width (high level) Demo4: Use EVTIRQ to count event Demo5: Use TMRIRQ to generate 0.5 Hz squa. Demo6: Use TMRIRQ to generate 0.5 Hz squa. EVTIRQ to count
D96	 为 PIO-D96/D96U/D96SU, PEX-D96S 系列适用。 Demo1: DO demo of CN1 Demo2: DI/O demo of CN2 and CN3 Demo3: Count high pulse of P2CO (initial Low & active High) Demo4: Count high pulse of P2CO (initial High & active Low) Demo5: Four Interrupt Source
D144	 为 PIO-D144/D144U/D144LU, PEX-D144S 系列适用。 Demo1: DO of CN1 Demo2: DO of CN1 to CN6 Demo3: Interrupt of P2CO (Initial low & active high) Demo4: Interrupt of P2CO (Initial high & active low) Demo5: 4 Interrupt sources Demo6: DO demo Demo10: Find card number
D168	 为 PIO-D168/D168A/D168U 系列适用。 ◆ Demo1: DO of CN1 ◆ Demo2: DO of the CN1 to CN6 ◆ Demo3: Interrupt of P2C0 (Initial low & active high) ◆ Demo4: Interrupt of P2C0 (Initial high & active low) ◆ Demo5: 4 Interrupt sources

注意: 范例程序中所需的硬件配置、接线...等,请用户参考至各 PIO-DIO 系列硬

件手册来自行设定。

5. 编程结构

6. 问题回报

当您所使用的程序发生问题或对程序有任何疑问, 欢迎您来电或写信告知我们 (E-mail: <u>Service.icpdas@gmail.com</u>、<u>Service@icpads.com</u>),我们将为您提供完善的咨询服务。

告知我们错误问题,包括以下信息:

- 1. 问题是可重现吗?如果是这样,怎么样?
- 您使用什么样的平台和版本呢?
 例如, Windows98, Windows 2000 或 32 位 Windows XP/2003/Vista/2008/7/8。
- 3. 您使用我们什么产品种类? 请参阅产品手册。
- 4. 如有错误信息对话框显示,请将剪下此画面包括完整的测试画面、标题栏文字。
- 5. 您使用的开发程序或使用的硬件设备或执行示例程序版本...等。
- 6. 欢迎提出您对于这个问题的建议的其它意见。

当我们收到您的问题及意见后,我们会约需两个工作日来测试您说的问题。然后尽快给您答复。请保持与我们联系。