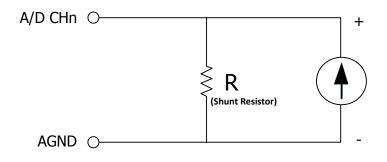
FAQ	ICP DAS CO A			L	P
分類/Classification	□ tDS □ tGW	PETL/tET/tPET DS/PDS/PP		PDS 🛛 tM-752N	
	☑ I/O Card	UVXC Card	□ VxComm	C] Other
作者/Author	Tammy	日期/Date	2015-03-03	編號/NO.	FAQ-009

Q: How to measure current signals from the A/D Channel on board?

A: We recommend the following A/D card to use the Low Gain of Bipolar +/- 2.5 V to measure current through 1250hm resistor.


Model	Gain	Bipolar
PCI-1002LU, PEX-1002L	4	+/- 2.5 V
PCI-1202LU, PEX-1202L	2	+/- 2.5 V
PCI-1602U, PCI-1602F, PCI-1602FU	4	+/- 2.5 V
PCI-1802LU, PCI-1800LU	2	+/- 2.5 V
PCI-822LU, PCI-826LU	4	+/- 2.5 V
PIO-821LU	2	+/- 2.5 V
	2 (JP1=10V)	+/- 2.5 V
PISO-813U	4 (JP1=20V)	+/- 2.3 V

Follow the procedure described below:

Step 1: Wire the current signal source (4 ~ 20 mA or 0 ~ 20 mA) to Analog Input channel, and wire the signals as follows:

Connect the <u>A/D CHn</u> **to** <u>signal positive (+)</u> (Note: CHn = Channel Number) **Connect the** <u>AGND</u> **to** <u>signal negative (-)</u>

Step 2: Add a shunt resistor (e.g. 125 Ω, 0.1% DIP Resistors) between <u>A/D CHn</u> and <u>AGND</u>.

Example: A 20 mA source current through a 125 Ω resistor between + and – terminals and the board will read a 2.5 V_{DC} voltage. You can use the **I** = **V/R** (Ohm's law) to calculate what value the source current should have.

Current (I) = Voltage (V) / Resistance (R) = 2.5 V / 125Ω = 0.02 A = 20 mA