SIPPI Communication Driver

Driver for Serial PPI Communication Between Studio and Siemens S7-200 Devices

Contents

INTRODUCTION	2
GENERAL INFORMATION	3
DEVICE CHARACTERISTICS	3
LINK CHARACTERISTICS	3
Driver Characteristics	3
CONFORMANCE TESTING	4
INSTALLING THE DRIVER	5
CONFIGURING THE DRIVER	6
SETTING THE COMMUNICATION PARAMETERS	6
CONFIGURING THE DRIVER WORKSHEET	7
MAIN DRIVER SHEET (MDS)	13
EXECUTING THE DRIVER	15
TROUBLESHOOTING	16
SAMPLE APPLICATION	20
REVISION HISTORY	21

Introduction

The SIPPI driver enables communication between the Studio system and the Siemens devices using PPI interfaces, according to the specifications discussed in this publication.

This publication was designed to help you install, configure and execute the SIPPI driver to enable communication with the Siemens devices. The information in this publication is organized as follows:

- Introduction: Provides an overview of the SIPPI driver documentation
- General Information: Provides information needed to identify all the required components (hardware and software) used to implement communication between Studio and the SIPPI driver
- Installing the Driver: Explains how to install the SIPPI driver
- Configuring the Driver: Explains how to configure the communication driver
- Executing the Driver: Explains how to execute the driver to verify that you installed and configured the driver correctly
- Troubleshooting: Lists the most common error codes for this protocol and explains how to fix these errors
- Sample Application: Explains how to use a sample application to test the driver configuration
- Revision History: Provides a log of all modifications made to the driver and the documentation

Notes:

- This document assumes that you have read the "Development Environment" chapter in the product's *Technical Reference Manual*.
- This document also assumes that you are familiar with the Windows XP/7/8 environment. If you are unfamiliar with Windows XP/7/8, we suggest using the Help feature (available from the Windows desktop Start menu) as you work through this guide.

General Information

This chapter explains how to identify all the hardware and software components used to implement communication between the SIPPI driver and Siemens devices using PPI interfaces.

The information is organized into the following sections:

- Device Characteristics
- Link Characteristics
- Driver Characteristics
- Conformance Testing

Device Characteristics

This driver has been tested successfully with the following devices:

- Manufacturer: Siemens
- Compatible Equipment: Siemens S7-200 PLC Family
- Siemens PLC Programmer Software: Step7 MicroWin

Link Characteristics

To establish communication, you must use links with the following specifications:

- Device Communication Port: Port 0 or Port 1, configured for PPI
- Physical Protocol: Serial RS-485
- Logic Protocol: S7 PPI

Driver Characteristics

The SIPPI driver is composed of the following files:

- SIPPI.INI: Internal driver file. You must not modify this file.
- **SIPPI.MSG**: Internal driver file containing error messages for each error code. You must not modify this file.
- SIPPI.PDF: Document providing detailed information about the SIPPI driver
- **SIPPI.DLL**: Compiled driver

> Notes:

- All of the preceding files are installed in the /DRV subdirectory of the Studio installation directory.
- The SIPPI driver requests the AGLINK.DLL into the /BIN. This file is installed by default with the product

You can use the SIPPI driver on the following operating systems:

- Windows XP/7/8/2008/2012
- Windows Embedded Standard and Compact (WinCE 5/6/7)

The SIPPI driver supports the following registers:

Register Type	Write	Read	Bit	Byte	Word	DWord	Float	String
M (Flags)	•	•	•	•	•	•	•	•
T (<i>Timers</i>)	_	•	-	-	•	_	-	•
Z or C (Counters)	_	•	-	-	•	_	-	•
E or I (Inputs)	_	•	•	•	•	•	•	•
A or Q (Outputs)	•	•	•	•	•	•	•	•
V (Variable Memory)	•	•	•	•	•	•	•	•

🔈 Note:

•

The V Register from S7-200 devices can be accessed also with the DB1 Register

Conformance Testing

The following hardware/software was used for conformance testing:

- Driver Configuration:
 - PLC Program: Step 7 (MicroWin)
 - Protocol: S7 PPI
 - PC Adaptor: TECNATRON TCD S7-200

Driver Version	Studio Version	Operating System	Equipment
10.8	7.1 + SP2	Windows 7 Windows CE 5.0 ArmV4i	S7-200 with CPU226

Installing the Driver

When you install Studio version 5.1 or higher, all of the communication drivers are installed automatically. You must select the driver that is appropriate for the application you are using.

Perform the following steps to select the driver from within the application:

- 1. Open Studio from the Start menu.
- 2. From the Studio main menu bar, select File \rightarrow Open Project to open your application.
- 3. Select Insert \rightarrow Driver from the main menu bar to open the *Communication Drivers* dialog.
- 4. Select the SIPPI driver from the Available Drivers list, and then click the Select button:

Co	ommunic	ation Drivers		
ļ	vailable dri	vers:		
	DLL	Description	^	Help
	SACMI SAGE SAIA SART SATCH SCAN SFMS SIEME SISP	ERO ELECTRONIC - FMC-Sacmi(NT-2000) [v1.02] Communication with SAGE using IEC-60870-5-101 - (NT-20 SAIA, P8 Protocol - PCD2 (NT-2000-9x)[1.00] Sattorio, Sattorio scale (NT-2000-9x) [v1.00] Satchwell, SatchNet Protocol, IAC200/400 IAC600 Device BarCode Scanner (NT-2000-9x) [1.02] SIEMENS - ProfBus FMS compatible equipment (NT) [v2.60] SIEMENS - Siemens Protocol (NT/9x/2K/XP/Ce) [v2.00] USIMINAS - Dedicated equipment (NT-2000-9x) [1.10]		Select >>
9	elected dri	vers:		
	DLL	Description		>> Remove
	SIPPI	SIEMENS, S7 PLC communicating via PPI interface (NT/9		
		ОК		Cancel

Communication Drivers Dialog

5. When the SIPPI driver displays in the Selected Drivers list, click the OK button to close the dialog.

Attention:

For safety reasons, you must be careful when installing the physical hardware. Consult the hardware manufacturer's documentation for specific installation instructions.

Configuring the Driver

After opening Studio and selecting the SIPPI driver, you must configure the driver. Configuring the SIPPI driver is done in two parts:

- Specifying communication parameters
- Defining communication tags and controls in the Communication tables or Driver worksheet

Worksheets are divided into two sections, a *Header* and a *Body*. The fields contained in these two sections are standard for all communications drivers — except the **Station**, **Header** and **Address** fields, which are driver-specific. This document explains how to configure the **Station**, **Header** and **Address** fields only.

> Notes:

For a detailed description of the Studio *Standard* and *MAIN* Driver Worksheets, and information about configuring the standard fields, review the product's *Technical Reference Manual*.

Setting the Communication Parameters

Use the following steps to configure the communication parameters, which are valid for all driver worksheets configured in the system:

- 1. From the Studio development environment, select the Comm tab located below the Workspace.
- 2. Click on the Drivers folder in the Workspace to expand the folder.
- 3. Right-click on the *SIPPI* subfolder. When the pop-up menu displays, select the **Settings** option:

Select Settings from the Pop-Up Menu

The SIPPI: Communication Parameters dialog displays:

📅 SIPPI:	×
Connection Type: Direct	•
Serial Port	
СОМ: СОМ1 🔽	Stop Bits: 1
Baud Rate: 19200 💌	Parity: None
Data Bits: 8 💌	
1 - Signed / 0 - Unsigned:	String 1:
0	
Initial Connection ID (0 to 7):	String 2:
0	
Advanced	OK Cancel

SIPPI: Communication Parameters Dialog

Parameters	Default Values	Valid Values	Description
1-Signed 0-Unsigned Value	0	0 or 1	This value will be default if you do not specify the Unsigned or Signed parameter for each format address. 0: Unsigned values 1: Signed values
Initial ID Connection	0	0 to 7	This value will be the initial ID Connection. This field must be configured only if you are going to use more than one instance of this driver. For each different instance, use different IDs.

- 4. Verify the COM and Baud Rate settings, and change them if necessary.
- 5. Click **OK** to close the dialog.

Configuring the Driver Worksheet

This section explains how to configure a *Standard Driver Worksheet* (or Communication table) to associate application tags with the PLC addresses. You can configure multiple *Driver* worksheets — each of which is divided into a *Header* section and *Body* section.

Use the following steps to create a new Standard Driver worksheet:

- 1. From the Studio development environment, select the **Comm** tab, located below the *Workspace* pane.
- 2. In the Workspace pane, expand the Drivers folder and right-click the SIPPI subfolder.
- 3. When the pop-up menu displays, select the **Insert** option:

Inserting a New Worksheet

🔌 Note:

To optimize communication and ensure better system performance, you must tie the tags in different driver worksheets to the events that trigger communication between each tag group and the period in which each tag group must be read or written. Also, we recommend configuring the communication addresses in sequential blocks to improve performance.

The *SIPPI.drv* dialog displays (similar to the following figure):

SIPPI001.DRV								
Description:								
Read Trigger: Enable Read when Idle: Read Completed: Read Status: 1 1 1 1								
Write Trigger: Enable Write on Tag Change: Write Completed: 1 1				Write Status:				
Station:	Heade	r:						
2	V			Min:				
				IVIDS:				
Tag Name	1	Address	Div	Add				
1 Tag1		85.7						
2 Tag2		VV10						
3 Tag3		D26						
4 Tag4		ST120.20						

SIPPI Driver Worksheet

In general, all parameters on the *Driver* worksheet (except the **Station**, **Header** and **Address** fields) are standard for all communication drivers, and they will not be discussed in this publication. For detailed information about configuring the standard parameters, consult the Studio *Technical Reference Manual*.

- 4. Use the following information to complete the Station, Header, and Address fields on this worksheet:
 - Station field: Use this field to specify the PLC address (*PLC ID*). Valid values are 1–255.

• Header field: Use the information in the following table to define the type of variables that will be read from or written to the device and a reference to the initial address.

These variables must comply with the following syntax:

For Flags, Timers, Counters, Inputs and Outputs:

<Type>:<AddressReference> (for example: M:1)

□ For Data-Blocks:

<Type><TypeGroup>:<AddressReference> (for example: V:1) or

<Type><TypeGroup>.DB :<AddressReference> (for example: DB1.DB:0)

Where:

- Type is the register type. (M=Flags, T=Timers, Z or C=Counters, E or I=Inputs, A or Q=Outputs, DB=Data Blocks and V=Variable)
- **TypeGroup** is the group number of the configured register type (for Data-Block types only).
- AddressReference (optional) is the initial address reference of the configured group. This number always refers to the Byte address number. (See the following table.)

🖎 Note:

The V Register from S7-200 devices can be accessed also with the DB1 Register

Header Address	Siemens Address					
Byte Address Number	Byte Address Number	Word	Address Number			
Byte 0	Byte 0	10/0				
Byte 1	Byte 1	VVO	W/1			
Byte 2	Byte 2	14/2	VV I			
Byte 3	Byte 3	VVZ	W/2			
Byte 4	Byte 4	\W/A	VV5			
Byte 5	Byte 5	VV4	W/5			
Byte 6	Byte 6	MG	W5			
Byte 7	Byte 7	VVO	\\/7			
Byte 8	Byte 8	1///8	VV7			
Byte 9	Byte 9	vvo	10/0			
Byte 10	Byte 10	W/10				
Byte 11	Byte 11	VV IU				

The following table lists all of the valid initial address (reference) values for the SIPPI driver:

	Header Field Information							
DataValid Range of InitialTypesSample SyntaxAddresses		Valid Range of Initial Addresses	Comments					
Flags	M:1 or M	Varies according to the equipment	Logical Flags					
Timers	T:2 or T Varies according to the equipment Timer Values		Timer Values					
Counters Z:10, C:10 or Z, C Varies according to the equipment		Varies according to the equipment	Counter Values					
Inputs	E:5,I:5 or E,I	Varies according to the equipment	Physical Input Values					
Outputs	A:8,Q:8 or A,Q	Varies according to the equipment	Physical Output Values					
Variables	V:1	Varies according to the equipment	Variable Memory, equivalent to DB1					

The next table lists all of the data types and address ranges that are valid for the SIPPI driver:

• Address field: Use the information provided in the following table to associate each tag to its respective device address.

Type the tag from your application database into the **Tag Name** column. This tag will receive values from or send values to an address on the device. The address must comply with the following syntax:

[Signed/Unsigned]<Format><AddressOffset>.<Bit> (for example: X10.2)

<Format><AddressOffset>.<Len> (for example: ST2.10, SST2.10) – String format only

Where:

- [Signed / Unsigned] (optional parameter used for integer values only): If you do not specify this parameter, Studio inserts an integer value based on the parameters you set in the Communication Parameters dialog. Valid values are S (signed) and U (unsigned). Dword does not use U (unsigned).
- Format defines how Studio treats the value read from or written to the device.
 (X=Bit, B=Byte or Bit, W=Word, D or DW=Dword, F=Float, ST=String, , SST= S7 String format).
- AddressOffset is a parameter added to the AddressReference parameter (configured in the Header field) to compose the group address configured in the Header field.
- □ Bit is the bit number (from 0 7) from the Byte address. This parameter is optional, and it is supported only when the format is Byte or Bit (B or X).
- □ <*Len>* is the length to read or to write. It is in bytes. String format only.

Sample Address Configuration						
Address on the Device	Header Field	Address Field				
M (Word 5 = Byte 5 / Byte 6 / String 7,	М	W5				
Length 10)	M:5	WO				
	M:3	W2				
M (Byte 5)	М	B5				
	M:5	B0				
	M:1	B4				
M (Byte 6)	М	B6				
	M:6	B0				
	M:3	B3				
M (String 7, Length 10)	М	ST7.10				
	M:7	ST0.10				
	M:4	ST3.10				
Т (33)	Т	33				
	T:30	3				
	Т33	0				
T(35)	Т	35				
	T:35	0				
	T31	4				
C (3)	С	3				
	C:3	0				
	C:2	1				
C (4)	С	4				
	C:4	0				
	C:2	2				
V (Word 2 = Byte 2 / Byte 3 / String 4	V:0	W2				
length 10)	V:2	WO				
	V:1	W1				
V (Byte 2)	V:2	B0				
	V:1	B1				
V (Byte 3)	V:3	B0				
	V:2	B1				
V (String 4 length 10)	V:0	ST4.10				
	V:4	ST0.10				
	V:2	ST2.10				
V (Word 7 = Byte 7 / Byte 8 / Double	V:0	W7				
Word 3)	V:7	W0				
	V:4	W3				
V (Byte 7)	V:0	B7				
	V:7	B0				
	V:4	B3				

Sample Address Configuration						
Address on the Device	Header Field	Address Field				
V (Byte 8)	V:0	B8				
	V:8	BO				
	V:4	B4				
V (Double Word 3)	V:0	DW3				
Input (Address 1, bit 4)	I:0 or E:0	X1.4				
	I:1 or E:1	X0.4				
	I:0 or E:0	B1.4				
Input (Byte 1)	I:0 or E:0	B1				
	I:1 or E:1	B0				
Output(Address 1, bit 4)	Q:0 or A:0	X1.4				
	Q:1 or A:1	X0.4				
	Q:0 or A:0	B1.4				
Output(Byte 1)	Q:0 or A:0	B1				
	Q:1 or A:1	BO				

> Attention:

You must not configure a range of addresses greater than the maximum block size (data buffer length) supported by the protocol within the same worksheet. The maximum data buffer length for this driver is 1023 bytes per *Standard Driver* worksheet.

SIPPI – Driver Version 10.8 Doc. Revision L – Apr 17, 2015

Main Driver Sheet (MDS)

When the driver is inserted in the application, the *MAIN DRIVER SHEET* is automatically added to the driver folder.

The MAIN DRIVER SHEET provides a simple way to associate Studio tags to addresses in the PLC. Most of the MAIN DRIVER SHEET entries are standard for any driver. Refer to the Studio *Technical Reference Manual* for information about the configuration of the standard fields. The fields that require specific syntax for this driver are described below:

ens	SIPPI - MAIN DRIVER SHE	ET					
	Description:						
	MAIN DRIVER SHEET						
	Disable:						
l '	Read Completed: Read	d Status:					
			k fine				
l '	Write Completed: Write	e Status:					
			Max				
			_				
	Tag Name	Station	I/O Address	Action	Scan	Div	Add
1	Tag1	2	M0.0	Read+Write ⊻	Always 🛛 💌		
2	Tag2	2	VD200	Read+Write 💌	Always 🛛 💌		
3	Tag3	2	T10	Read+Write 💌	Always 🛛 💌		

- Station field: Use this field to specify the PLC address (*PLC ID*). Valid values are 1–255.
- I/O Address: Address of each register from the PLC. The syntax used in this field is described below:
 - □ For Flags, Timers, Counters, Inputs, and Outputs:
 - <Type>[Signed / Unsigned]<Format><Address>.<Bit> (for example: MSW1) or

<Type>[Signed/Unsigned]<Format><Address>.<Bit> (for example: MX10.2)

<Type><Format><Address>.<Len> (for example: MST2.10) - String format only

□ For Data-Blocks:

<Type><TypeGroup>[Signed/Unsigned]<Format><Address>.<Bit> (for example: VW1)

or <Type><TypeGroup>.DB[Signed/Unsigned]<Format><Address>.<Bit> (for example: DB1.DBUB1)

<Type><<Format><Address>.<Len> (for example: VST2.10) - String format only

Where:

- [Signed / Unsigned] (optional parameter used for integer values only): If you do not specify this parameter, Studio inserts an integer value based on the parameters you set in the Communication Parameters dialog. Valid values are S (signed) and U (unsigned).. Dword does not use U (Unsigned).
- Type is the register type. (M=Flags, T=Timers, Z or C=Counters, E or I=Inputs, A or Q=Outputs, and DB=Data Blocks, ST=String)
- TypeGroup is the group number of the configured register type (for Data-Block types only). For the S7-200 CPUs, there is only 1 DB, DB1, which is equivalent to the V memory area
- Address is the device I/O address. This number always refers to the Byte address number except for Timers and Counter, in which this refers to the Timer or Counter number.
- Format defines how Studio treats the value read from or written to the device (X=Bit, B=Byte or Bit, W=Word, D or DW=Dword, F=Float, ST=String).
- Bit is the bit number (from 0 7) from the Byte address. This parameter is optional, and it is supported only when the format Byte or Bit (B or X).
- <Len> is the length in number of characters that will be read or written to. String format only.

> Note:

The syntax of Main Driver Sheet used on previous versions of the SIPPI driver required the colon on the address. This syntax is no longer accepted, however, existing applications will continue to work as expected.

Executing the Driver

After adding the SIPPI driver to a project, Studio sets the project to execute the driver automatically when you start the run-time environment.

To verify that the driver run-time task is enabled and will start correctly, perform the following steps:

1. Select $Project \rightarrow Status$ from the main menu bar.

The *Project Status* dialog displays:

lask .	Status	Startup	
Background Task	Automatic	<u>S</u> tart	
Database Spy		Manual	-
M DDE Client Runtime		Manual	5102
Dover Burghne		Autoroatio	
al or Win		Automatic	
ODBC Runtime		Manual	Startup
OPC Client Runtime		Manual	
TCP/IP Client Runtime		Automatic	
TCP/IP Server		Automatic	
Viewer		Automatic	
		A.S.M. 9-544 (19-55)	

Project Status Dialog

- 2. Verify that the Driver Runtime task is set to Automatic.
 - If the setting is correct, click **OK** to close the dialog.
 - If the Driver Runtime task is set to Manual, select the Driver Runtime line. When the Startup button becomes active, click the button to toggle the Startup mode to Automatic.
- 3. Click **OK** to close the *Project Status* dialog.
- 4. Start the application to run the driver.

Troubleshooting

If the SIPPI driver fails to communicate with the device, the tag you configured for the **Read Status** or **Write Status** fields will receive an error code. Use this error code and the following table to identify the failure that occurred.

Error Code	Description			
-33	Invalid INI file			
-34	Invalid Address			
-36	Invalid Data Type			
-38	Invalid Station			
-39	Invalid Block Size			
0	ок			
1	Error to initialize driver			
2	Maximum number of connections was exceeded.			
244	Function is not supported			
245	Internal error, please check			
246	Listed job number is invalid			
247	At least one parameter for opening the device is invalid			
248	No free space in the request queue			
249	The necessary class cannot be initialized			
250	The necessary memory cannot be allocated			
251	Device is not open			
252	Device was not found			
253	Device is already in use or open, or update is not valid			
254	Function is not valid			
255	End of program request			
256	A parameter was not in the defined range			
508	Not all parameters can be changed because the adapter is already initialized			
509	The program "AGLink_Config.EXE" cannot be started			
510	The parameters were changed because of plausibility checks			
511	Parameter length is not supported			
512	Requested option is not available			
752	Sending buffer too small for packet			
753	Receiving buffer too small for packet			
754	Timeout while waiting for DLE after sending the packet			
755	Packet to be sent is not correct (length 0 or NULL pointer)			
756	After STX, arbitrary information was sent instead of DLE			

SIPPI – Driver Version 10.8 Doc. Revision L – Apr 17, 2015

Error Code	Description				
757	After STX, NAK was sent instead of DLE				
758	Timeout after initialization conflict (both have high priority)				
759	Timeout while waiting for DLE after sending STX				
760	Initialization conflict				
761	Wrong protocol status				
762	Checksum error				
763	Timeout while waiting for checksum				
764	Information after DLE was not DLE or ETX				
765	Timeout while waiting for packet information (ZVZ)				
766	Timeout while waiting for beginning of packet (QVZ)				
767	Wrong information received instead of STX				
768	Timeout while waiting for STX at the beginning of the program				
1019	Adapter is not initialized				
1020	Unknown error message from adapter				
1021	Wrong MPI baud rate				
1022	The address code is higher than HAS				
1023	Requested adapter address already exists				
1024	Received packet has wrong content				
1260	Type (of data) is not supported				
1261	Access to object is not permitted				
1262	Invalid address				
1263	Context is not supported				
1264	PLC sends no data				
1265	Function protection level is not sufficient				
1266	Context is not supported				
1267	Information cannot be determined at the moment				
1268	Unknown error message from PLC; please check				
1269	Wrong size operands or selected range too large				
1270	Wrong operating status of PLC				
1271	Error while restarting the PLC				
1272	Error while starting the PLC				
1273	Wrong PLC operating status				
1274	Internal error; please check				
1275	No data available (for example, missing DB)				
1276	Hardware error (for example, nonexistent peripheral equipment)				
1277	Number of frame does not fit				
1278	PLC was not found				

SIPPI – Driver Version 10.8 Doc. Revision L – Apr 17, 2015

Error Code	Description			
1279	No additional connection possible			
1280	No connection to the requested PLC			
1523	DSR signal changed to 0 (modem disconnected)			
1524	DCD signal changed to 0 (no carrier)			
1525	No connection to remote terminal			
1526	No modem found at the device			
1527	Error during initialization of auto-answer			
1528	Error during initialization of dial tone			
1529	Error during initialization of selection procedure			
1530	Error during initialization sequence 4			
1531	Error during initialization sequence 3			
1532	Error during initialization sequence 2			
1533	Error during initialization sequence 1			
1534	Error during basis initialization (AT&FE0V1)			
1535	Modem cannot hang up			
1536	General modem error			
1786	CIF card not logged in on the logical ring (bus)			
1787	A resource error exists			
1788	Wrong firmware version of CIF card			
1789	Wrong hardware version of CIF card			
1790	Error in a device driver function			
1791	Requested board not found			
1792	Requested device driver not found			
2038	Close received instead of ReadOK			
2039	Timeout while reading IP			
2040	Error while reading IP			
2041	Close received instead of WriteOK			
2042	Timeout while writing IP			
2043	Error while writing IP			
2044	Close received instead of ConnectOK (for example, wrong rack or slot number)			
2045	Timeout while establishing IP connection			
2046	Error while establishing IP connection			
2047	Listed IP address invalid			
2048	Socket cannot be opened			

⇒ Tip:

You can verify communication status using the Studio development environment *Output* window (*LogWin* module). To establish an event log for Field Read Commands, Field Write Commands and Serial Communication right-click in the *Output* window. When the pop-up menu displays, select the option to set the log events. If you are testing a Windows CE target, you can enable the log at the unit (Tools \rightarrow LogWin) and verify the celog.txt file created at the target unit.

If you are unable to establish communication with the PLC, try to establish communication between the PLC Programming Tool and the PLC. Quite frequently, communication is not possible because you have a hardware or cable problem, or a PLC configuration error. After successfully establishing communication between the device's Programming Tool and the PLC, you can retest the supervisory driver.

To test communication with Studio, we recommend using the sample application provided rather than your new application.

If you must contact us for technical support, please have the following information available:

- Operating system (type and version): To find this information, select Tools → System Information.
- Project Information: To find this information, select $Project \rightarrow Status$.
- Driver version and communication log: Displays in the Studio *Output* window when the driver is running.
- Device model and boards: Consult the hardware manufacturer's documentation for this information.

Sample Application

A sample application is provided in the **/COMMUNICATION EXAMPLES/SIPPI** directory. We strongly recommend that you use this sample application to test the SIPPI driver before configuring your own customized application, for the following reasons:

- To better understand the information provided in this document.
- To verify that your configuration is working satisfactorily.
- To certify that the hardware used in the test (device, adapter, cable and PC) is working satisfactorily before you start configuring your own, customized applications.

🔈 Note:

This application sample is not available for all drivers.

Use the following procedure to perform the test:

- 1. Configure the device's communication parameters using the manufacturer's documentation.
- 2. Open and execute the sample application.
- 3. Execute the *Viewer* module in Studio to display information about the driver communication.

➡ Tip:

You can use the sample application screen as the maintenance screen for your custom applications.

Revision History

Doc. Revision	Driver Version	Author	Date	Description of Changes
A	1.00	Fabio H. Y. Komura	24 Sep 04	First version
В	1.01	Leandro Coeli	01 Apr 03	Implemented V type Changes related to Windows CE 3.0 support
С	1.02	Lourenço Teodoro	15 Sep 03	Fixed problem in function GetBit
D	3.01	Rafael R. Fernandes	26 Feb 08	Implemented the Signed and Unsigned options Implemented String format Implemented "Initial ID Connection" field in Communication Parameters (to use more than one driver) Data types X and D (equivalent to Bit and DWord) were created. Driver was changed for Colon (:) to be optional in MAIN DRIVER SHEET New syntaxes to Data Blocks Operand were added.
E	10.1	Marcelo Carvalho	07 Jan 09	Updated driver version, no changes in the contents.
F	10.3	Lourenço Teodoro	30 Jun 09	Modified the driver to support SST format
G	10.4	Lourenço Teodoro	02 Dec 09	 Modified the driver to create less communication groups and optimize the communication Fixed connection problem introduced with version 10.3
Н	10.5	Fellipe Peternella	01 Apr 10	No changes specific for this driver
1	10.6	André Körbes	21 Jul 10	 Siemens drivers are allowed to coexist on the same application Fixed problem with a specific CPU firmware that caused errors on timers and counters Fixed virtual group separation
J	10.7	André Körbes	1 Jul 11	- Fixes on block size check
К	10.8	Ajay Anumalla	12 Mar 13	Updated driver version, no changes in the contents.
L	10.8	Andre Bastos	17 Apr 2015	Updated documentation only. No changes in the driver