
MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 1/28 

MOTCP Communication Driver  

Driver for TCP/IP Communication 
with Devices Using Modbus Protocol 
 

Contents 

INTRODUCTION ........................................................................................................................................................2 

GENERAL INFORMATION ........................................................................................................................................3 

DEVICE SPECIFICATIONS .........................................................................................................................................3 
NETWORK SPECIFICATIONS .....................................................................................................................................3 
DRIVER CHARACTERISTICS .....................................................................................................................................3 
CONFORMANCE TESTING ........................................................................................................................................4 

SELECTING THE DRIVER ........................................................................................................................................5 

CONFIGURING THE DEVICE ...................................................................................................................................6 

CONFIGURING THE DRIVER ...................................................................................................................................6 

CONFIGURING THE COMMUNICATION SETTINGS .......................................................................................................6 
CONFIGURING THE DRIVER WORKSHEETS ............................................................................................................ 10 
CONFIGURING DRIVER SHEETS FOR COMMAND 23 (SIMULTANEOUS READ/WRITE OF HOLDING REGISTERS) ................ 19 

EXECUTING THE DRIVER ..................................................................................................................................... 22 

TROUBLESHOOTING ............................................................................................................................................ 23 

REVISION HISTORY............................................................................................................................................... 26 

 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 2/28 

Introduction 

The MOTCP driver enables communication between the Studio system and devices using the Modbus protocol 
over TCP/IP, according to the specifications discussed in this document.  

This document will help you to select, configure and execute the MOTCP driver, and it is organized as follows: 

 Introduction: This section, which provides an overview of the document. 

 General Information: Identifies all of the hardware and software components required to implement 
communication between the Studio system and the target device.  

 Selecting the Driver: Explains how to select the MOTCP driver in the Studio system. 

 Configuring the Device: Describes how the target device must be configured to receive communication from 
the MOTCP driver. 

 Configuring the Driver: Explains how to configure the MOTCP driver in the Studio system, including how to 
associate database tags with device registers. 

 Executing the Driver: Explains how to execute the MOTCP driver during application runtime. 

 Troubleshooting: Lists the most common errors for this driver, their probable causes, and basic procedures 
to resolve them. 

 Revision History: Provides a log of all changes made to the driver and this documentation. 

 

 Notes: 
 This document assumes that you have read the “Development Environment” chapter in Studio’s Technical 

Reference Manual. 

 This document also assumes that you are familiar with the Microsoft Windows environment. 

 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 3/28 

General Information 

This chapter identifies all of the hardware and software components required to implement communication 
between the MOTCP driver in Studio and a target device using the Modbus protocol over TCP/IP.  

The information is organized into the following sections: 

 Device Specifications 

 Network Specifications 

 Driver Characteristics 

 Conformance Testing 

Device Specifications 

To establish communication, your target device must meet the following specifications: 

 Manufacturer: Modicon or any device using the Modbus protocol communicating over TCP/IP 

 Compatible Equipment:  

– Any device that is fully compatible with the Modbus protocol 

 Device Runtime Software: None 

For a description of the device(s) used to test driver conformance, see “Conformance Testing” on the next page. 

Network Specifications 

To establish communication, your device network must meet the following specifications: 

 Device Communication Port: Modbus Ethernet Port 

 Physical Protocol: Ethernet  

 Logic Protocol: Modbus over TCP/IP 

 Specific PC Board: Any TCP/IP Adapter (Ethernet board) 

Driver Characteristics 

The MOTCP driver package consists of the following files, which are automatically installed in the /DRV 

subdirectory of Studio: 

 MOTCP.INI: Internal driver file. You must not modify this file. 

 MOTCP.MSG: Internal driver file containing error messages for each error code. You must not modify this 

file.  
 MOTCP.PDF: This document, which provides detailed information about the MOTCP driver. 

 MOTCP.DLL: Compiled driver. 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 4/28 

You can use the MOTCP driver on the following operating systems:  

 Windows XP/7/8/2003/2008/2012 

 Windows CE  

 Windows Embedded 

For a description of the operating systems used to test driver conformance, see “Conformance Testing” 
below. 

The MOTCP driver supports the following registers: 
 

Register Type Length Write Read Bit Integer Float DWord BCD BCD DW STRING 

0x (Coil Status) 1 Bit         

1x (Input Status) 1 Bit         

3x (Input Register) 1 Word         

4x (Holding Register) 1 Word         

6x (File Records) 1 Word         
 

Conformance Testing 

The following hardware/software was used for conformance testing: 

 Driver Configuration: 

– Protocol: RTU 

– Cable: Ethernet Cable 
 
 

Driver 

Version 

Studio 

Version 

Operating 

System 

(development) 

Operating 

System 

(runtime) 

Equipment 

10.19 8.1 + SP2 Windows 7/8 
 Win8 x64 

 WinCEv7.00 

Wago 750-841 CPU 
GE-FANUC 90-30 CPU-374 
Schneider/Modicon TSX Quantum with NOE 211 00 module 
Modbus Simulator 

 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 5/28 

Selecting the Driver 

When you install Studio, all of the communication drivers are automatically installed in the \DRV subdirectory but 

they remain dormant until manually selected for specific applications. To select the MOTCP driver for your Studio 
application: 

1. From the main menu bar, select Insert Driver to open the Communication Drivers dialog.  

2. Select the MOTCP driver from the Available Drivers list, and then click the Select button.  

 

Communication Drivers Dialog 

3. When the MOTCP driver is displayed in the Selected Drivers list, click the OK button to close the dialog. The 
driver is added to the Drivers folder, in the Comm tab of the Workspace. 

 

 Note: 
It is not necessary to install any other software on your computer to enable communication between Studio 
and your target device. However, this communication can only be used by the Studio application; it cannot 
be used to download control logic to the device. To download control logic to a Modbus device, you must 
also install the Modbus programming software (e.g., ModSoft). For more information, please consult the 
documentation provided by the device manufacturer. 

 
 

 Attention: 
For safety reasons, you must take special precautions when installing any physical hardware. Please 
consult the manufacturer’s documentation for specific instructions. 

 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 6/28 

Configuring the Device 

Because there are many different types of devices that use the Modbus protocol, we cannot define a standard 
device configuration. Consequently, we recommend using the device manufacturer’s suggested configuration. 
Please consult the manufacturer’s documentation. 

Once the selected driver and the target device are both properly configured, it is not necessary to install any other 
software on your computer to enable communication between the host and the device. All runtime communication 
is handled within your Studio application project. However, programming the device itself — that is, developing 
control logic and downloading it to the device — still requires using the device’s own programming tool. 

Configuring the Driver  

Once you have selected the MOTCP driver in Studio, you must properly configure it to communicate with your 
target device. First, you must set the driver’s communication settings to match the parameters set on the device. 
Then, you must build driver worksheets to associate database tags in your Studio application with the appropriate 
addresses (registers) on the device. 

Configuring the Communication Settings 

The communication settings are described in detail in the “Communication” chapter of the Studio Technical 
Reference Manual, and the same general procedures are used for all drivers. Please review those procedures 
before continuing. 

For the purposes of this document, only MOTCP driver-specific settings and procedures will be discussed here. 
To configure the communication settings for the MOTCP driver: 

1. In the Workspace pane, select the Comm tab and then expand the Drivers folder. The MOTCP driver is 
listed here as a subfolder. 

2. Right-click on the MOTCP subfolder and then select the Settings option from the pop-up menu: 

 

Select Settings from the Pop-Up Menu 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 7/28 

The MOTCP: Communication Settings dialog is displayed: 

 

MOTCP: Communication Settings Dialog 
 

3. In the Communication Settings dialog, configure the driver settings to enable communication with your 
target device. To ensure error-free communication, the driver settings must exactly match the 
corresponding settings on the device. Please consult the manufacturer’s documentation for instructions 
how to configure the device and for complete descriptions of the settings. 

Depending on your circumstances, you may need to configure the driver before you have configured your 
target device. If this is the case, then take note of the driver settings and have them ready when you later 
configure the device. 

 

Attention: 

For safety reasons, you must take special precautions when connecting and configuring new 

equipment. Please consult the manufacturer’s documentation for specific instructions. 

 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 8/28 

The communication settings and their possible values are described in the following table: 

 

Parameters Default Values Valid Values Description 

Signed or Unsigned 
Value 

Signed Signed or 
Unsigned 

How integer values are handled by the device: 
 Signed – Integers can be positive or negative 
 Unsigned – Integers are neither positive nor negative 

Invocation Identifier 0 -1 to 255 Used for transaction pairing when multiple Words are sent 
along the same connection without waiting for a response. 
When specifying a negative number, the invocation identifier 
byte will be automatically incremented otherwise the specified 
value will be the one sent as the invocation identifier. 

Protocol (ASCII or RTU) RTU RTU Each eight-bit Word is sent as two four-bit hexadecimals, 
allowing for greater density and faster throughput. NOTE: In 
most cases, we recommend using this protocol. 

ASCII Each eight-bit Word is sent as two four-bit ASCII characters, 
allowing for a time interval between characters without causing 
errors. 

Swap:Block 
Size:MaxGap 

0:64:10 0 or 1 or 2 

(Swap) 

Option to change the order of data as they are processed: 
 0 – Word Swap OFF; registers are not swapped. 
 1 – Word Swap ON; swap Words for FP, FPS, FP3, FP3S, 

DW, DWS, DW3, DW3S, BCDDW, BCDDWS, BCDDW3, 
BCDDW3S, DF, DF3, DFS and DF3S register types. 

 2 – Legacy Swap; swap Words for FPS, FP3S, DWS, 
DW3S, BCDDWS, BCDDW3S, DFS and DF3S register 
types only. The other register types are not swapped See 
note below. 

Note: 
- The parameter 1 will affect DF, DF3, DFS and DF3S in a 
different way, converting their bytes order from Big-Endian to 
Little-Endian. (example in page 15) 
- The parameter 2 just will affect DFS and DF3S in a different 
way, converting their bytes order from Big-Endian to Little-
Endian. (example in page 15) 

0 to 512 

(Block Size) 

The nominal size (in Words) of each block of data to be 
transmitted, as determined by the processing capacity of the 
device. Usually, Modicon devices support up to 125 words. 

0 to 512 

(Max Gap) 

This parameter is used with Main Driver Sheet and configures 
the Gap size between 2 addresses that could belong to the 
same group or block according to the Block Size but, if there 
are no other I/O addresses between them, and their addresses 
difference is bigger than the GAP, they will end up in separated 
virtual read groups. This parameter can never be higher than 
the Block Size. 

 
 

 Attention: 

When you configure Legacy Swap in the Swap field of Communication Settings, the registers FPS, 

FP3S, DWS, DW3S, BCDDW and BCDDW3S do Word Swap (not Byte Swap). This is in compliance 

with the older versions of MODBU driver (v2.10 or older). The others registers are not swapped. 

 
 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 9/28 

 Note: 

The device must be configured with exactly the same parameters that you configured in the MOTCP 
Communication Parameters dialog. 

 

4. In the Communication Settings dialog, click the Advanced button to open the Advanced Settings dialog: 

 

Advanced Settings Dialog 

You do not need to change any other advanced settings at this time. You can consult the Studio 
Technical Reference Manual later for more information about configuring these settings. 

5. Click OK to close the Advanced Settings dialog, and then click OK to close the Communication Settings dialog. 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 10/28 

Configuring the Driver Worksheets 

Each selected driver includes a Main Driver Sheet and one or more Standard Driver Worksheets. The Main Driver 
Sheet is used to define tag/register associations and driver parameters that are in effect at all times, regardless of 
application behavior. In contrast, Standard Driver Worksheets can be inserted to define additional tag/register 
associations that are triggered by specific application behaviors. 

The configuration of these worksheets is described in detail in the “Communication” chapter of the Studio 
Technical Reference Manual, and the same general procedures are used for all drivers. Please review those 
procedures before continuing. 

For the purposes of this document, only MOTCP driver-specific parameters and procedures are discussed here. 

MAIN DRIVER SHEET 

When you select the MOTCP driver and add it to your application, Studio automatically inserts the Main Driver 
Sheet in the MOTCP driver subfolder. To configure the Main Driver Sheet: 

1. Select the Comm tab in the Workspace pane. 

2. Open the Drivers folder, and then open the MOTCP subfolder: 

 

Main Driver Sheet in the MOTCP Subfolder 

3. Double-click on the MAIN DRIVER SHEET icon to open the following worksheet: 

  

Opening the Main Driver Sheet 

Most of the fields on this sheet are standard for all drivers; see the “Communication” chapter of the 
Technical Reference Manual for more information on configuring these fields. However, the Station and I/O 
Address fields use syntax that is specific to the MOTCP driver. 

4. For each table row (i.e., each tag/register association), configure the Station and I/O Address fields as 
follows: 

Header 

Body 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 11/28 

 Station field: Specify the IP Address of the device, using the following syntax: 

<IP Address>:<Port Number>:<PLC ID> 

Example — 192.168.125.31:502:1 

Where: 

– <IP Address> is the device’s IP address on the TCP/IP network; 

– <Port Number> is the port number for the Modbus TCP protocol (usually 502); and 

– <PLC ID> is the PLC identification number (from 1 to 254). 

You can also specify an indirect tag (e.g. {station}), but the tag that is referenced must follow the 

same syntax and contain a valid value. 

Attention:  

You must use a non-zero value in the Station field, and you cannot leave the field blank. 

 

 I/O Address: Specify the address of the associated device register. 

For all register types other than ST and STS use the following syntax: 

<Type>:[Signed/Unsigned]<Address>.[Bit] 

Examples — 4X:20 , 4X:S15 , 4X:10.7 

For ST, STS, STU and STUS registers only, use the following syntax: 

<Type>:<Address>:<Length> or 

<Type>:<Address>.[StartByte]:<Length> 

 Example — ST:10:5 

Where: 

– <Type> Register type. Valid values are (0X, 1X, 3X, 4X, FP, FPSW, FP3, FP3SW, DF, DF3, DFS, DF3S, 
DF3S, DW, FPS, DWS, DW3, DW3S, DWSW, BCD, BCD3, BCDDW, BCDDWS, BCDDW3, BCDDW3S, ID, ST, STS, 
HRW, STU, STUS). 

–  [Signed/Unsigned] (optional): Parameter used for integer values only. Valid values are S 

(Signed) and U (Unsigned). If you do not specify this parameter, then Studio uses the default 

parameter in the Communication Settings dialog. 

– <Address> : Address of the device register. 

– [Bit] (optional): Use this parameter only for 3X (Input Register) and 4X (Holding Register) 

types, to indicate which bit on the register will be read from and/or written to.  

– [StartByte] (optional): Use this parameter only for ST and STS, to indicate the initial byte.  

– <Length> : Length of the string (in bytes) to be read or written. 

Attention: 

 This driver supports bit reading only; it cannot execute bit writing. Also, when an unsigned 

DWord register type is specified, it can only be associated with a Real database tag in Studio. 

 The Floating-point values are 4 bytes using 6 significant digits. 

 Modbus operands must start in an address that is greater than zero. 

 Main Driver Sheet does not support the Read/Write of File Records. 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 12/28 

STANDARD DRIVER WORKSHEET 

When you select the MOTCP driver and add it to your application, it has only a Main Driver Sheet by default (see 
previous section). However, you may insert additional Standard Driver Worksheets to define tag/register 
associations that are triggered by specific application behaviors. Doing this will optimize communication and 
improve system performance by ensuring that tags/registers are scanned only when necessary – that is, only 
when the application is performing an action that requires reading or writing to those specific tags/registers. 

 

 Note: 

We recommend configuring device registers in sequential blocks in order to maximize performance. 

 

To insert a new Standard Driver Worksheet: 

1. In the Comm tab, open the Drivers folder and locate the MOTCP subfolder. 

2. Right-click on the MOTCP subfolder, and then select Insert from the pop-up menu: 

 

Inserting a New Worksheet 

A new MOTCP driver worksheet is inserted into the MOTCP subfolder, and the worksheet is opened for 
configuration: 

 

MOTCP Driver Worksheet 

 

 Note:  

Worksheets are numbered in order of creation, so the first worksheet is MOTCP001.drv. 

Header 

Body 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 13/28 

 

Most of the fields on this worksheet are standard for all drivers; see the “Communication” chapter of the 
Technical Reference Manual for more information on configuring these fields. However, the Station, 
Header, and Address fields use syntax that is specific to the MOTCP driver. 

3. Configure the Station and Header fields as follows: 

 Station field: Specify the IP Address of the device and the slot number, using the following syntax: 

<IP Address>:<Port Number>:<PLC ID> 

Example — 192.168.125.31:502:1 

Where: 

– <IP Address> is the device’s IP address on the TCP/IP network; 

– <Port Number> is the port number for the Modbus TCP protocol (usually 502); and 

– <PLC ID> is the PLC identification number (from 1 to 254). 

You can also specify an indirect tag (e.g. {station}), but the tag that is referenced must follow the 

same syntax and contain a valid value. 

 

Attention:  

• You cannot leave the Station field blank. 

• Modbus operands are base 1, which means that there are no 0 addresses. If you configure the  

header with an Address Reference as 0, the address offset must be greater than 0.  

 

 Header field: Specify the address of the first register of a block of registers on the target device. The 
addresses declared in the Body of the worksheet are simply offsets of this Header address. When 
Read/Write operations are executed for the entire worksheet (see Read Trigger and Write Trigger 
above), it scans the entire block of registers from the first address to the last. 

The Header field uses the following syntax: 

<Type>:<AddressReference> 

Example — 4X:10 

Where: 

– <Type> Register type. Valid values are (0X, 1X, 3X, 4X, FP, FPSW, FP3, FP3SW, DF, DF3, DFS, DF3S, 
FP3S, DW, FPS, DWS, DW3, DW3S, DWSW, BCD, BCD3, BCDDW, BCDDWS, BCDDW3, BCDDW3S, ID, ST, STS, 
HRW, STU, STUS). 

– <AddressReference> is the initial address (reference) of the configured type.  

 

The Header field uses the following syntax for using the command Read File Record (0x20) on the 
driver sheets: 

FILE:<ModbusFileNumber>:<InitialRecord>:<NumberOfRecords>:<PCDumpFileNa

me> 

Where: 

- <ModbusFileNumber> is the Modbus File Number which is to be read (1 to 65535) 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 14/28 

- <InitialRecord> is the initial record within the Modbus File to be read (0 to 
10000) 

- <NumberOfRecords> number of records to be read within the Modbus File (1 to 10000). Each 

record is a word. The numeric value of <InitialRecord> + <NumberOfRecords> cannot exceed 
10000. 

- <PCDumpFileName> Name of the CSV file created on the local PC, where the Modbus file 

records will be saved into. The file will be saved into the \Web sub-folder of the application unless 
an absolute path is specified. This file will have all the records returned by the read request 
written as one record per row. The bytes in a record (each row) are separated by comma(,). 

 
Example — FILE:10:20:4:DumpFileName.csv 

 

After you edit the Header field, Studio checks the syntax to determine if it is valid. If the syntax is 
invalid, then Studio automatically inserts a default value of 0X:0. 

You can also specify a string tag (e.g. {header}), but the tag value that is referenced must follow the 

same syntax and contain a valid value. 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 15/28 

The following table lists all of the data types and address ranges that are valid for the MOTCP driver: 

 

Type Syntax Valid Range Comments 

0X 0X:0 varies by device Coil Status: Read and write events using Modbus instructions 01, 05 and 15. 

1X 1X:0 varies by device Input Status: Read events using Modbus instruction 02. 

3X 3X:0 varies by device Input Register: Read events using Modbus instruction 04. 

4X 4X:0 varies by device Holding Register: Read and write events using Modbus instructions 03, 06 
and 16. 

FP FP:0 varies by device Floating-point Value (Holding Register): Read and write float-point values 
using two consecutive Holding Registers. 

FPSW FPSW:0 varies by device Floating-point Value (Holding Register): Read and write float-point values 
using two consecutive Holding Registers with Word Swap. 

FP3 FP3:0 varies by device Floating-point Value (Input Register): Read float-point values using two 
consecutive Input Registers. 

FP3SW FP3SW:0 varies by device Floating-point Value (Input Register): Read float-point values using two 
consecutive Holding Registers with Word Swap. 

DF DF:0 varies by device Double Precision Floating-point Value (Holding Register): Read and Write 
double precision float-point values using four consecutive Holding Registers. 

DF3 DF3:0 Varies by device Double Precision Floating-point Value (Input Register): Read double 
precision float-point values using four consecutive Input Registers. 

FP3S FP3S:0 varies by device Floating-point Value (Input Register): Read float-point values using two 
consecutive Input Registers with Byte Swap. (*) 

DW DW:0 varies by device 32-bit Integer Value (Holding Register): Read and write 32-bit integer values 
using two consecutive Holding Registers. 

FPS FPS:0 varies by device Floating-point Value (Holding Register): Read and write float-point values 
using two consecutive Holding Registers with Byte Swap. (*) 

DWS DWS:0 varies by device 32-bit Integer Value (Holding Register): Read and write 32-bit integer values 
using two consecutive Holding Registers with Byte Swap. (*) 

DW3 DW3:0 varies by device 32-bit Integer Value (Input Register): Read 32-bit integer values using two 
consecutive Input Registers. 

DW3S DW3S:0 varies by device 32-bit Integer Value (Input Register): Read 32-bit integer values using two 
consecutive Input Registers with Byte Swap. (*) 

DWSW DWSW:0 Varies by device 32-bit Integer Value (Holding Register): Read and write 32-bit integer values 
using two consecutive Holding Registers with Word Swap. (*) 

BCD3 BCD3:0 varies by device BCD Value (Input Register): Read events using Modbus instruction 04. 

BCD BCD:0 varies by device BCD Value (Holding Register): Read and write events using Modbus 
instructions 03, 06 and 16. 

BCDDW BCDDW:0 varies by device BCD 32-bit Integer Value (Holding Register): Read and write 32-bit integer 
values using two consecutive Holding Registers. 

BCDDWS BCDDWS:0 varies by device BCD 32-bit Integer Value (Holding Register): Read and write 32-bit integer 
values using two consecutive Holding Registers with Byte Swap. (*) 

BCDDW3 BCDDW3:0 varies by device BCD 32-bit Integer Value (Input Register): Read 32-bit integer values using 
two consecutive Input Registers. 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 16/28 

Type Syntax Valid Range Comments 

BCDDW3S BCDDW3S:0 varies by device BCD 32-bit Integer Value (Input Register): Read 32-bit integer values using 
two consecutive Input Registers with Byte Swap. (*) 

ID ID:0 varies by device Report Slave ID using Modbus instruction 17. 

ST ST:0 varies by device String value (Holding Register): Reads and writes String values using 
consecutive Holding Registers. 

STS STS:0 varies by device String value (Holding Register): Reads and writes String values using 
consecutive Holding Registers with Byte Swap. 

HRW HRW:0 varies by device Holding Register: Allow simultaneous read and write using Modbus 
instruction 23. 

DFS DFS:0 Varies according to 
equipment 

Double Precision Floating-point value (Holding Register): Read and Write 
double precision floating-point values using four consecutive Holding 
Registers with Byte Swap. 

DF3S DF3S:0 Varies according to 
equipment 

Double Precision Floating-point value (Input Register): Read double precision 
float-point values using four consecutive Input Registers with Byte Swap. 

STU STU:0 Varies by device UNICODE String value (Holding Register): Reads and writes Unicode Strings 
using consecutive Holding Registers 

STUS STUS:0 Varies by device UNICODE String value (Holding Register): Reads and writes Unicode Strings 
using consecutive Holding Registers with Byte Swap. 

FILE FILE:1:1:

10:DumpFi

le.csv 

Varies by device Read File Records command. 

 

 Note: 

When you configure DFS or DF3S, the bytes of four registers are swapped. 

Example: 

             7495726.566209 will be read (or written) from (or to) registers as follows. (represented as 
hex numbers) 

DF or DF3        - ACC4 3CA4 0B98 5C41  (Word Swap Off) (Big-Endian) 

                         - 415C  980B A43C C4AC (Word Swap On) (Little-Endian 

 DFS or DF3S  - C4AC A43C 980B 415C  (Word Swap Off) 

                         - 5C41  0B98 3CA4 ACC4 (Word Swap On) 

 

4. For each table row (i.e., each tag/register association), configure the Address field using the following 
syntax… 

For all register types other than ST and STS use the following syntax: 

[Signed/Unsigned]<AddressOffset>.[Bit] 

Examples — 10, S20, U40, 10.5 

For ST, STS, STU and STUS registers only, use the following syntax: 

<AddressOffset>:<Length> or 

<AddressOffset>.[StartByte]:<Length> 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 17/28 

 Example — 10:5 

Where: 

– [Signed/Unsigned] (optional): Parameter used for integer values only. Valid values are S (Signed) 

and U (Unsigned). If you do not specify this parameter, then Studio uses the default parameter in the 

Communication Settings dialog. 

– <AddressOffset>: Parameter that is added to the <AddressReference> parameter of the 

Header, to compose the specific address of the register in the block. The sum of the two parameters 
cannot equal zero (0); Modbus operands must start in an address that is greater than zero. 

– [Bit] (optional): Use this parameter only for 3X (Input Register) and 4X (Holding Register) types, to 

indicate which bit on the register will be read from and/or written to.  

– [StartByte] (optional): Use this parameter only for ST and STS, to indicate the initial byte.  

– <Length>: Length of the string (in bytes) to be read or written. 

 

Attention:  

 Use Bit Write commands in the Holding Register for the Write on Tag Change field only.  

 The Floating-point value is stored in two consecutive Holding Registers, where the address value 

corresponds to the first Holding Register position. You must ensure that you do not configure a non-

existent address, or a conflict will occur. 

 The Floating-point values are 4 bytes using 6 significant digits. 

 The Double Floating-point values (DF, DF3) are 8 bytes using 16 significant digits. 

 Lastly, keep in mind that when using the Write Trigger feature, the driver writes to the entire block of 

registers from the first address through the last. If there is a register that has not been declared in the 

worksheet, and its address is within the block, then the register will receive a zero (0) value. Check the 

worksheet for holes in the address range. 

 When an unsigned DWord register type is specified, it can only be associated with a Real database tag 

in Studio. 

 Writing bit values to the 4x registers is allowed, however there is no such function the Modbus 

protocol.  In this case, the driver performs the read-mask-write operation, before writing, the driver first 

reads the entire word, modify the bit that will be written and then writes back to PLC. Even with this 

being a very fast operation, if in this period between reading and writing the PLC value changes, the 

driver will overwrite it with the value that is being processed. 

 For the Read File Record command, the address fields are not used. However, it is required to create 

one integer tag on the driver sheet. This will display the record count in the database spy. 

 

For examples of how device registers are specified using Header and Address, see the following table: 

 

Device Register Header  Address  

00001 0x:1 0 

00010 0x:0 10 

01020 0x:1000 20 

10001 1x:1 0 

10010 1x:0 10 

11020 1x:1000 20 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 18/28 

Device Register Header  Address  

30001 3x:1 0 

30010 3x:0 10 

31020 3x:1000 20 

30001 and 30001 FP3:0 1 

31001 and 31000 FP3S:0 1000 

40001 4x:1 0 

40010 4x:0 10 

41020 4x:1000 20 

40010 (bit 0) 4x:0 10.0 

41010 (bit 7) 4x:1000 10.7 

40001 and 40002 FP:1 0 

40013 and 40014 FP:0 13 

41021 and 41022 FP:1000 21 

40001 to 40004 DF:0 1 

30001 to 30004  DF3:1 0 

41022 and 41021 FPS:1000 21 

40001 and 40002 DW:1 0 

40013 and 40014 DW:0 13 

41021 and 41022 DW:1000 21 

40002 and 40001 DWS:1 0 

31021 and 31022 DW3:1000 21 

30011 and 30010 DW3S:1 10 

40001 and 40002 DWSW:1 0 

40001 and 40002 BCD:1 0 

31021 and 31022 BCD3:1000 21 

40001 and 40002 BCDDW:1 0 

41011 and 41010 BCDDWS:1000 10 

30001 and 30002 BCDDW3:1 0 

30011 and 30010 BCDDW3S:0 10 

40001  ST:1:2 0 

41010 and 41011 ST:1000:4 10 

40001 (String 2 chars 
long) 

STS:1 0:2 

String from 41011 up 
to 41020, with byte 
swap 

STS:1000 10:20 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 19/28 

Device Register Header  Address  

40001 to 40004 DFS:0 1 

30001 to 30004  DF3S:1 0 

40001 STU:0 1:10 

40010 STUS:0 10:4 

 

For more information about the device registers and addressing, please consult the manufacturer’s 
documentation. 

 

Attention:  

You must not configure a range of addresses greater than the maximum block size (data buffer length) 

supported by the target device. The default block size is 64 bytes, but this can be changed in the 

communication settings for the driver. 

Configuring driver sheets for command 23 (simultaneous read/write of holding 
registers) 

 
 The MOTCP driver supports simultaneous reading and writing of holding registers, which can be useful on 
some specific applications. This command is only supported in the Standard Driver Sheets and it should be 
configured following the steps below: 
 

1) Configure a Standard Driver Sheet with a holding register header type (4X, FP, FPS, DW, DWS, BCDDW 
and BCDDWS) header. This will be the write worksheet and it requires an additional range of reading 
registers at the end. 

2) Associate all the addresses that you want to write with their respective tags as you would do when using 
regular command for Holding Registers. 

3) For the addresses that you want to read you need to specify the range in Header field using the following 
format:<Header Type>:<Offset>:<first read address>-<last read address>.  

4) Configure a tag in the write trigger field of the worksheet created on step 1. By issuing changing the tag 
on this field command will be executed. The following picture shows an example of configuration: 

  



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 20/28 

 
 
5) Create another worksheet that will receive the read values, this worksheet should have the header 

HRW:<first read address>, where first read address is the value specified in the Header field for the 
worksheet created on step 1. 

6) Associate all the addresses that you are reading with their respective tags, the picture below shows how 
the worksheet would be configured considering the previous command worksheet example: 
 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 21/28 







The addresses in this worksheet can have a data type prefix. The following data types are supported: 

Prefix Data Type 
B Signed 8 bits variable (byte) 
UB Unsigned 8 bits variable (byte) 
W Signed 16 bits variable (word) 
SW Signed 16 bits variable (word) with byte swap 
UW Unsigned 16 bits variable (word) 
USW Unsigned 16 bits variable (word) with byte swap 
DW Signed 32 bits variable (double word) 
SDW Signed 32 bits variable (double word) with byte swap 
UDW Unsigned 32 bits variable (double word)  
USDW Unsigned 32 bits variable (double word) with byte swap 
F  32 bits float points (float) 
SF 32 bits float points with byte swap (float) 
DF 64 bits float points (double) 
SDF 64 bits float points with byte swap (double) 
BCD 16 bits BCD value 
BCDDW 32 bits BCD value 
S String (address should be S<register>.<Bytes>) 







MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 22/28 

Executing the Driver  

By default, Studio will automatically execute your selected communication driver(s) during application runtime. 

However, you may verify your application’s runtime execution settings by checking the Project Status dialog. 

To verify that the the communication driver(s) will execute correctly: 

1. From the main menu bar, select Project → Status. The Project Status dialog displays: 

 

Project Status Dialog 

2. Verify that the Driver Runtime task is set to Automatic. 

 If the setting is correct, then proceed to step 3 below. 

 If the Driver Runtime task is set to Manual, then select the task and click the Startup button to toggle the 
task’s Startup mode to Automatic.  

3. Click OK to close the Project Status dialog.  

4. Start the application to run the driver. 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 23/28 

Troubleshooting 

If the MOTCP driver fails to communicate with the target device, then the database tag(s) that you configured for 
the Read Status or Write Status fields of the Main Driver Sheet will receive an error code. Use this error code and the 
following table to identify what kind of failure occurred. 

 

Error Code Description Possible Causes Procedure to Solve 

0 OK Communication without problems None required 

1 ILLEGAL 
FUNCTION 
CODE 

Function code used by driver is not supported by device. Check with device manufacturer to support the function 
code. 

2 ILLEGAL DATA 
ADDRESS 

There is an invalid address in the Driver worksheet. The 
data address received in this query was not an allowable 
address for the slave. 

Type a valid address. 

3 ILLEGAL DATA 
VALUE 

Specified address contains an invalid value that is not 
allowed for the slave 

Check the address to be sure it exists on the device. 

4 SLAVE DEVICE 
FAILURE 

An unrecoverable error occurred while the slave was 
attempting to perform the requested action. 

Check the equipment state. Try rebooting it. 

5 ACKNOWLEDGE Error in the communication Ack action. Specialized use in 
conjunction with programming commands. 

Check the communication parameters for the device 
and the Studio software. 

6 SLAVE DEVICE 
BUSY 

Invalid command if the equipment is in use. Specialized 
use in conjunction with programming commands. 

Studio commands never generate this error. 

7 Negative Ack Error in the communication Ack action. Specialized use in 
conjunction with programming commands. 

Check the communication parameters for the device 
and the Studio software. 

8 Memory parity 
error 

Incorrect communication parameter configuration. 
Specialized use in conjunction with function codes 20 and 
21, to indicate that the extended file area failed to pass a 
consistency check. 

Check configuration of the driver’s communication 
parameters. 

10 Invalid Header 
field 

Invalid tag value in the Header field Specify a valid tag value in the Header field. 

11 Invalid Address 
field 

Invalid Address  Check the initial address in the Driver worksheet. 

 Check the Holding register in the Driver worksheet 

with bit configuration. This parameter cannot 

execute write triggers—it executes “Write on Tag 

Change” only. 

 Retype the address in the Driver worksheet. 

12 Invalid Block size Offset is greater than the maximum allowed. The 
maximum offset is usually 64. 

Specify a valid offset or create a new Driver worksheet. 

13 Checksum error Protocol error  Communication failures that can be cause by 

electric interferences which invalidated the data 

sent by the PLC 

 Generate a Log File and contact your Studio 

technical support representative 

14 Generic TCP/IP 
error 

Wrong TCP/IP network configuration Use “Telnet” or “Ping” tools to check your network 
configuration, and try to find the PLC with the computer 
on which you are running Studio. 

15 Invalid IP number Wrong IP Address You must specify the IP Address using the appropriate 
syntax—four fields, a value up to 255 in each field, 
separated by periods. 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 24/28 

Error Code Description Possible Causes Procedure to Solve 

16 Connect error Wrong IP Address or Port Number Use “Telnet” or “Ping” tools to check your network 
configuration and try to find the PLC with the computer 
on which you are running Studio. 

18 Invalid BCD Value Tried to Read an invalid BCD value.  Check the value on PLC to be sure it is a valid value. 

19 Invalid BCD Value Tried to Write a negative BCD value. Only positive BCD values are valid. 

20 Invalid Word Swap The Swap for Word is not possible Don’t use Word Swap for Strings. 

100 Invalid Operation Writing attempt in the Input Registers, Input Status, or 
Report Slave ID 

You cannot write in these addresses. 

1005 Timeout Error The PLC failed to issue a response to the driver request 
within the timeout specified in the driver communication 
settings. 

Check if you can "ping" the PLC  
If you can ping, check if you can "telnet" the Modbus 
PLC TCP/IP port 
Check the "Slave ID number" to see if it matches with 
the value configured in the driver "Station" field 
Check cable wiring 
Check the PLC state – in some devices, it must be in 
RUN mode. 

-15 Timeout Start 
Message 

The PLC failed to issue a response to the driver request 
within the timeout specified in the driver communication 
settings. 

Check if you can "ping" the PLC  
If you can ping, check if you can "telnet" the Modbus 
PLC TCP/IP port 
Check the "Slave ID number" to see if it matches with 
the value configured in the driver "Station" field 
Check cable wiring 
Check the PLC state – in some devices, it must be in 
RUN mode. 

-17 Timeout between 
rx char 

An incomplete response arrived from the PLC Communication failures that can be cause by electric 
interferences which invalidated the data sent by the 
PLC 

24 Error in retrieving 
all File records 
requested using 
Read File Record 
command. 

This is an error with the local dumpfile either in creating 
the file or writing to the file. 

Check the file path given and try again 

25 File records are 
not supported in 
MDS and writing 
on Driver sheets 

Attempted to perform the Read File Record command 

on MDS or a Write File Record on MDS / Driver Sheet 
 

Read File Record is supported only on the Driver 

sheets. Write File Record is not supported at all 

even on the driver sheets. 
 

 
  

 Tip:  

You can monitor communication status by establishing an event log in Studio’s Output window (LogWin 

module). To establish a log for Field Read Commands, Field Write Commands and Protocol Analyzer, right-click in 

the Output window and select the desired options from the pop-up menu. 

You can also use the Remote LogWin module to establish an event log on a remote unit that runs on a 

remote runtime, including Windows CE and Embedded 

 

If you are unable to establish communication between Studio and the target device, then try instead to establish 
communication using the device’s own programming software (e.g., ModSoft). Quite often, communication is 
interrupted by a hardware or cable problem or by a device configuration error. If you can successfully 
communicate using the programming software, then recheck the driver’s communication settings in Studio. 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 25/28 

If you must contact us for technical support, please have the information generated by the command Support 
Information in Studio's Help menu ready. 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 26/28 

Revision History  

Doc. 

Revision 

Driver 

Version 
Author Date Description of changes 

A 1.01 Sergio A. Poon Nov/5/1999 Driver available for Windows CE 

B 1.02 Sergio A. Poon Nov/9/1999 Included Protocol Type (default) = PROTOCOL RTU 

C 1.03 Sergio A. Poon Apr/28/2000 Included Floating-point function 

D 1.04 Roberto V. Junior May/4/2000 Fixed bug with Floating-Point function 

E 1.05 Roberto V. Junior Jan/10/2001 Included MAIN DRIVER SHEET feature 

F 1.06 Roberto V. Junior Apr/3/2001 Enhanced performance 

G 1.07 Lourenço Teodoro Jun/20/2001 Enabled TCP/IP time out configuration 

H 1.08 Lourenço Teodoro Jul/23/2001 Fixed bug with write group commands 

I 1.09 Lourenço Teodoro Aug/6/2001 Implemented Signed/Unsigned option by address 

J 1.09 Fabíola Fantinato Dec/5/2001 Revision to conform to documentation standards 

K 1.10 Luis F. Rodas Dec/6/2001 
 Fixed bug of wrong received values 

 Fixed bug of Main Driver Sheet 

L 1.11 Roberto V. Junior Jan/8/2002 
 Fixed bug of address equal zero in the Main Driver Sheet 

 Included bit read/write command to Holding Register 

M 2.00 Eric Vigiani Jun/27/2002 
Modified driver algorithm to avoid Time-out errors due to the station number and 

message size 

N 2.01 Eric Vigiani Jul/22/2002 Included DW data type 

O 2.02 Eric Vigiani Aug/05/2002 Fixed problem when writing DW blocks 

P 2.03 Eric Vigiani Aug/26/2002 Removed ASCII protocol type from the Communication Parameters dialog window 

Q 2.04 Eric Vigiani Sep/30/2002 Modified DW writing algorithm to execute command 10 instead of command 06 

R 2.05 Fabio H.Y.Komura Jan/07/2003 Included FP3 and FP3S Headers (Read Float Point to Input Register) 

S 2.06 Eric Vigiani Aug/22/2003 Included FPS data type 

T 2.07 Eric Vigiani Dec/18/2003 Included DWS data type 

U 2.08 Lourenço Teodoro Mar/16/2004 
Implemented disconnection after time out to avoid problems with devices that do not 
accept multiple messages (the driver was not sending multiple messages; however, 
the transport layer was doing it while the socket was open) 

V 2.09 Eric Vigiani May/25/2004 Implemented writing group commands when writing FP values 

W 2.10 Fábio H.Y. Komura Jun/16/2004 

 Added DW3 and DW3S data types. 

 Implemented SwapWord for FP, FPS, FP3, FP3S, DW, DWS, DW3 and DW3S. 

 Changed FP, FPS, FP3, FP3S, DW, DWS, DW3 and DW3S with and without 

SwapWord to conformance to standards (FPS, FP3S, DWS and DW3S are data 

types with Byte Swap) 

X 2.11 Eric Vigiani Jul/02/2004 Fixed problem with bit addressing on the MAIN DRIVER SHEET. 

Y 2.12 Fabio H. Y. Komura Sep/03/2004 
Added support to BCD, BCD3, BCDDW, BCDDWS, BCDDW3 and BCDDW3S data 

type. 

Z 2.13 Bruno A. Crepaldi Nov/12/2004 Fixed problem with 1x (Input Status) (Read). 

AA 2.14 Fabio H. Y. Komura Dec/09/2004 
Changed the Swap parameter to comply with old versions of the MODBU driver 

(version 2.10 or older). 

AB 2.15 Leandro Coeli Jan/18/2005 Added support to String type 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 27/28 

AC 2.16 Leandro Coeli Feb/18/2005 Fixed communication problem 

AD 2.17 Leandro Coeli Apr/26/2005 Implemented configurable Block Size 

AE 2.18 Leandro Coeli Jan/20/2006 Fixed problem on ST Header 

AF 2.18 Michael D. Hayden Jun/14/2006 Edited for language and usability. 

AG 2.19 Graziane C. Forti Aug/31/2006 

Implemented the Unsigned in the all headers. 

Implemented Block size 1 for FP or DW type in the Main Driver Sheet. 

Added support for STS (String with Byte Swap) register type. 

AH 2.20 Arthur S. Allievi Nov/10/2006 

Signed or Unsigned choice restricted to some drivers 

Fixed syntax problems with .Len and .Bit 

Fixed Block size problems 

Fixed Write Group issue 

Changed the Configuration Parameters Dialog. Image updated. 

AI 2.21 Graziane C. Forti Nov/23/2006 

Fixed problem with writing of bit 
Modified to compile for WinCE 
Fixed the String length configuration 

Fixed the String configuration in the SDS 

Fixed the String writing 

AJ 2.22 Plínio M. Santana Jan/18/2007 Fixed problem about invalid addresses (negatives). 

AK 2.23 Plínio M. Santana Jul/06/2007 
DF and DF3 types created. 
Document updated. 

AL 2.24 Plínio M. Santana Jan/30/2008 
Modification to send the correct error message 
Fixed the virtual read groups 

AM 2.24 Plínio M. Santana Apr/2/2008 Fixed document on errors table (error code #4). 

AN 10.1 Marcelo Carvalho Jan/07/2009 Updated driver version, no changes in the contents. 

AO 10.1 Andre Bastos Apr/10/2009 Modified documentation only 

AP 10.3 Lourenço Teodoro Jul/1/2009 
Created section for command 23 
Added new parameter MaxGap 

AQ 10.4 Andre Korbes Sep/16/2010 Fixed bug when connecting to same IP but different ports 

AR 10.5 Paulo Balbino Jan/17/2013 
Added the capability of configuring the Invocation Identifier byte as a fixed or 
incremental value 

AS 10.6 Paulo Balbino Aug/15/2013 
Fixed bug with size of request 
Modified to allow bit and string writes using the write trigger 
Fixed problem of requesting more WORD with ST and STS datatypes 

AT 10.7 
Charan Manjunath 
P 

Oct/21/2013 Updated Error Codes table with Error Code 1 and removed Error Code 17 

AU 10.8 
Charan Manjunath 
P 

Nov/01/2013 Updated with FPSW in the list of data types and address ranges 

AV 10.9 Priya Yennam Jan/20/2014 Updated with DWSW in the list of data types 

AW 10.10 
Charan Manjunath 
P 

Mar/5/2014 Fixed issue of getting the error code on write operations. 

AX 10.11 Felipe Andrade Oct/17/2014 
Updated with FP3SW in the list of data types 
Added support for DFS and DF3S. 

AY 10.12 Paulo Balbino Dec/2/2014 
Fixed issue with “invalid address”  error when accessing individual bits from 3x and 
4x addresses during the runtime 

AZ 10.13 Priya Yennam Jan/30/2015 Added support to UNICODE strings 

BA 10.14 Anushree Phanse May/05/2015 Fixed the issue of not showing an error code while reading or writing in case of error 

BB 10.15 Anushree Phanse May/26/2015 Fixed Problem with Validating function received that incorrectly caused driver to 



MOTCP – Driver Version 10.19 

Doc. Revision BH –January 16, 2019 

 

Page 28/28 

allow invalid ‘OK’ response and generate no error. 
Changed Documentation to show that driver allows PLC ID from 1 - 254 

BC 10.16 Anushree Phanse Feb/24/2016 Added validation for writing group functions 

BD 10.17 Priya Yennam Sept/09/2016 Added  Read File Records Command 

BE 10.18 Anushree Phanse Jan/09/2017 Fixed invalid block size issue for strings. 

BF 10.18 Anushree Phanse Jun/08/2017 
Changed documentation to have accurate information about using indirect tags on 
MDS. No change in the driver. 

BG 10.18 Eduardo Castro Aug/24/2017 
The list of data type prefixes was changed in this documentation. No changes in the 
driver. 

BH 10.19 Anushree Phanse Jan/16/2019 Fixed the driver to correctly interpret some TCP TX messages. 

 


