
MODSL – Driver Version 3.3

Doc. Revision S – Dec 06, 2018

Page 1/18

MODSL Communication Driver

Driver (Slave) for Serial and Ethernet Communication
with Devices Using the Modbus Protocol

Contents

CONTENTS ..1

INTRODUCTION ..2

GENERAL INFORMATION ..3

DEVICE SPECIFICATIONS ...3
NETWORK SPECIFICATIONS ...3
DRIVER CHARACTERISTICS ...3
CONFORMANCE TESTING ..4

SELECTING THE DRIVER ..5

CONFIGURING THE DRIVER ...6

CONFIGURING THE COMMUNICATION SETTINGS ...6
CONFIGURING THE DRIVER WORKSHEETS ...8

EXECUTING THE DRIVER ... 15

TROUBLESHOOTING .. 16

SAMPLE APPLICATIONS .. 17

REVISION HISTORY... 18

MODSL – Driver Version 3.3

Doc. Revision S – Dec 06, 2018

Page 2/18

Introduction

The MODSL driver (slave) enables Serial or Ethernet communication between the Studio system and remote
devices using the Modbus protocol, according to the specifications discussed in this document.

This document will help you to select, configure and execute the MODSL driver, and it is organized as follows:

 Introduction: This section, which provides an overview of the document.

 General Information: Identifies all of the hardware and software components required to implement
communication between the Studio system and the target device.

 Selecting the Driver: Explains how to select the MODSL driver in the Studio system.

 Configuring the Driver: Explains how to configure the MODSL driver in the Studio system, including how to
associate database tags with device registers.

 Executing the Driver: Explains how to execute the MODSL driver during application runtime.

 Troubleshooting: Lists the most common errors for this driver, their probable causes, and basic procedures
to resolve them.

 Sample Application: Explains how to use a sample application to test the MODSL driver configuration

 Revision History: Provides a log of all changes made to the driver and this documentation.

 Notes:
 This document assumes that you have read the “Development Environment” chapter in Studio’s Technical

Reference Manual.

 This document also assumes that you are familiar with the Microsoft Windows XP/7/8 environment. If you
are not familiar with Windows, then we suggest using the Help feature (available from the Windows
desktop Start menu) as you work through this guide.

MODSL – Driver Version 3.3

Doc. Revision S – Dec 06, 2018

Page 3/18

General Information

This chapter identifies all of the hardware and software components required to implement serial communication
between the MODSL driver (slave) in Studio and remote devices using the Modbus protocol.

The information is organized into the following sections:

 Device Specifications

 Network Specifications

 Driver Characteristics

 Conformance Testing

Device Specifications

To establish serial communication, your target device must meet the following specifications:

 Compatible Equipment: Any device or program that communicates using the Modbus protocol for Serial or

Ethernet communication in Master mode

 Programmer Software: None specifc

Network Specifications

To establish communication, your device network must meet the following specifications:

 Physical Protocol: Serial (RS232/485) or Ethernet (TCP/IP)

 Logic Protocol: Modbus

 Device Runtime Software: None

 Specific PC Board: None

Driver Characteristics

The MODSL driver package consists of the following files, which are automatically installed in the \DRV

subdirectory of Studio:

 MODSL.INI: Internal driver file. You must not modify this file.

 MODSL.MSG: Internal driver file containing error messages for each error code. You must not modify this

file.
 MODSL.PDF: This document, which provides detailed information about the MODSL driver.

 MODSL.DLL: Compiled driver.

MODSL – Driver Version 3.3

Doc. Revision S – Dec 06, 2018

Page 4/18

You can use the MODSL driver on the following operating systems:

 Windows 7/8/10 and Servers

 Windows CE

For a description of the operating systems used to test driver conformance, see “Conformance Testing” below.

The MODSL driver supports the following registers:

Register Type Length Write Read Bit Integer Float DWord BCD BCD DW STRING

0x (Coil Status) 1 Bit

1x (Input Status) 1 Bit

3x (Input Register) 1 Word

4x (Holding Register) 1 Word

Conformance Testing

The following hardware/software was used for conformance testing:

 Configuration (Serial):

– PLC Program: None

– Baud Rate: 9600

– Protocol: RTU/ASCII

– Data Bits: 8/7

– Stop Bits: 1

– COM Port: COM1

 Configuration (Ethernet):

– PLC Program: None

– Baud Rate: Not used

– Protocol: RTU

– Data Bits: Not used

– Stop Bits: Not used

– COM Port: Not used

– Port Number: 502

 Cable: Use specifications described in the “Network Specifications” section above.

Driver

Version

Studio

Version

Operating System

(development)

Operating System

(target)
Equipment

3.3 8.1 + SP2 Windows 8

Windows 8 x64

Windows 7 x64

Windows CE 7.0

ARMV4I

Windows CE 5.0

x86

Windows CE 7.0

x86

Modbus master driver (MODBU) – Serial

Modbus master driver (MOTCP) – TCP/IP

Running on Windows PCs and CE devices.

Modbus Master compatible equipment.

MODSL – Driver Version 3.3

Doc. Revision S – Dec 06, 2018

Page 5/18

Selecting the Driver

When you install Studio, all of the communication drivers are automatically installed in the \DRV subdirectory but

they remain dormant until manually selected for specific applications. To select the MODSL driver for your Studio
application:

1. From the main menu bar, select Insert Driver to open the Communication Drivers dialog.

2. Select the MODSL driver from the Available Drivers list, and then click the Select button.

Communication Drivers Dialog

3. When the MODSL driver is displayed in the Selected Drivers list, click the OK button to close the dialog. The
driver is added to the Drivers folder, in the Comm tab of the Workspace.

 Attention:
For safety reasons, you must take special precautions when installing any physical hardware. Please
consult the manufacturer’s documentation for specific instructions.

MODSL – Driver Version 3.3

Doc. Revision S – Dec 06, 2018

Page 6/18

Configuring the Driver

Once you have selected the MODSL driver in Studio, you must properly configure it to communicate with your
target device. First, you must set the driver’s communication settings to match the parameters set on the device.
Then, you must build driver worksheets to associate database tags in your Studio application with the appropriate
addresses (registers) on the device.

Configuring the Communication Settings

The communication settings are described in detail in the “Communication” chapter of the Studio Technical
Reference Manual, and the same general procedures are used for all drivers. Please review those procedures
before continuing.

For the purposes of this document, only MODSL driver-specific settings and procedures will be discussed here.
To configure the communication settings for the MODSL driver:

1. In the Workspace pane, select the Comm tab and then expand the Drivers folder. The MODSL driver is
listed here as a subfolder.

2. Right-click on the MODSL subfolder and then select the Settings option from the pop-up menu. The
MODSL: Communication Parameters dialog is displayed:

 Select Settings from the Pop-Up Menu MODSL: Communication Parameters Dialog

3. Verify the Serial Port settings, and change them if necessary.

MODSL – Driver Version 3.3

Doc. Revision S – Dec 06, 2018

Page 7/18

4. Configure the additional driver-specific settings, as described in the following table:

Setting Default Value Valid Values Description

COM COM2 COM1, COM8
Serial port of the PC used to communicate with the
device.

Baud Rate 9600 110 to 57600 Communication rate of data.

Data Bits 8 5 to 8
Number of data bits used in the protocol. (ASCII is
typically 7 bits; RTU is typically 8 bits.)

Stop Bits 1 1 or 2 Number of stop bits used in the protocol.

Parity None

Even, Odd,

None, Space

or Mark

Parity of the protocol.

0-Signed Value >
1-Unsigned Value

0
0 Values are unsigned.

1 Values are signed.

Protocol RTU

ASCII

Each eight-bit Word is sent as two four-bit ASCII
characters, allowing for a time interval between
characters without causing errors.
(ASCII protocol does not work with TCP/IP
communication)

RTU

Each eight-bit Word is sent as two four-bit hexadecimals,
allowing for greater density and faster throughput.
NOTE: In most cases, we recommend using this
protocol.

Transaction Identifier 0
0 Do not use Transaction Identifier.

1 Do use Transaction Identifier.

Connection S
S Serial communication.

T Ethernet TCP/IP communication.

5. In the Communication Settings dialog, click the Advanced button to open the Advanced Settings dialog:

Advanced Settings Dialog

MODSL – Driver Version 3.3

Doc. Revision S – Dec 06, 2018

Page 8/18

When the dialog is displayed, configure the Station setting in the following format.

<Slave ID>:<optPortNumber>

Where

<Slave ID> is slave number (1 to 99) of this Modbus Device in the Modbus Network

<optPortNumber> is an optional parameter for the TCP port number that the driver will open and keep

listening to. If this value is omitted, the driver will use the default value which is 502

6. If you are using a Data Communication Equipment (DCE) converter (e.g., 232/485) between your PC and
your target device, then you must also adjust the Control RTS (Request to Send) setting to account for the
converter. Configure the Control RTS setting using the following information:

Setting Default Values Description

Control RTS no no Do not set the RTS (Request to Send) handshake signal. IMPORTANT: If you
are using Windows 95/98 or Windows CE with the correct RS232/RS485
adapter (i.e. without RTS control), then you must select this option.

yes Set the RTS (Request to Send) handshake signal before communication.
IMPORTANT: If you are using Windows NT and the Cutler-Hammer
RS232/RS485 adapter, then you must select this option.

yes+echo Set the RTS (Request to Send) handshake signal before communication, and
echo the signal received from the target device.

 Attention:

If you incorrectly configure the Control RTS setting, then runtime communication will fail and the driver

will generate a –15 error. See “Troubleshooting” for more information.

7. Click OK to close the Advanced Settings dialog, and then click OK to close the Communication Settings dialog.

Configuring the Driver Worksheets

A selected driver includes one or more driver worksheets, which are used to associate database tags in Studio
with operands on the target device. Each worksheet is triggered by specific application behavior, so that the tags /
operands defined on that worksheet are scanned only when necessary – that is, only when the application is
doing something that requires reading from or writing to those specific tags / operands. Doing this optimizes
communication and improves system performance.

The configuration of these worksheets is described in detail in the “Communication” chapter of the Studio
Technical Reference Manual, and the same general procedures are used for all drivers. Please review those
procedures before continuing.

MODSL – Driver Version 3.3

Doc. Revision S – Dec 06, 2018

Page 9/18

To insert a new driver worksheet:

1. In the Comm tab, open the Drivers folder and locate the MODSL subfolder.

2. Right-click on the MODSL subfolder, and then select Insert from the pop-up menu:

Inserting a New Worksheet

A new MODSL driver worksheet is inserted into the MODSL subfolder, and the worksheet is opened for
configuration:

MODSL Driver Worksheet

 Note:

Worksheets are numbered in order of creation, so the first worksheet is MODSL001.drv.

Most of the fields on this worksheet are standard for all drivers; see the “Communication” chapter of the
Technical Reference Manual for more information on configuring these fields. However, the Station,
Header, and Address fields use syntax that is specific to the MODSL driver.

3. Configure the Station and Header fields as follows:

 Station field: Not used.

 Header field: Specify the address of the first register of a block of registers on the target device. The
addresses declared in the Body of the worksheet are simply offsets of this Header address. When

Header

Body

MODSL – Driver Version 3.3

Doc. Revision S – Dec 06, 2018

Page 10/18

Read/Write operations are executed for the entire worksheet (see Read Trigger and Write Trigger
above), it scans the entire block of registers from the first address to the last.

The Header field uses the following syntax:

<Type>:<AddressReference>

Example — 4X:1000

Where:

– <Type> is the register type (0X, 1X, 3X, 4X, FP, DW, ST, STS, STU or STUS).

– <AddressReference> is the initial address (reference) of the configured type, must be multiple

of 1000.

After you edit the Header field, Studio checks the syntax to determine if it is valid. If the syntax is

invalid, then Studio automatically inserts a default value of 0X:0.

You can also specify an indirect tag (e.g. {header}), but the tag that is referenced must follow the

same syntax and contain a valid value.

The following table lists all of the data types and address ranges that are valid for the Header field:

Data
Types

Sample
Syntax

Valid Range of
Initial Addresses

Comments

0X 0X:0 Varies according to equipment
Coil status: Reads and writes events using Modbus instructions
01, 05, and 15.

1X 1X:0 Varies according to equipment Input status: Reads events using Modbus instruction 02.

3X 3X:0 Varies according to equipment Input register: Reads events using Modbus instruction 04.

FP3 FP3:0 Varies according to equipment
Floating-point value (Input Register): Reads floating-point
values using two consecutive Input Registers.

4X 4X:0 Varies according to equipment
Holding register: Reads and writes events using Modbus
instructions 03, 06 and 16.

FP FP:0 Varies according to equipment
Floating-point value (Holding Register): Reads and writes
floating-point values using two consecutive Holding Registers.

DW DW:0 Varies according to equipment
DWord value (Holding Register): Reads and writes DWord
values using two consecutive Holding Registers.

DF DF:0 Varies according to equipment
Long Real or Double Floating Point (Holding Register): Reads
and writes floating point values using 4 consecutive Holding
Registers.

DF3 DF3:0 Varies according to equipment Double Precision Floating-point Value (Input Register): Read
double precision float-point values using four consecutive Input
Registers.

ST ST:0 Varies according to equipment String values (Holding Registers): Reads and writes strings for
the Holding Registers

STS STS:0 Varies according to equipment String values with byte swap (Holding Registers): Reads and
writes strings with bytes swap within registers for Holding
Registers.

STU STU:0 Varies according to equipment Unicode Strings (Holding Registers): Reads and writes
UNICODE strings for holding registers.

MODSL – Driver Version 3.3

Doc. Revision S – Dec 06, 2018

Page 11/18

Data
Types

Sample
Syntax

Valid Range of
Initial Addresses

Comments

STUS STUS:0 Varies according to equipment Unicode Strings with byte swap (Holding Registers): Reads
and writes UNICODE strings with bytes swap within registers
for Holding Registers.

4. For each table row (i.e., each tag/register association), configure the Address field using the following
syntax:

[Signed/Unsigned]<AddressOffset>.[Bit]

Examples — 10, S20, U40, 10.5

Where:

– [Signed/Unsigned] (optional): Parameter used for integer values only. Valid values are S (Signed)

and U (Unsigned). If you do not specify this parameter, then Studio uses the default parameter in the

Communication Settings dialog.

– <AddressOffset>: Parameter that is added to the <AddressReference> parameter of the

Header, to compose the specific address of the register in the block. The sum of the two parameters
cannot equal zero (0); Modbus operands must start in an address that is greater than zero.

– [Bit] (optional): Use this parameter only for 3X (Input Register) and 4X (Holding Register) types, to

indicate which bit on the register will be read from and/or written to.

For ST/STS, STU/STUS (String, Unicode String) registers only, use the following syntax:

<AddressOffset>.<Length>

Where:

<Length> : Length of the string (in bytes) to be read or written

Example — ST:10.5, STU:1.10

Attention:

 The Floating-point (header FP) value is stored in two consecutive Holding Registers, where the address

value corresponds to the first Holding Register position. You must ensure that you do not configure a non-

existent address, or a conflict will occur.

 You can have up to 1000 addresses on the same worksheet

For examples of how device registers are specified using Header and Address, see the following table:

Device Register Header Address

00001 0X:1 0

00010 0X:0 10

01020 0X:1000 20

10001 1X:1 0

10010 1X:0 10

11020 1X:1000 20

MODSL – Driver Version 3.3

Doc. Revision S – Dec 06, 2018

Page 12/18

Device Register Header Address

30001 3X:1 0

30010 3X:0 10

31020 3X:1000 20

40001 4X:1 0

40010 4X:0 10

41020 4X:1000 20

40010 (bit 0) 4X:0 10.0

41010 (bit 7) 4X:1000 10.7

40001 and 40002 FP:0 1

40013 and 40014 FP:0 13

41021 and 41022 DW:1000 21

40010 ST:0 10.6

40120 STS:100 20.8

40230 STU:200 30.10

40040 STUS:0 40.4

Attention:

 The Headers must be configured with the offset 0 or multiples of 1000 (e.g.: 4x:0, FP:1000, DW:2000, etc)

for multiple headers to work in the same application. This validation is performed when the header is filled.

 The Address field (from the body of the worksheet) cannot be configured with a value higher than 999.

 You cannot have more than one worksheet with the same Header. Otherwise, the communication will not
work properly.

 If the remote Modbus Master device requests an address that is not configured in the driver worksheet,
the value 0 (zero) will be sent by the MODSL driver if there is a driver sheet with a matching header.

MODSL – Driver Version 3.3

Doc. Revision S – Dec 06, 2018

Page 13/18

FP and DW are special types; worksheets configured using these types must have all of their Address values be

either odd or even, but not a mixture of both. See the following illustrations for examples of correctly and
incorrectly configured worksheets.

Example 1 – Correctly configured for floating point odd (41001–41002, 41003–41004, …, 41019–41020):

MODSL – Driver Version 3.3

Doc. Revision S – Dec 06, 2018

Page 14/18

Example 2 – Correctly configured for floating point even (401002–401003, 401004–401005, …, 401020–401021):

Example 3 – Incorrectly configured:

MODSL – Driver Version 3.3

Doc. Revision S – Dec 06, 2018

Page 15/18

Executing the Driver

By default, Studio will automatically execute your selected communication driver(s) during application runtime.

However, you may verify your application’s runtime execution settings by checking the Project Status dialog.

To verify that the communication driver(s) will execute correctly:

1. From the main menu bar, select Project → Status. The Project Status dialog displays:

Project Status Dialog

2. Verify that the Driver Runtime task is set to Automatic.

 If the setting is correct, then proceed to step 3 below.

 If the Driver Runtime task is set to Manual, then select the task and click the Startup button to toggle the
task’s Startup mode to Automatic.

3. Click OK to close the Project Status dialog.

4. Start the application to run the driver.

MODSL – Driver Version 3.3

Doc. Revision S – Dec 06, 2018

Page 16/18

Troubleshooting

If the MODSL driver fails to communicate with the target device, then the database tag(s) that you configured for
the Read Status or Write Status fields of the Main Driver Sheet will receive an error code. Use this error code and the
following table to identify what kind of failure occurred.

Error Code Description Possible Causes Procedure to Solve

0 OK Communication without problems None required.

2 Illegal data address Address requested from master is not
configured in Studio communication sheets

Create a worksheet with tags matching the requested
data.

10 Invalid Header field Specified invalid tag value in Header field Specify a valid Header tag value.

11 Invalid Address field Specified invalid Address Specify a valid address.

12 Invalid block size Offset greater than maximum allowed Specify a valid offset or create a new worksheet. Typically,
maximum offset is 64.

13 Checksum error Error in checksum received Verify the communication parameters (see “Configuring
the Communication Settings” for valid configuration).

15 Fail in message received Unsolicited message could not be processed. Verify the communication parameters

16 Invalid command received Invalid command Drivers (slave) do not allow read/write commands made by
the user.

17 Invalid protocol Invalid protocol Choose ASCII or RTU protocol.

18 Invalid communication Invalid communication Choose S for Serial or T for TCP/IP communication.

 Tip:

You can monitor communication status by establishing an event log in Studio’s Output window (LogWin

module). To establish a log for Field Read Commands, Field Write Commands and Serial Communication, right-click

in the Output window and select the desired options from the pop-up menu.

You can also use the LogWin module (Remote LogWin) to establish an event log on a remote unit (e.g. that

runs Windows CE or XP Embedded).

If you must contact us for technical support, please have the following information available:

 Operating System (type and version): To find this information, select Tools → System Information.

 Project Information: To find this information, select Project → Status.

 Driver Version and Communication Log: Displays in the Studio Output window when the driver is running.

 Device Model and Boards: Consult the hardware manufacturer’s documentation for this information.

MODSL – Driver Version 3.3

Doc. Revision S – Dec 06, 2018

Page 17/18

Sample Applications

There is no Sample Application for this driver

MODSL – Driver Version 3.3

Doc. Revision S – Dec 06, 2018

Page 18/18

Revision History

Doc.

Revision

Driver

Version
Author Date Description of Changes

A 1.00 Lourenço Teodoro 10-Jan-2001 First driver version

B 1.01 Lourenço Teodoro 05-Mar-2002 Inserted the Rx log messages

C 2.00 Rafael 08-Aug-2002 Inserted TCP/IP communication

D 2.01 Eric Vigiani 10-Dec-2003 Included the Transaction Identifier in Communication Parameters

E 2.02 Lourenço Teodoro 03-Mar-2004 Fixed problems with buffer overflow and time outs.

F 2.02 Arthur Allievi 09-Oct-2006 Fixed some problems in the documentation.

G 2.02 Michael D. Hayden 08-Dec-2006 Edited for language and usability.

H 2.03 Rafael R. Fernandes 02-Jul-2007 Station field corrected (only documentation).
Added information about ASCII protocol not working with TCP/IP
Fixed problem with function 15. (Group writing for Coils)

I 2.04 André Körbes 23-Sep-2010 Fixed support for bits of header 3X and 4X

J 2.5 André Körbes 24-Jun-2011 Improved address validation and documentation.

K 2.6 André Körbes 10-Jul-2012 - Added support for headers FP3 and DF.
- Improved error handling and messaging

L 2.7 André Körbes 21-Oct-2013 Fixed problem with tags not receiving the correct bit value.

M 2.8 Priya Yennam 20-Jan-2014 Added the capability of configuring the TCP Port Number in the Advanced
Settings.

N 2.9 Charan Manjunath 05-Mar-2014 Fixed issue of writing to 0X and FP headers.

O 2.9 Anoop R 11-Aug-2014 Added support for header DF3.

P 3.0 Priya Yennam 29-Jan-2015 Added String support – ST, STS
Added Unicode Strings support – STU, STUS

Q 3.1 Anushree Phanse 30-Nov-2015 Improved driver scalability on PC and WinCE

R 3.2 Anushree Phanse 18-Aug-2016 Fixed the timeout issue between MODSL and MODBU driver..

S 3.3 Anushree Phanse 06-Dec-2018 Added support for RS485 multidrop

