
MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 1/29

 MODBU Communication Driver

Driver for Serial Communication
with Devices Using the Modbus Protocol

Contents

CONTENTS ..1

INTRODUCTION ..2

GENERAL INFORMATION ..3

DEVICE SPECIFICATIONS ...3
NETWORK SPECIFICATIONS ...3
DRIVER CHARACTERISTICS ...3
CONFORMANCE TESTING ..4

SELECTING THE DRIVER ..5

CONFIGURING THE DEVICE ...6

CONFIGURING THE DRIVER ...6

CONFIGURING THE COMMUNICATION SETTINGS ...6
CONFIGURING THE DRIVER WORKSHEETS ...9

EXECUTING THE DRIVER ... 19

TROUBLESHOOTING .. 20

SAMPLE APPLICATION .. 22

REVISION HISTORY... 23

APPENDIX A – USING MODBU ON RASPBERRY PI 3 ... 26

APPENDIX B – FIND AND CONFIGURE THE SERIAL PORTS THAT CAN BE USED ON LINUX DEVICES ... 28

APPENDIX C – RUNNING MULTIPLE INSTANCES OF MODBU TO COMMUNICATE WITH DEVICES
CONNECTED TO MULTIPLE USB/SERIAL PORTS .. 29

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 2/29

Introduction

The MODBU driver enables serial communication between the Studio system and remote devices using the
Modbus protocol, according to the specifications discussed in this document.

This document will help you to select, configure and execute the MODBU driver, and it is organized as follows:

 Introduction: This section, which provides an overview of the document.

 General Information: Identifies all of the hardware and software components required to implement
communication between the Studio system and the target device.

 Selecting the Driver: Explains how to select the MODBU driver in the Studio system.

 Configuring the Device: Describes how the target device must be configured to receive communication from
the MODBU driver.

 Configuring the Driver: Explains how to configure the MODBU driver in the Studio system, including how to
associate database tags with device registers.

 Executing the Driver: Explains how to execute the MODBU driver during application runtime.

 Troubleshooting: Lists the most common errors for this driver, their probable causes, and basic procedures
to resolve them.

 Sample Application: Explains how to use a sample application to test the MODBU driver configuration

 Revision History: Provides a log of all changes made to the driver and this documentation.

 Notes:
 This document assumes that you have read the “Development Environment” chapter in Studio’s Technical

Reference Manual.

 This document also assumes that you are familiar with the Microsoft Windows XP/Vista/7 environment. If
you are not familiar with Windows, then we suggest using the Help feature (available from the Windows
desktop Start menu) as you work through this guide.

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 3/29

General Information

This chapter identifies all of the hardware and software components required to implement serial communication
between the MODBU driver in Studio and remote devices using the Modbus protocol.

The information is organized into the following sections:

 Device Specifications

 Network Specifications

 Driver Characteristics

 Conformance Testing

Device Specifications

To establish serial communication, your target device must meet the following specifications:

 Manufacturer: Any device using the Modbus protocol for serial communication

 Compatible Equipment: Any device that is compatible with the Modbus protocol

 Programmer Software: It depends on the device

Network Specifications

To establish communication, your device network must meet the following specifications:

 Device Communication Port: Modbus Serial Port

 Physical Protocol: RS232 / RS845

 Logic Protocol: Modbus

 Device Runtime Software: None

 Specific PC Board: None

 Cable Wiring Scheme: it depends on the device

Driver Characteristics

The MODBU driver package consists of the following files, which are automatically installed in the \DRV

subdirectory of Studio:

 MODBU.INI: Internal driver file. You must not modify this file.

 MODBU.MSG: Internal driver file containing error messages for each error code. You must not modify this

file.
 MODBU.PDF: This document, which provides detailed information about the MODBU driver.

 MODBU.DLL: Compiled driver.

 Note:
You must use Adobe Acrobat® Reader™ to view the MODBU.PDF document. You can install Acrobat Reader

from the Studio installation CD, or you can download it from Adobe’s Web site.

You can use the MODBU driver on the following operating systems:

 Windows 7/8

 Windows Embedded and CE 5.x, 6.x, 7.x

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 4/29

For a description of the operating systems used to test driver conformance, see “Conformance Testing” below.

The MODBU driver supports the following registers:

Register Type Length Write Read Bit Integer Float DWord BCD BCD DW STRING

0x (Coil Status) 1 Bit         

1x (Input Status) 1 Bit         

3x (Input Register) 1 Word         

4x (Holding Register) 1 Word         

6x (File Records) n Word         

Conformance Testing

The following hardware/software was used for conformance testing:

 Configuration:

– Modbus Port: 1

– Baud Rate: 9600

– Protocol: RTU

– Data Bits: 8

– Stop Bits: 1

– Parity: Odd

– COM Port: COM6

 Cable: Use specifications described in the “Network Specifications” section above.

Driver

Version

Studio

Version

Operating System

(development)

Operating System

(target)
Equipment

10.12
8.0 +

SP2
Windows 8

Windows 7/8

Windows CE 6.0

Ubuntu 14.04 LTS

Raspbian Jessie

GE-Fanuc 90-30 Model

Modbus Simulator

Automation Direct’s DL 205

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 5/29

Selecting the Driver

When you install Studio, all of the communication drivers are automatically installed in the \DRV subdirectory but

they remain dormant until manually selected for specific applications. To select the MODBU driver for your Studio
application:

1. From the main menu bar, select Insert Driver to open the Communication Drivers dialog.

2. Select the MODBU driver from the Available Drivers list, and then click the Select button.

Communication Drivers Dialog

3. When the MODBU driver is displayed in the Selected Drivers list, click the OK button to close the dialog. The
driver is added to the Drivers folder, in the Comm tab of the Workspace.

 Attention:
For safety reasons, you must take special precautions when installing any physical hardware. Please
consult the manufacturer’s documentation for specific instructions.

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 6/29

Configuring the Device

Because there are several brands of equipment that use the Modbus protocol, it is impossible to define a
standard device configuration. Therefore, we suggest using the following default configuration:

 Protocol: RTU

 Baud Rate: 9600

 Data Bits: 8

 Stop Bits: 1

 Parity: None

Configuring the Driver

Once you have selected the MODBU driver in Studio, you must properly configure it to communicate with your
target device. First, you must set the driver’s communication settings to match the parameters set on the device.
Then, you must build driver worksheets to associate database tags in your Studio application with the appropriate
addresses (registers) on the device.

Configuring the Communication Settings

The communication settings are described in detail in the “Communication” chapter of the Studio Technical
Reference Manual, and the same general procedures are used for all drivers. Please review those procedures
before continuing.

For the purposes of this document, only MODBU driver-specific settings and procedures will be discussed here.
To configure the communication settings for the MODBU driver:

1. In the Workspace pane, select the Comm tab and then expand the Drivers folder. The MODBU driver is
listed here as a subfolder.

2. Right-click on the MODBU subfolder and then select the Settings option from the pop-up menu. The
MODBU: Communication Parameters dialog is displayed:

 Select Settings from the Pop-Up Menu

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 7/29

MODBU: Communication Parameters Dialog

3. Verify the Serial Port settings, and change them if necessary.

4. Configure the additional driver-specific settings, as described in the following table:

Setting Default Value Valid Values Description

Serial Port COM 1

COM1

/dev/ttyS1

/dev/ttyUSB0

COM1 etc for using the driver on
Windows

When using serial ports on linux
devices using IotView

when using USB to Serial convertors
for example on Raspberry Pi devices

See Appendix A for
configuration and
running the driver on
Linux devices

Signed / Unsigned Unsigned

Unsigned(legacy) You should not use these options
because they are just to keep
compatibility with older versions.

Note: This field just
works using 3X, 4X,
DW, DWS, DW3,
DW3S or ID register
types.

Signed(legacy)

Unsigned

No allow negative values.

INTEGER  0 to 65535.
DWORD  0 to 4294967295.

Signed
Allow negative values.

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 8/29

INTEGER  -32768 to 32767.
DWORD  -2147483648 to
2147483647.

Protocol (ASCII or
RTU)

RTU

ASCII

Each eight-bit Word is sent as two four-bit ASCII characters,
allowing for a time interval between characters without
causing errors.

RTU

Each eight-bit Word is sent as two four-bit hexadecimals,
allowing for greater density and faster throughput.
NOTE: In most cases, we recommend using this protocol.

Swap – Write Type
No Swap /

Write Item

No Swap

or

Swap

This option enables or disables the Swap Word order in the
reading and writing commands.

No Swap – disable Swap Word order
Swap – enable Swap Word order

Note:
-This parameter just will work with the FP, FPS, FP3, FP3S,
DW, DWS, DW3, DW3S, DF, DF3, DFS and DF3S register
types.
- This parameter will affect DF, DF3, DFS and DF3S in a
different way, converting their bytes order from Big-Endian to
Little-Endian. (example in page 15)

Write Item

or

Write Group

This option chooses the function 0x06 or 0x10 to write.

Write Item
- Write on tag change (Standard Driver Sheet) and Write
(Main Driver Sheet) use the Modbus function 0x06.
- Write Trigger (Standard Driver Sheet) uses the Modbus
function 0x10.

Write Group
– Any writing in the driver uses the Modbus function 0x10.

Note:
- Modbus function 0x06 (Preset Single Register)
- Modbus function 0x10 (Preset Multiple Registers)
For more information about the functions consult the protocol
guide

Block Size / (ERO-
xxx)

64

0 to 512
The nominal size (in Words) of each block of data to be
transmitted, as determined by the processing capacity of the
device. NOTE: A block size of 1 configured will send 1 item.

ERO-xxx
Address used to set equipment to Local or Remote (used for
ERO equipment only).

0 to 512

(Max Gap)

This parameter is used with Main Driver Sheet and
configures the Gap size between 2 addresses that could
belong to the same group or block according to the Block
Size but, if there are no other I/O addresses between them,
and their addresses difference is bigger than the GAP, they
will end up in separated virtual read groups. This parameter
can never be higher than the Block Size.

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 9/29

 Note:

It is not possible using 0X, 1X, STA, FP, FP3, FP3S, FPS, BCD, BCD3, BCDDW, BCDDWS, BCDDW3, BCDDW3S,

ST, STS, STU or STUS register types with Signed / Unsigned. This field does not work using any one of

them.

5. If you are using a Data Communication Equipment (DCE) converter (e.g., 232/485) between your PC and
your target device, then you must also adjust the Control RTS (Request to Send) setting to account for the
converter. In the Communication Settings dialog, click the Advanced button to open the Advanced Settings dialog:

Advanced Settings Dialog

When the dialog is displayed, configure the Control RTS setting using the following information:

Setting Default Values Description

Control RTS no no Do not set the RTS (Request to Send) handshake signal.

Yes Set the RTS (Request to Send) handshake signal before communication.

Yes+echo Set the RTS (Request to Send) handshake signal before communication, and
echo the signal received from the target device.

Always On Set the RTS (Request to Send) handshake and keep it on

 Attention:

If you incorrectly configure the Control RTS setting, then runtime communication will fail and the driver

will generate a –15 error. See “Troubleshooting” for more information.

You do not need to change any other advanced settings at this time. You can consult the Studio
Technical Reference Manual later for more information about configuring these settings.

6. Click OK to close the Advanced Settings dialog, and then click OK to close the Communication Settings dialog.

Configuring the Driver Worksheets

Each selected driver includes a Main Driver Sheet and one or more Standard Driver Worksheets. The Main Driver
Sheet is used to define tag/register associations and driver parameters that are in effect at all times, regardless of

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 10/29

application behavior. In contrast, Standard Driver Worksheets can be inserted to define additional tag/register
associations that are triggered by specific application behaviors.

The configuration of these worksheets is described in detail in the “Communication” chapter of the Studio
Technical Reference Manual, and the same general procedures are used for all drivers. Please review those
procedures before continuing.

For the purposes of this document, only MODBU driver-specific parameters and procedures are discussed here.

MAIN DRIVER SHEET

When you select the MODBU driver and add it to your application, Studio automatically inserts the Main Driver
Sheet in the MODBU driver subfolder. To configure the Main Driver Sheet:

1. Select the Comm tab in the Workspace pane.

2. Open the Drivers folder, and then open the MODBU subfolder:

Main Driver Sheet in the MODBU Subfolder

3. Double-click on the MAIN DRIVER SHEET icon to open the following worksheet:

Opening the Main Driver Sheet

Most of the fields on this sheet are standard for all drivers; see the “Communication” chapter of the
Technical Reference Manual for more information on configuring these fields. However, the Station and I/O
Address fields use syntax that is specific to the MODBU driver.

Header

Body

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 11/29

4. For each table row (i.e., each tag/register association), configure the Station and I/O Address fields as
follows:

 Station field: Specify the ID number (node) of the target Modbus device, using the following syntax:

<ID Number>

Example — 57

Where <ID Number> is a value between 0 and 247.

You can also specify an indirect tag (e.g. {station}), but the tag that is referenced must follow the

same syntax and contain a valid value.

Attention:

You cannot leave the Station field blank.

 I/O Address: Specify the address of the associated device register.

For all register types other than ST/STS (String Type), use the following syntax:

<Type>:[Signed/Unsigned]<Address>.[Bit]

Examples — 4X:20 , 4X:S15 , 4X:10.7

For ST/STS (String), STU/STUS (Unicode String) registers only, use the following syntax:

<Type>:<Address>:<Length>

 Example — ST:10:5

Where:

– <Type> : Register type. Valid values are 0X, 1X, STA, 3X, 4X, FP, FP3, FP3S, DW, FPS, DWS,

DW3, DW3S, BCD, BCD3, BCDDW, BCDDWS, BCDDW3, BCDDW3S, ID, ST, STS, DF, DF3, DFS,

DF3S, STU and STUS.

– [Signed/Unsigned] (optional): Parameter used for integer values only. Valid values are S

(Signed) and U (Unsigned). If you do not specify this parameter, then Studio uses the default

parameter in the Communication Settings dialog.

– <Address> : Address of the device register.

– [Bit] (optional): Use this parameter only for 3X (Input Register) and 4X (Holding Register)

types, to indicate which bit on the register will be read from and/or written to.

– <Length> : Length of the string (in bytes) to be read or written.

Attention:

 For DWord registers (DW, DWS, DW3 and DW3S) using the unsigned option in the

Address field, the associated database tag must be Real Type.

 The Floating-point values are 4 bytes using 6 significant digits.

 The Double Floating-point values (DF, DF3) are 8 bytes using 16 significant digits.

 Main Driver Sheet does not support the Read/Write of File Records.

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 12/29

STANDARD DRIVER WORKSHEET

When you select the MODBU driver and add it to your application, it has only a Main Driver Sheet by default (see
previous section). However, you may insert additional Standard Driver Worksheets to define tag/register
associations that are triggered by specific application behaviors. Doing this will optimize communication and
improve system performance by ensuring that tags/registers are scanned only when necessary – that is, only
when the application is performing an action that requires reading or writing to those specific tags/registers.

 Note:

We recommend configuring device registers in sequential blocks in order to maximize performance.

To insert a new Standard Driver Worksheet:

1. In the Comm tab, open the Drivers folder and locate the MODBU subfolder.

2. Right-click on the MODBU subfolder, and then select Insert from the pop-up menu:

Inserting a New Worksheet

A new MODBU driver worksheet is inserted into the MODBU subfolder, and the worksheet is opened for
configuration:

MODBU Driver Worksheet

Header

Body

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 13/29

 Note:

Worksheets are numbered in order of creation, so the first worksheet is MODBU001.drv.

Most of the fields on this worksheet are standard for all drivers; see the “Communication” chapter of the
Technical Reference Manual for more information on configuring these fields. However, the Station,
Header, and Address fields use syntax that is specific to the MODBU driver.

3. Configure the Station and Header fields as follows:

 Station field: Specify the ID number (node) of the target Modbus device, using the following syntax:

<ID Number>

Example — 57

Where <ID Number> is a value between 0 and 247.

You can also specify an indirect tag (e.g. {station}), but the tag that is referenced must follow the

same syntax and contain a valid value.

Attention:

You cannot leave the Station field blank.

 Header field: Specify the address of the first register of a block of registers on the target device. The
addresses declared in the Body of the worksheet are simply offsets of this Header address. When
Read/Write operations are executed for the entire worksheet (see Read Trigger and Write Trigger
above), it scans the entire block of registers from the first address to the last.

The Header field uses the following syntax:

<Type>:<AddressReference>

Example — 4X:10

Where:

– <Type> is the register type (0X, 1X, STA, 3X, 4X, FP, FP3, FP3S, DW, FPS, DWS, DW3, DW3S, BCD,

BCD3, BCDDW, BCDDWS, BCDDW3, BCDDW3S, ID, ST, STS, DF, DF3, DFS, DF3S, STU or

STUS).

– <AddressReference> is the initial address (reference) of the configured type.

The Header field uses the following syntax for using the command Read File Record on the driver
sheets:

FILE:<ModbusFileNumber>:<InitialRecord>:<RecordSize>:<NumberOfRecords>:

<PCDumpFileName>

Where:

- <ModbusFileNumber> is the Modbus File Number which is to be read (1 to 65535)

- <InitialRecord> is the initial record within the Modbus File to be read (0 to
10000)

- <RecordSize> is the size of a record, in WORDs and is configured on the PLC device

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 14/29

- <NumberOfRecords> number of records to be read within the Modbus File (1 to 10000). Each

record is a word. The numeric value of <InitialRecord> + <NumberOfRecords> cannot exceed
10000.

- <PCDumpFileName> Name of the CSV file created on the local PC, where the Modbus file

records will be saved into. The file will be saved into the \Web sub-folder of the application unless
an absolute path is specified. This file will have all the records returned by the read request
written as one record per row. The bytes in a record (each row) are separated by comma(,).

Example — FILE:10:20:2:4:DumpFileName.csv

After you edit the Header field, Studio checks the syntax to determine if it is valid. If the syntax is

invalid, then Studio automatically inserts a default value of 0X:0.

You can also specify an indirect tag (e.g. {header}), but the tag that is referenced must follow the

same syntax and contain a valid value.

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 15/29

The following table lists all of the data types and address ranges that are valid for the Header field:

Data
Types

Sample
Syntax

Valid Range of
Initial Addresses

Comments

0X 0X:0 Varies according to equipment
Coil status: Reads and writes events using Modbus instructions 01, 05,
and 15.

1X 1X:0 Varies according to equipment Input status: Reads events using Modbus instruction 02.

STA STA:0 Varies according to equipment Exception Status: Reads events using Modbus instruction 07.

3X 3X:0 Varies according to equipment Input register: Reads events using Modbus instruction 04.

4X 4X:0 Varies according to equipment
Holding register: Reads and writes events using Modbus instructions 03,
06 and 16.

FP FP:0 Varies according to equipment
Floating-point value (Holding Register): Reads and writes floating-point
values using two consecutive Holding Registers.

FPS FPS:0 Varies according to equipment
Floating-point value (Holding Register): Reads and writes floating-point
values using two consecutive Holding Registers with Byte Swap.

FP3 FP3:0 Varies according to equipment
Floating-point value (Input Register): Reads floating-point values using
two consecutive Input Registers.

FP3S FP3S:0 Varies according to equipment
Floating-point value (Input Register): Reads floating-point values using
two consecutive Input Registers with Byte Swap.

DW DW:0 Varies according to equipment
Dword value (Holding Register): Reads and writes Dword values using
two consecutive Holding Registers.

DWS DWS:0 Varies according to equipment
Dword value (Holding Register): Reads and writes Dword values using
two consecutive Holding Registers with Byte Swap.

DW3 DW3:0 Varies according to equipment
Dword value (Input Register): Reads Dword values using two
consecutive Input Registers.

DW3S DW3S:0 Varies according to equipment
Dword value (Input Register): Reads Dword values using two
consecutive Input Registers with Byte Swap.

BCD3 BCD3:0 Varies according to equipment BCD value (Input Register): Reads events using Modbus instruction 04.

BCD BCD:0 Varies according to equipment
BCD value (Holding Register): Reads and writes events using Modbus
instructions 03, 06 and 16.

BCDDW BCDDW:0 Varies according to equipment
BCD 32-bit integer value (Holding Register): Reads and writes 32-bit
integer values using two consecutive Holding Registers.

BCDDWS BCDDWS:0 Varies according to equipment
BCD 32-bit integer value (Holding Register): Reads and writes 32-bit
integer values using two consecutive Holding Registers with Byte Swap.

BCDDW3 BCDDW3:0 Varies according to equipment
BCD 32-bit integer value (Input Register): Reads 32-bit integer values
using two consecutive Input Registers.

BCDDW3S BCDDW3S:0 Varies according to equipment
BCD 32-bit integer value (Input Register): Reads 32-bit integer values
using two consecutive Input Registers with Byte Swap.

ID ID:0 Varies according to equipment Report Slave ID using Modbus instruction 17.

ST ST:0 Varies according to equipment
String value (Holding Register): Reads and writes String values using
consecutive Holding Registers.

STS STS:0 Varies according to equipment
String value (Holding Register): Reads and writes String values using
consecutive Holding Registers with Byte Swap.

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 16/29

Data
Types

Sample
Syntax

Valid Range of
Initial Addresses

Comments

DF DF:0 Varies according to equipment Double Precision Floating-point Value (Holding Register): Read and
Write double precision float-point values using four consecutive Holding
Registers.

DF3 DF3:0 Varies according to equipment Double Precision Floating-point Value (Input Register): Read double
precision float-point values using four consecutive Input Registers.

DFS DFS:0 Varies according to equipment Double Precision Floating-point value (Holding Register): Read and
Write double precision floating-point values using four consecutive
Holding Registers with Byte Swap.

DF3S DF3S:0 Varies according to equipment Double Precision Floating-point value (Input Register): Read double
precision float-point values using four consecutive Input Registers with
Byte Swap.

STU STU:0 Varies according to equipment Unicode Strings (Holding Registers): Reads and writes UNICODE
strings for consecutive holding registers.

STUS STUS:0 Varies according to equipment Unicode Strings with byte swap (Holding Registers): Reads and writes
UNICODE strings with bytes swap within registers for consecutive
Holding Registers.

 Note:

When you configure DFS or DF3S, the bytes of four registers are swapped.

Example:

 7495726.566209 will be read (or written) from (or to) registers as follows. (represented as
hex numbers)

DF or DF3 - ACC4 3CA4 0B98 5C41 (Word Swap Off) (Big-Endian)

 - 415C 980B A43C C4AC (Word Swap On) (Little-Endian)

DFS or DF3S - C4AC A43C 980B 415C (Word Swap Off)

 - 5C41 0B98 3CA4 ACC4 (Word Swap On)

4. For each table row (i.e., each tag/register association), configure the Address field using the following
syntax…

For all register types other than ST/STS (String), use the following syntax:

[Signed/Unsigned]<AddressOffset>.[Bit]

Examples — 10, S20, U40, 10.5

For ST/STS (Strings), STU/STUS (Unicode Strings) registers only, use the following syntax:

<AddressOffset>:<Length>

 Example — 10:5

For the Read File Record command, the address fields are not used. However, it is required to create one
integer tag on the driver sheet. This will display the record count in the database spy.

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 17/29

Where:

– [Signed/Unsigned] (optional): Parameter used for integer values only. Valid values are S (Signed)

and U (Unsigned). If you do not specify this parameter, then Studio uses the default parameter in the

Communication Settings dialog.

– <AddressOffset>: Parameter that is added to the <AddressReference> parameter of the

Header, to compose the specific address of the register in the block. The sum of the two parameters
cannot equal zero (0); Modbus operands must start in an address that is greater than zero.

– [Bit] (optional): Use this parameter only for 3X (Input Register) and 4X (Holding Register) types, to

indicate which bit on the register will be read from and/or written to.

– <Length>: Length of the string (in bytes) to be read or written.

Attention:

 The Floating-point value is stored in two consecutive Holding Registers, where the address value

corresponds to the first Holding Register position. You must ensure that you do not configure a non-

existent address, or a conflict will occur.

 The Floating-point values are 4 bytes using 6 significant digits.

 The Double Floating-point values (DF, DF3) are 8 bytes using 16 significant digits.

 You must not configure a range of addresses greater than the maximum block size (data buffer length)
supported by the target device. The default block size is 64 bytes, but this can be changed in the
communication settings for the driver.

 For DWord registers (DW, DWS, DW3 and DW3S) using the unsigned option in the Address field, the

associated database tag must be Real Type.

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 18/29

For examples of how device registers are specified using Header and Address, see the following table:

Device Register Header Address

00001 0x:1 0

00010 0x:0 10

01020 0x:1000 20

10001 1x:1 0

10010 1x:0 10

11020 1x:1000 20

30001 3x:1 0

30010 3x:0 10

31020 3x:1000 20

30000 and 30001 FP3:0 0

31001 and 31000 FP3S:0 1000

40001 4x:1 0

40010 4x:0 10

41020 4x:1000 20

40010 (bit 0) 4x:0 10.0

41010 (bit 7) 4x:1000 10.7

40001 and 40002 FP:1 0

40013 and 40014 FP:0 13

41021 and 41022 FP:1000 21

40001 and 40002 DW:1 0

40013 and 40014 DW:0 13

40001 to 40004 DF:0 1

30001 to 30004 DF3:1 0

40001 to 40004 DFS:0 1

30001 to 30004 DF3S:1 0

40010 STU:0 10.10

40100 STUS:0 100.6

For more information about the device registers and addressing, please consult the manufacturer’s
documentation.

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 19/29

Executing the Driver

By default, Studio will automatically execute your selected communication driver(s) during application runtime.

However, you may verify your application’s runtime execution settings by checking the Project Status dialog.

To verify that the communication driver(s) will execute correctly:

1. From the main menu bar, select Project → Status. The Project Status dialog displays:

Project Status Dialog

2. Verify that the Driver Runtime task is set to Automatic.

 If the setting is correct, then proceed to step 3 below.

 If the Driver Runtime task is set to Manual, then select the task and click the Startup button to toggle the
task’s Startup mode to Automatic.

3. Click OK to close the Project Status dialog.

4. Start the application to run the driver.

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 20/29

Troubleshooting

If the MODBU driver fails to communicate with the target device, then the database tag(s) that you configured for
the Read Status or Write Status fields of the Main Driver Sheet and Standard Driver Sheet will receive an error code.
Use this error code and the following table to identify what kind of failure occurred.

Error Code Description Possible Causes Procedure to Solve

0 OK Communication without problems None required

1 Invalid Request Action not allowed for slave.  Check Slave version, this function is only applicable to newer
devices and was not implemented in the unit selected.

 Check slave configuration and if state is OK to process
request.

 If a Poll Program Complete command was issued this code
indicates that no program function preceded it.

2 Illegal Data Value Try to read an address that is not present in
the PLC, such as 49999

Type a valid address.

3 Invalid data values Specified address does not exist on the
device so protocol received invalid data

Verify that specified address exists on the device.

4 Equipment failed Equipment failed or out of order Check equipment state.

5 Ack The PLC may be busy and sent this Ack to
acknowledge that it received the message
but is unable to respond at the time

Wait until the PLC is available again and restart communicating
with it

6 Equipment in use Command invalid when equipment is in use Studio commands cannot generate this error.

7 Negative Ack Ack action error during communication Check device and Studio Communication Parameters.

8 Memory parity error Invalid Communication Parameter Check driver Communication Parameters.

10 Invalid Header field Specified invalid tag value in Header field Specify a valid Header tag value.

11 Invalid Address field Specified invalid Address Specify a valid address.

12 Invalid block size Offset greater than maximum allowed Specify a valid offset or create a new worksheet.
Typically, maximum offset is 64.

13 Invalid CRC Invalid CRC in response message  Check the cable wiring.

 Check the station number.

 Check the RTS/CTS configuration (see Studio Technical

Reference Manual for valid configurations).

18 Invalid BCD Value Tried reading an invalid BCD value Verify that PLC value is valid.

19 Invalid BCD Value Tried writing a negative BCD value Only positive BCD values are valid.

100 Illegal Operation Tried to write to Read Only addresses (1x
and 3x)

Writing operations are possible only in Coil Status and Holding
Registers areas

-15 Timeout Start Message  Disconnected cables

 PLC is turned off, in stop mode, or in

error mode

 Wrong station number

 Wrong RTS/CTS control settings

 Check cable wiring.

 Check the PLC state – it must be RUN.

 Check the station number.

 Check the RTS/CTS configuration (see Studio Technical

Reference Manual for valid configurations).

 Check the maximum registers configuration (see Studio

Technical Reference Manual for valid configurations).

-17 Timeout between rx
char

 PLC in stop mode or in error mode

 Wrong station number

 Wrong parity

 Check cable wiring.

 Check the PLC state – it must be RUN.

 Check the station number.

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 21/29

 Wrong RTS/CTS configuration settings  Check the RTS/CTS configuration (see “Network

Specifications” for valid RTS/CTS configurations).

 Check the maximum registers configuration (see Studio

Technical Reference Manual for valid configurations).

20 Read out of sync  Timeout value  Increase timeout value

21 Error in retrieving all File
records requested using
Read File Record
command.

 This is an error with the local dumpfile

either in creating the file or writing to the

file.

 Check the file path given and try again.

22 File records are not
supported in MDS and
writing on Driver sheets

 Attempted to perform the Read File

Record command on MDS or a Write

File Record on MDS / Driver Sheet

 Read File Record is supported only on the Driver sheets.

Write File Record is not supported at all even on the driver

sheets.

 Tip:

You can monitor communication status by establishing an event log in Studio’s Output window (LogWin

module). To establish a log for Field Read Commands, Field Write Commands and Serial Communication, right-click

in the Output window and select the desired options from the pop-up menu.

You can also use the LogWin module (Tools  LogWin) to establish an event log on a remote unit that runs
Windows CE. The log is saved on the unit in the celog.txt file, which can be downloaded later.

If you are unable to establish communication between Studio and the target device, then try instead to establish
communication using the device’s own programming software (e.g., ModSoft). Quite often, communication is
interrupted by a hardware or cable problem or by a device configuration error. If you can successfully
communicate using the programming software, then recheck the driver’s communication settings in Studio.

If you must contact us for technical support, please have the following information available:

 Operating System (type and version): To find this information, select Tools → System Information.

 Project Information: To find this information, select Project → Status.

 Driver Version and Communication Log: Displays in the Studio Output window when the driver is running.

 Device Model and Boards: Consult the hardware manufacturer’s documentation for this information.

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 22/29

Sample Application

A sample application that employs the MODBU driver is provided on the Studio installation CD. We strongly
recommend that you use this sample application to test the driver before you develop your own applications, for
the following reasons:

 To better understand the information and instructions provided in this document;

 To verify that your driver configuration is working satisfactorily with the target device; and

 To ensure that the all of hardware used in the test (i.e. the device, adapter, cable, and PC) is functioning
safely and correctly.

Note:

The following instructions assume that you are familiar with developing project applications in Studio. If you

are not, then please review the relevant chapters of the Studio Technical Reference Manual before

proceeding.

To use the sample application:

1. Configure the device’s communication settings according to the manufacturer’s documentation.

2. Run Studio.

3. From the main menu bar, select File  Open Project.

4. Insert the Studio installation CD and browse it to find the sample application. It should be located in the
directory \COMMUNICATION EXAMPLES\MODBU.

5. Select and open the sample application.

6. Configure and test the driver, as described in the rest of this document.

When you have thoroughly tested the driver with your target device, you may proceed with developing your own
Studio application projects.

 Tip:

You can use the sample application screen as the maintenance screen for your own applications.

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 23/29

Revision History

Doc.

Revision

Driver

Version

Author Date Description of Changes

A 2.02 Roberto V. Junior Jul/30/1999  First driver version

 Driver available for Windows CE

B 2.03 Roberto V. Junior Dec/13/1999 Added Read and Write of Floating-point operand

C 2.04 Roberto V. Junior Jun/5/2000 Added CRC verification of device response

D 2.05 Lourenço Teodoro Oct/30/2000 Added MAIN DRIVER SHEET feature

E 2.06 Lourenço Teodoro Nov/14/2001  Added FPS, FP3, and FP3S data type

 Changed Ero functionality

F 2.06 Fabíola Fantinato Dec/3/2001 Revised document to conform to documentation standards

G 2.07 Roberto V. Junior Feb/21/2002  Added bit read/write to 4x and 3x data type

 Fixed bug that caused 100% CPU usage when a message was waiting in a

timeout situation

 Added a warning message in the LogWin when the AddressReference in

Header field plus the lowest AddressOffset in Address column is equal to zero

H 2.08 Eric Vigiani Aug/22/2003  Added DW data type

I 2.09 Eric Vigiani Dec/11/2003  Implemented Signed/Unsigned option by address

 Added DW3 data type

J 2.10 Eric Vigiani May/25/2004 Implemented writing group commands when writing FP values

K 2.11 Fábio H.Y. Komura Jun/14/2004  Added DWS and DW3S data types

 Implemented SwapWord for FP, FPS, FP3, FP3S, DW, DWS, DW3 and

DW3S

 Changed FP, FPS, FP3, FP3S, DW, DWS, DW3 and DW3S with and without

SwapWord to conformance to standards (FPS, FP3S, DWS and DW3S are

data types with Byte Swap)

L 2.12 Fábio H.Y. Komura Sep/03/2004 Added BCD, BCD3, BCDDW, BCDDWS, BCDDW3 and BCDDW3S data type.

M 2.13 Fábio H.Y. Komura Sep/24/2004 Fixed problem with Parser Address

N 2.14 Leandro Coeli Jan/19/2005 Insert String type

O 2.15 Leandro Coeli Feb/19/2005 Implemented LRC to ASCII communication

P 2.16 Leandro Coeli Apr/26/2005 Implemented configurable Block Size

Q 2.18 Graziane C. Forti Jun/12/2006

 Implemented to check the Station into the Rx messages.

 Implemented the Unsigned in all header

 Implemented Block size 1 using MDS

R 2.18 Michael D. Hayden Aug/22/2006 Edited for language and usability.

S 2.19 Eric Vigiani Aug/31/2006 Fixed problem with the ST header.

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 24/29

Doc.

Revision

Driver

Version

Author Date Description of Changes

T 2.20

Graziane C. Forti

Nov/28/2006

 Implemented STS Header

 Fixed problem BCDDW, BCDDWS, BCDDW3, BCDW3S and ST using Block

Size=1

 Fixed problem S/U address configuration (types that this operation is not

allowed)

 Implemented Block size 1 using MDS

 Fixed problem ST/STS using write trigger (SDS)

 Fixed problem to calculate LRC – ASCII protocol

 Changed Maximum Range (exception problem)

 Fixed the String writing

U 2.21 Graziane C. Forti Jan/19/2007
 Implemented Unsigned/Signed to work like version 2.16 as well, using

ComboBox

V 2.22 Eric Vigiani Feb/21/2008  Removed the error Invalid Word Swap for ST and STS header.

W 2.22 Andre Bastos Dec/29/2008  Removed Cable Wiring Scheme from doc

X 10.1 Marcelo Carvalho Jan/07/2009  Updated driver version, no changes in the contents.

Z 10.3 Fellipe Peternella Jul/1/2009

 Modified driver to properly handle error codes sent by the PLC

 Modified driver to support communication with multiple Stations when using

Serial Encapsulation over TCP/IP or UDP/IP

AA 10.4 André Körbes Sep/16/2010  Improved driver reliability.

AB 10.5 Paulo Balbino Jan/17/2013  Fixed problem of out of sync after timeout. Writing incorrect values to tags.

AC 10.6 Paulo Balbino Sept/23/3012

 Fixed issue reading coils

 Fixed issue of requesting more words than necessary when communicating

with ST and STS datatypes

AD 10.7 Caio Cerquetani Dec/11/2013  Fixed bug of data writing

AE 10.8 Charan Manjunath Mar/05/2014  Fixed issue of getting the error code on write operations.

AF 10.9 Felipe Andrade Oct/17/2014  Added support for headers DF, DF3, DFS and DF3S.

AG 10.10 Priya Yennam Jan/30/2015  Added support for headers STU, STUS for UNICODE strings

AH 10.11
Priya Yennam
Anushree Phanse

Sep/19/2016
 Implemented support for Read File Record on Driver Sheets

 Ported driver to be platform agnostic.

AI 10.12 Anushree Phanse Apr/03/2017

 Fixed issue of Modbu Serial Driver not communicating properly on Raspberry

Pi.

 Improved documentation to provide more information about how to use the

driver on Raspberry Pi, how to find and configure the serial and USB ports on

the linux devices and how to create and use multiple instances of the driver on

windows and linux devices.

AJ 10.12 Anushree Phanse Jun/08/2017
 Improved driver documentation to include accurate information about using

indirect tags on MDS. No change in the driver

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 25/29

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 26/29

Appendix A – Using MODBU on Raspberry Pi 3

The MODBU Serial driver can be run on Linux devices using IotView. See User Guide and Technical Reference
for Wonderware Indusoft Web Studio on how to configure and install IotView on different Linux devices.

This section describes how to configure the port on Raspberry Pi 3 to be able to successfully communicate using
MODBU.

1. Run RemoteAgent on the Raspberry Pi and connect to it using Remote Management.
 The Platform should be arm-gnueabihf-2.13-6.0.17. Click on Install System Files.

2. On the Raspberry Pi create a document with the name 99-port.rules. When in the location of the folder from
which the RemoteAgent is running on the terminal follow these steps to create and populate this file.

Then press Ctrl+D to save the file

3. Then use the following command to copy the newly created file 99-port.rules to the correct location

4. Reboot Raspberry Pi. The file 99-port.rules will configure the following persistent USB port mapping:

Based on which USB port is being used (using USB to Serial convertors to talk to MODBUS devices) use the
following convention to configure the Serial Port setting on the driver settings:

USB Port 2: /dev/piusb2
USB Port 3: /dev/piusb3
USB Port 4: /dev/piusb4
USB Port 5: /dev/piusb5

 $ sudo cat > 99-port.rules
 #Link the Raspberry Pi ports to the short name.
SUBSYSTEMS=="usb", ENV{ID_PATH}=="platform-3f980000.usb-usb-0:1.2:1.0", SYMLINK+="piusb2"
SUBSYSTEMS=="usb", ENV{ID_PATH}=="platform-3f980000.usb-usb-0:1.3:1.0", SYMLINK+="piusb3"
SUBSYSTEMS=="usb", ENV{ID_PATH}=="platform-3f980000.usb-usb-0:1.4:1.0", SYMLINK+="piusb4"
SUBSYSTEMS=="usb", ENV{ID_PATH}=="platform-3f980000.usb-usb-0:1.5:1.0", SYMLINK+="piusb5"

 $ sudo cp 99-port.rules /lib/udev/rules.d/

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 27/29

Refer to the section Configuring the Communication Settings in this document for more information.

4. Start the RemoteAgent on the Raspberry Pi and using Remote Management on Wonderware Indusoft Web
Studio perform a Download of the project. Start IoTView Runtime, the driver should be able to successfully
communicate with the Modbus device connected to the appropriate USB port of the Rapsberry Pi device.

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 28/29

Appendix B – Find and configure the serial ports that can be used on Linux
devices

1. Connect Serial cable or USB to Serial Convertor cable to the Linux device like Ubuntu or Raspberry Pi
respectively and then to the Modbus device.

2. Run the following in the command line:

3. It will display the serial ports available on the device like:

 ttyS1, ttyS2 etc. on an Ubuntu device with serial ports
 or
 ttyUSB0, ttyUSB1 etc. on a Raspberry Pi.

If the Step 1 is correctly followed the response to the following command, should also denote which of ports the
cable is connected to.

4. If using a port ttyS1, use the syntax /dev/ttyS1 on the COM port setting on the driver setting in the
development environment

If using a port ttyUSB0, use the syntax /dev/ttyUSB0 on the COM port setting on the driver setting in the
development environment.

 Note:

In case of the Raspberry Pi if you have followed instructions from Appendix A: Using MODBU on Raspberry Pi 3
You can skip this step, and use the persistent ports as shown in the picture by configuring /dev/piusb2 etc.

 $ dmesg | grep –i ttys

MODBU – Driver Version 10.12

Doc. Revision AJ – June 8, 2017

Page 29/29

Appendix C – Running multiple instances of MODBU to communicate with
devices connected to multiple USB/Serial ports

This section will describe how to create multiple MODBU drivers on the same Windows/Linux device to
communicate with MODBUS devices connected to its multiple USB/Serial ports.

To run multiple instances of MODBU driver on Windows devices:

1. Find the product installation path for Wonderware Indusoft Webstudio, using the function GetProductPath() on
Database Spy. Close Wonderware Indusoft Web Studio. On Windows Explorer browse to the product installation
path. Open the \DRV subdirectory inside this path.

2. Duplicate the files MODBU.dll, MODBU.ini, MODBU.msg and MODBU.pdf for as many instances of the driver
required to be created. Rename the duplicated files like MODB1.dll, MODB1.ini, MODB1.msg and MODB1.pdf
etc.

3. Open the Wonderware Indusoft Web Studio. See section Selecting the Driver in this document to browse all
the drivers available. The Available Drivers List should show the new instances of MODBU driver created like
MODBU1 etc. See section Configuring the Communication Settings in this document to successfully add and
configure the new instances of MODBU driver like MODB1 etc.

4. New instances of MODBU driver like MODBU1 should successfully start communication when the project
Runtime is started. If running the drivers on a WinCE or WinEmbedded devices: perform an Install System files
again on the target devices using Remote Management. For more information about using WinCE and
WinEmbedded devices refer to User Guide and Technical Reference for Wonderware Indusoft Web Studio.

To run multiple instances of MODBU driver on Linux devices:

1. Repeat Steps 1- 3 described above (To run multiple instances of MODBU driver on Windows devices).

If using a Raspberry Pi 3 with USB to Serial connections, repeat steps 1-3 described in section Appendix A:
Using MODBU on Raspberry Pi 3.

 See User Guide and Technical Reference for Wonderware Indusoft Web Studio on how to configure and install
IotView on you Linux devices and follow instructions to install IotView on the specific platform.

2. Duplicate the MODBU driver on the Linux device using the following commands from the folder where the
RemoteAgent is located on the Linux device. Duplicate as many instances as required.

3. On Wonderware Indusoft Web Studio Development check that each of the duplicated instances of the MODBU
drivers has the correct Serial Port configuration as used by the Linux device.

4. Perform a Download of the project to the Linux device using Remote Management and start the IoTView
Runtime. The multiple instances of the MODBU driver should communicate successfully with the MODBUS
devices connected to multiple serial ports or USB to Serial ports on the Linux device.

 $ sudo cp ./drv/modbu.so ./drv/modb1.so
$ sudo cp ./drv/modbu.ini ./drv/modb1.ini
$ sudo cp ./drv/modbu.msg ./drv/modb1.msg

