
CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 1/31

CAN/Can Open Driver
Specification

CAN / CANOpen CiA 301 Specification

Contents

CONTENTS ..1

GENERAL INFORMATION ..2

DEVICE SPECIFICATIONS ...2
NETWORK SPECIFICATIONS ...2
DRIVER CHARACTERISTICS ...2

SELECTING THE DRIVER ..3

CONFIGURING THE DEVICE ...4

CONFIGURING THE DRIVER ...4

CONFIGURING THE COMMUNICATION SETTINGS ...4
CONFIGURING THE DRIVER WORKSHEETS ...8
Main Driver Sheet ..8
Standard Driver Worksheet .. 14

EXECUTING THE DRIVER ... 25

TROUBLESHOOTING .. 26

REVISION HISTORY... 31

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 2/31

General Information

This chapter identifies all of the hardware and software components required to implement communication
between the CAN driver in Studio and CAN/CANOpen devices.

The information is organized into the following sections:

 Device Specifications

 Network Specifications

 Driver Characteristics

Device Specifications

To establish communication, your target device must meet the following specifications:

 Manufacturer: Peak, Advantech, Hilscher
 CAN Compatible Equipment:

– Hilscher PCI Board CIF50

– Peak-USB and Peak PCI devices

– TPC-660G Delta, Delta-CPU2

– TPC-120H

CAN messages has been tested successfully with Advantech TPC-660G, Peak-USB, Peak-PCI and Hilscher PCI

Board CIF-50, whereas CANOpen has been tested using FnIO S–Series: KNA9161.

Network Specifications

To establish communication, your device network must meet the following specifications:

 Device Communication Port: Selectable

 Physical Protocol: CAN Cia Standard 102

 Logic Protocol:

o CAN Cia Standard 201

o CANOpen Cia Standard 301

Driver Characteristics

The CAN driver package consists of the following files, which are automatically installed in the /DRV subdirectory

of Studio:

 CAN.INI: Internal driver file. You must not modify this file.

 CAN.MSG: Internal driver file containing error messages for each error code. You must not modify this

file.
 CAN.PDF: This document, which provides detailed information about the CAN driver.

 CAN.DLL: Compiled driver

 CIF32DLL.DLL: Hilscher API. It must be placed on the /DRV/API subdirectory of Studio. This file is

provided by Hilscher

 PCANBasic.DLL: Peak API. It must be placed on the /DRV/API subdirectory of Studio. This file is

provided by Peak

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 3/31

 Notes:

 Driver Runtime APIs: CIF32DLL.dll API provided by Hilscher or PCANBasic.dll provided by Peak.

Advantech does not require an API. Please, install peak and Hilscher drivers and copy

CIF32DLL.dll or PCANBasic.dll in folder \DRV\API\ subfolder

Selecting the Driver

When you install Studio, all of the communication drivers are automatically installed in the \DRV subdirectory but

they remain dormant until manually selected for specific applications. To select the CAN driver for your Studio
application:

1. From the main menu bar, select Insert Driver to open the Communication Drivers dialog.

2. Select the CAN driver from the Available Drivers list, and then click the Select button.

Communication Drivers Dialog

3. When the CAN driver is displayed in the Selected Drivers list, click the OK button to close the dialog. The
driver is added to the Drivers folder, in the Comm. tab of the Workspace.

 Attention:

For safety reasons, you must use special precautions when installing the physical hardware. Consult the

hardware manufacturer’s documentation for specific instructions in this area.

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 4/31

Configuring the Device

Consult your CAN documentation for information about configuring your device.

Configuring the Driver

Once you have selected the CAN driver in Studio, you must properly configure it to communicate with your target
device. First, you must set the driver’s communication settings to match the parameters set on the device. Then,
you must build driver worksheets to associate database tags in your Studio application with the appropriate
addresses (registers) on the device.

Configuring the Communication Settings

The communication settings are described in detail in the “Communication” chapter of the Studio Technical
Reference Manual, and the same general procedures are used for all drivers. Please review those procedures
before continuing.

For the purposes of this document, only CAN driver-specific settings and procedures will be discussed here. To
configure the communication settings for the CAN driver:

1. In the Workspace pane, select the Comm. tab and then expand the Drivers folder. The CAN driver is
listed here as a subfolder.

2. Right-click on the CAN subfolder and then select the Settings option from the pop-up menu:

Select Settings from the Pop-Up Menu

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 5/31

The CAN: Communication Settings dialog is displayed:

CAN: Communication Settings Dialog

3. In the Communication Settings dialog, configure the driver settings to enable communication with your target
device. To ensure error-free communication, the driver settings must exactly match the corresponding
settings on the device. Please consult the manufacturer’s documentation for instructions how to configure
the device and for complete descriptions of the settings.

Depending on your circumstances, you may need to configure the driver before you have configured your
target device. If this is the case, then take note of the driver settings and have them ready when you later
configure the device.

Attention:

For safety reasons, you must take special precautions when connecting and configuring new

equipment. Please consult the manufacturer’s documentation for specific instructions.

The communication settings and their possible values are described in the following table:

Parameters Default
Values

Valid
Values

Description

Baud Rate (kbps) 1000 1000, 800, 500,
250,125, 100, 50, 20,
10

Defines the communication baud rate.
OBS: Both Peak and Advantech TPC-
660G interface does not support
800kbps baud rate

Message Scan Rate (ms) 100 Greater than 0 Defines the minimum time that the driver
must wait before checking the CAN bus
for messages.

DRV Interface Peak, Configures the manufacturer of CAN
layer

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 6/31

Hilscher,

TPC (Advantech)

Peak Communication Type USB channel 1 USB channel 1
USB channel 2
USB channel 3
USB channel 4
USB channel 5
USB channel 6
USB channel 7
USB channel 8
PCI channel 1
PCI channel 2 PCI
channel 3 PCI channel
4 PCI channel 5 PCI
channel 6 PCI channel
7 PCI channel 8 ISA
channel 1 ISA channel
2 ISA channel 3 ISA
channel 4 ISA channel
5 ISA channel 6
ISA channel 7
ISA channel 8
DNGBUS

PCCBUS channel 1

PCCBUS channel 2

Defines Peak communication interface.
For others CAN implementations
(Hilscher or Advantech) this parameter
is ignored

 4. Click on the Advanced… button in the Communication Parameters dialog. The Advanced settings
dialog will display.

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 7/31

Parameters Syntax Default Values Valid
Values

Description

Rx Buffer Size 512 Above 4 Buffer size used for CANOpen
communication

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 8/31

Configuring the Driver Worksheets

Each selected driver includes a Main Driver Sheet and one or more Standard Driver Worksheets. The Main Driver
Sheet is used to define tag/register associations and driver parameters that are in effect at all times, regardless of
application behavior. In contrast, Standard Driver Worksheets can be inserted to define additional tag/register
associations that are triggered by specific application behaviors.

The configuration of these worksheets is described in detail in the “Communication” chapter of the Studio
Technical Reference Manual, and the same general procedures are used for all drivers. Please review those
procedures before continuing.

For the purposes of this document, only CAN driver-specific parameters and procedures are discussed here.

MAIN DRIVER SHEET

When you select the CAN driver and add it to your application, Studio automatically inserts the Main Driver Sheet
in the CAN driver subfolder. To configure the Main Driver Sheet:

1. Select the Comm. tab in the Workspace pane.

2. Open the Drivers folder, and then open the CAN subfolder:

Main Driver Sheet in the CAN Subfolder

3. Double-click on the MAIN DRIVER SHEET icon to open the following worksheet:

Opening the Main Driver Sheet

Most of the fields on this sheet are standard for all drivers; see the “Communication” chapter of the
Technical Reference Manual for more information on configuring these fields. However, the Station and I/O
Address fields use syntax that is specific to the CAN driver.

4. For each table row (i.e., each tag/register association), configure the Station and I/O Address fields.

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 9/31

Use the I/O Address field to associate each tag to its respective device address and Station field to define
the address of the device to be read from or written to.

The following sections describe how to configure Station and I/O Address for both CAN and CANOpen
messages.

CAN Messages

The syntax below shows how to Read and Write in CAN net work. When the driver is Idle, the driver
continuously gets messages from network and put them in an internal memory list. Reading behavior
depends on Request and Synchronous options (as described below), but in most of cases reading is
simply to pick up a message in list whose ID is the same one configured in Station Field. On the other
hand, writing consists in update the internal memory list and to send a message whose ID is defined in
station field.

Station Syntax

<CAN Message ID>: CAN Message ID (Hexadecimal).

I/O Address Syntax
CANMASTER.<Request Option>.<Synchronous Option > : <Address>
<Request Option>: REQNF, NOREQ, REQ, REQRESET
REQNF: Default behavior. When the driver is Idle, it continuously gets messages from network and put them in an internal list.
Reading is simple picking the message from the list and places its values in the tags. If message is not in list, the driver sends a
remote request.

REQ : During reading, driver get the message from the list, but also sends a remote request, in order to always keep values
updated

NOREQ: Does never perform a remote request. Only generates an error if message was not found

REQRESET: Delete the message from the list and performs a remote request.
<Synchronous Option >: SYNC, ASYNC

SYNC: Synchronous. Default behavior. If message is not in the list, the driver waits for the message, until
a timeout.
ASYNC: Asynchronous. If message is not in the list, driver just generates an error. It may or not send a
remote request according to Request Option.

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 10/31

Examples:

Writing procedure consists in writing the message in CAN network. If all CAN eight bytes are defined, the
driver just put the message in CAN network. On the other hand, if message is incomplete, driver must
read it, according to criteria defined by Request Option and Synchronous Option.
<Address>: defines the CAN message data byte. CAN messages have at most eight data bytes, so, for
default BYTE type, the address may range 0 to 7. However, you may add a prefix and change data type,
as shown in table below. Moreover, some can messages can have fewer bytes. For this situation, make
sure that the data does not exceed the message length.

Prefix Data Type
B Signed 8 bits variable (byte)
UB Unsigned 8 bits variable (byte)
W Signed 16 bits variable (word)
SW Signed 16 bits variable (word) with byte swap
UW Unsigned 16 bits variable (word)
USW Unsigned 16 bits variable (word) with byte swap
DW Signed 32 bits variable (double word)
SDW Signed 32 bits variable (double word) with byte swap
UDW Signed 32 bits variable (double word) with byte swap
USDW Signed 32 bits variable (double word) with byte swap
UDW Unsigned 32 bits variable (double word)
USDW Unsigned 32 bits variable (double word) with byte swap
F 32 bits float points (float)
SF 32 bits float points with byte swap (float)
DF 64 bits float points (double)
SDF 64 bits float points with byte swap (double)
BCD 16 bits BCD value
BCDDW 32 bits BCD value
S String (address should be S<register>.<Bytes>)

CANOpen Messages

In order to access to entries of a CANOPEN device Object Dictionary (OD), you should configure the
Station and I/O Address field according to the syntax below. The driver communicates using SDO
Downloading (Write) or SDO Uploading (Read). SDO Block Upload, SDO Block Upload and PDOs are
not supported.

Station Syntax

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 11/31

<Node ID>: Device node ID

I/O Address Syntax

OBJMASTER.<Index>.<Sub-Index> : < Address>

Where:
Index: Object Dictionary Index
Sub- Index: Object Dictionary Sub-Index
Address: Defines CANOpen data byte. As Object Dictionary entries may contain data of arbitrary size,
address may range according to Register data size. All prefixes supported by CANMaster header is also
supported by OBJMASTER.

Example:

CANOpen NMT Message

NMT are control messages, which are used to get or to set a CANOpen device state. According
to Cia 301 Specification, there CANOpen PLC has four states: BOOT, PRE-OPERATIONAL,
OPERATIONAL and STOP

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 12/31

I/O Address Syntax

NMT: < Address>

<Address>: Device node ID. You should use string type and size should be greater or equal than 9.

S<Node-ID>.9

Station field should be kept empty.

Tags must be strings. If you read a device state tags will assume one of the four values: “OPER”, “PRE-
OPER”, “BOOT”, “STOP”, as shown in table below. For writing, you should enter one of these four values.
For state Boot and Operational, you can also enter values Reset or Start, respectively, as shown in table
below.

Write
Command

Read Value Get / Set State

BOOT /
RESET

BOOT Boot

STOP STOP Stop

PREOP PREOP Pre operational

OPER/STA
RT

OPER Operational

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 13/31

RESETCO
MM

BOOT Reset communication

The “initialization” or “boot” state is divided into three sub-states in order to enable a complete or partial

reset of a node.

1. Initializing: This is the first sub-state the device enters after power-on or hardware reset. After finishing

the basic node initialization the device enters autonomously into the state Reset_Application.

2. Reset_Application: In this state the parameters of the manufacturer specific profile area and of the

standardized device profile area are set to their power-on values. After setting of the power-on values the

state Reset_Communication is entered autonomously. Writing “RESET” or “BOOT”, device is enter in this

sub-state

3. Reset_Communication: In this state the parameters of the communication profile area are set to their

power-on values. After this the state Initialization is finished and the device executes the write boot-up

object service and enters the state PRE-OPERATIONAL. Writing “RESETCOMM”, device enter in this

substate

Example:

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 14/31

STANDARD DRIVER WORKSHEET

When you select the CAN driver and add it to your application, it has only a Main Driver Sheet by default (see
previous section). However, you may insert additional Standard Driver Worksheets to define tag/register
associations that are triggered by specific application behaviors. Doing this will optimize communication and
improve system performance by ensuring that tags/registers are scanned only when necessary – that is, only
when the application is performing an action that requires reading or writing to those specific tags/registers.

 Note:

We recommend configuring device registers in sequential blocks in order to maximize performance.

To insert a new Standard Driver Worksheet:

1. In the Comm. tab, open the Drivers folder and locate the CAN subfolder.

2. Right-click on the CAN subfolder, and then select Insert from the pop-up menu:

Inserting a New Worksheet

A new CAN driver worksheet is inserted into the CAN subfolder, and the worksheet is open for
configuration:

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 15/31

CAN Driver Worksheet

 Note:

Worksheets are numbered in order of creation, so the first worksheet is CAN001.drv.

Most of the fields on this worksheet are standard for all drivers; see the “Communication” chapter of the
Technical Reference Manual for more information on configuring these fields. However, the Station,
Header, and Address fields use syntax that is specific to the CAN driver.

3. The following sections describe how to configure Station and Header for both CAN and CANOpen
messages.

CAN Messages - MASTER

The syntax below shows how to Read and Write in CAN network. When the driver is Idle, the driver
continuously gets messages from network and put them in an internal memory list. Reading behavior
depends on Request and Synchronous options (as described below), but in most of cases reading is
simply to pick up a message in list whose ID is the same one configured in Station Field. On the other
hand, writing consists in update the internal memory list and to send a message whose ID is defined in
station field.

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 16/31

Station Syntax

<CAN Message ID>: CAN Message ID (Hexadecimal).

Header Syntax
CANMASTER.<Request Option>.<Synchronous Option > : <Offset>
<Request Option>: REQNF, NOREQ, REQ, REQRESET.
REQNF: Default behavior. When the driver is Idle, it continuously gets messages from network and put them in an internal list.
Reading is simple picking the message from the list and places its values in the tags. If message is not in list, the driver sends a
remote request.

REQ : During reading, driver get the message from the list, but also sends a remote request, in order to always keep values
updated

NOREQ: Does never perform a remote request. Only generates an error if message was not found

REQRESET: Delete the message from the list and performs a remote request.
<Synchronous Option >: SYNC, ASYNC

SYNC: Synchronous. Default behavior. If message is not in the list, the driver waits for the message, until
a timeout.
ASYNC: Asynchronous. If message is not in the list, driver just generates an error. It may or not send a
remote request according to Request Option.

 <Offset>: Is the CAN message offset

Address: For each table row (i.e., each tag/register association), configure the Address field with the can
message Data Byte. CAN messages have at most eight data bytes, so, for default BYTE type, the
address may range 0 to 7. However, you may add a prefix and change data type, as shown in table
below. Moreover, some can messages can have fewer bytes. For this situation, make sure that the data
does not exceed the message length.

Prefix Data Type
B Signed 8 bits variable (byte)
UB Unsigned 8 bits variable (byte)
W Signed 16 bits variable (word)
SW Signed 16 bits variable (word) with byte swap
UW Unsigned 16 bits variable (word)
USW Unsigned 16 bits variable (word) with byte swap
DW Signed 32 bits variable (double word)
SDW Signed 32 bits variable (double word) with byte swap
UDW Signed 32 bits variable (double word) with byte swap
USDW Signed 32 bits variable (double word) with byte swap
UDW Unsigned 32 bits variable (double word)
USDW Unsigned 32 bits variable (double word) with byte swap
F 32 bits float points (float)
SF 32 bits float points with byte swap (float)
DF 64 bits float points (double)
SDF 64 bits float points with byte swap (double)
BCD 16 bits BCD value
BCDDW 32 bits BCD value
S String (address should be S<register>.<Bytes>)

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 17/31

Example

CAN Messages – BATCH

Using the header CANMASTER, the user is allowed to read one message at a time from the driver’s
internal list or request only a single message data. However, for better utilization of resources on
performance limited architectures, the header CANBATCH allows to read several messages at once from
the buffer of received messages. This header operates in a mode equivalent to
CANMASTER.NOREQ.ASYNC, meaning it does not start remote requests for message IDs that were not

found or waits for messages to arrive. The station field for this header must be left blank. The address
field must be configured with a special syntax:

<DataType><Message ID>.<Starting Byte>.<Bit Number>

Where:
<DataType> is one of the data types of the table above (default is BYTE)

<Message ID> is the message identification, in hexadecimal format

<Starting Byte> is the first byte of the message to read using the <DataType>

<Bit Number> is the bit number to read from the desired byte (optional)

Examples:

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 18/31

Example of header CANBATCH

 Attention:

The header CANBATCH is specifically designed for improving performance of read operations. It does

not support write operations or usage on the Main Driver Sheet. Also, on the same driver, there must be

at most one driver sheet using header CANBATCH. Otherwise, the behavior is undefined.

If a message ID is configured on one line of the driver sheet, and it was not received by the CAN driver,

the value of its associated tag is zeroed and a message is printed on the log.

Changes on a driver sheet configured with header CANBATCH while the driver is running may not be

considered until a restart of the driver.

CAN Messages - SLAVE

The syntax below shows how configure a CAN slave device. This device may catch all CAN messages
whose ID is the same one configured either in Settings->Advanced->Slave, or in the worksheet’s Station
field, and place its values into tags. The Slave can also answer for Master Remote Requests.

Header Syntax
CANSLAVE
Station
For CAN: defines the message ID (In Decimal notation) that will be used to receive a message sent by the
CAN Master
For CANOpen: defines the node-ID of a simulated slave device

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 19/31

Address: For each table row (i.e., each tag/register association), configure the Address field with the can
message Data Byte. CAN messages have at most eight data bytes, so, for default BYTE type, the
address may range 0 to 7. However, you may add a prefix and change data type, as shown previously.
Make sure that the data does not exceed the message 8 bytes length.

Example:

CANOpen Messages - MASTER

In order to access to entries of a CANOPEN device Object Dictionary (OD), you should configure the
Station and I/O Address field according to the syntax below. SDO Block Upload, SDO Block Upload and
PDOs are not supported.

Station

<Node ID>: Device node ID (HEX)

Header

OBJMASTER.<Index>.<Sub-Index> : < Offset>

Where:
Index: Object Dictionary Index (HEX)

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 20/31

Sub- Index: Object Dictionary Sub-Index (HEX)
Offset: Address Offset

Address: For each table row (i.e., each tag/register association), configure the Address field with the can
open message Data Byte. As Object Dictionary entries may contain data of arbitrary size, the address
may range according to Register data size. All types configured for CANMASTER header are also valid
for OBJMASTER header.

Example:

CANOpen Messages - SLAVE

The syntax below shows how configure a CANOpen an entry of a simulated Object Dictionary. Once
configured, it may answer for Read or Write Commands. If you need to configure more than one entry for
Slave, you can create another Standard Driver Sheet.
For this driver version, Slave answers only for upload and download SDO Protocols. SDO Block Upload,
SDO Block Upload and PDOs are not supported.

Station Syntax

<Node ID>: Simulated device node ID (HEX)

I/O Address Syntax

OBJMASTER.<Index>.<Sub-Index >

Where:
Index: Object Dictionary Index (HEX)

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 21/31

Sub- Index: Object Dictionary Sub-Index (HEX)

Address: For each table row (i.e., each tag/register association), configure the Address field with the can
open message Data Byte. You can configure your OD node with an arbitrary data size, and also, you can
use any of types configured for CANMaster header.

Example:

CANOpen NMT Message
NMT are control messages, which are used to get or to set a CANOpen device state. According

to Cia 301 Specification, there CANOpen PLC has four states: BOOT, PRE-OPERATIONAL,
OPERATIONAL and STOP

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 22/31

Header

NMT: < Offset>

Offset: Address Offset

Station

Station field should be kept empty.

Address: For each table row (i.e., each tag/register association), configure the Address field with the can open device node-id.
You must use String type, and size should be greater or equal than 9

S<Node-ID>.9

Tags must be strings. If you read a device state tags will assume one of the four values: “OPER”, “PRE-
OPER”, “BOOT”, “STOP”, as shown in table below. For writing, you should enter one of these four values.
For state Boot and Operational, you can also enter values Reset or Start, respectively, as shown in table
below.

Write
Command

Read Value Get / Set State

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 23/31

BOOT /
RESET

BOOT Boot

STOP STOP Stop

PREOP PREOP Pre operational

OPER/STA
RT

OPER Operational

RESETCO
MM

BOOT Reset communication

The “initialization” or “boot” state is divided into three sub-states in order to enable a complete or partial

reset of a node.

1. Initializing: This is the first sub-state the device enters after power-on or hardware reset. After finishing

the basic node initialization the device enters autonomously into the state Reset_Application.

2. Reset_Application: In this state the parameters of the manufacturer specific profile area and of the

standardized device profile area are set to their power-on values. After setting of the power-on values the

state Reset_Communication is entered autonomously. Writing “RESET” or “BOOT”, device is enter in this

sub-state

3. Reset_Communication: In this state the parameters of the communication profile area are set to their

power-on values. After this the state Initialization is finished and the device executes the write boot-up

object service and enters the state PRE-OPERATIONAL. Writing “RESETCOMM”, device enter in this

substate

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 24/31

Example:

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 25/31

Executing the Driver

By default, Studio will automatically execute your selected communication driver(s) during application runtime.

However, you may verify your application’s runtime execution settings by checking the Project Status dialog.

To verify that the communication driver(s) will execute correctly:

1. From the main menu bar, select Project → Status. The Project Status dialog displays:

Project Status Dialog

2. Verify that the Driver Runtime task is set to Automatic.

 If the setting is correct, then proceed to step 3 below.

 If the Driver Runtime task is set to Manual, then select the task and click the Startup button to toggle the
task’s Startup mode to Automatic.

3. Click OK to close the Project Status dialog.

4. Start the application to run the driver.

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 26/31

Troubleshooting

If the CAN driver fails to communicate with the target device, then the database tag(s) that you configured
for the Read Status or Write Status fields of the Main Driver Sheet will receive an error code. Use this error code and
the following table to identify what kind of failure occurred.

Error

Code
Description Possible Causes Procedure to Solve

0 OK Communication without problems Not applicable

1 General Error Internal Driver error Unexpected Error – please contact Technical Support

2 CAN ID not found Message was not send by CAN device.
First of all, check if CAN ID is correctly configured in
station field. If so, try to send a remote request (configure
header as CANMASTER.REQNF).

3 Error Starting library
A library was not found or driver it is
corrupted

Check if CANOpenAPI.dll is placed in DRV\Api folder.
Check if device specific library (PCANBasic.dll for Peak
and CIF50DLL.dll for Hilscher) is placed in DRV\API
folder

4 Device Specific Error

Generic Error related to the
PCANBasicAPI.dll (Peak) or
CIF50DLL.DLL (Hilscher)

Check Protocol Analyzer to get Error Code and follow
procedure described on the API error table

5 Invalid Parameter

There are two possible causes:
1) For CANMaster header, the options
together REQRESET and ASYNC are
invalid.;
2) An invalid command was passed to
NMT header

For case 1, reconfigure CANMaster header. Choose
other options like CANMASTE.REQRESET.SYNC
For case 2, check if you tried to write a command
different to RESET, BOOT, PREOP, OPER, START, or
RESETCOMM for NMT header

6 Communication Error
Communication parameters in Settings are
incorrectly configured

Check if Baud rate, Drv Interface and (if Peak) Peak
communication parameters are correct.

7 Invalid Message Size

This error occurs for OBJMaster header.
You are trying to read more bytes than
arrived.

Reconfigure the sheet in order to read the correct number
of bytes

8 Invalid Command
This error occurs if you try to read or write
in Slave Headers (OBJSlave, CANSlave).

You should not read or write in slave headers.

9 Invalid Unsolicited Header
A read/write request has arrived for an
inexistent or invalid Slave device

Check if Slave Station is correct (Settings->Advance-
>Station) so the driver can answer correctly for Slave
Read/Write commands. For OBJSlave, check if
parameters Index and Subindex are correctly configured.

-37 Invalid Header

This usually happens when you configure
a string Tag in the Header field and the
value of this tag does not comply with the
header syntax

Change the value of the tag in the Station field to one
that complies with the Header syntax

-38 Invalid Station Invalid station specified in Station field Specify a valid station in the Driver Worksheet.

-39 Block Size Error You are trying to send a CAN message Change the size of buffer (Settings->Advanced->Rx

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 27/31

with more than 8 bytes or you are trying to
read/write more bytes than configured in
Settings->Advanced->Rx Buffer
(CANOpen)

Buffer). Reconfigure the sheets in order to CANMessage
have at most 8 bytes.

-9 No memory
The buffer configured in Settings-
>Advanced is to large

Reduce the buffer size

-15 Timeout Start Message

 Disconnected cables
 Wrong station number

 Check the cable wiring.
 Check the station number.

 Tip:

You can monitor communication status by establishing an event log in Studio’s Output window (LogWin

module). To establish a log for Field Read Commands, Field Write Commands and Serial Communication, right-click

in the Output window and select the desired options from the pop-up menu.

You can also use the Remote LogWin module (Tools  Remote LogWin) to establish an event log on a remote

unit that runs Windows CE.

The following errors are extracted from the PEAK API, Hilscher API, and Advantech documentation. Please contact PEAK,
Hilscher and Advantech technical support for possible causes and procedures to solve.

Peak API Errors

Error Code Description

0 No error

 1

Transmit buffer in CAN controller is full

2 CAN controller was read too late

4 Bus error: an error counter reached the 'light' limit

8 Bus error: an error counter reached the 'heavy' limit

16 Bus error: the CAN controller is in bus-off state

32 Receive queue is empty

64 Receive queue was read too late

128 Transmit queue is full

256 Test of the CAN controller hardware registers failed (no hardware found)

512 Driver not loaded

1024 Hardware already in use by a Net

2048 A Client is already connected to the Net

5020 Hardware handle is invalid

6144 Net handle is invalid

7168 Client handle is invalid

8192 Resource (FIFO, Client, timeout) cannot be created

16384 Invalid parameter

32768 Invalid parameter value

65536 Unknown error

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 28/31

262144 Channel is not initialized

Hilscher API errors

Error
Code

Description

-1 Board not initialized

-2 Error in internal init state

-3 Error in internal read state

-4 Command on this channel is active

-5 Unknown parameter in function occurred

-6 Version is incompatible with DLL

-7 Error during PCI set run mode

-8 Could not read PCI dual port memory length

-9 Error during PCI set run mode

-10 Dual port ram not accessible(board not found)

-11 Not ready (ready flag failed)

-12 Not running (running flag failed)

-13 Watchdog test failed

-14 Signals wrong OS version

-15 Error in dual port flags

-16 Send mailbox is full

-17 PutMessage timeout

-18 GetMessage timeout

-19 No message available

-20 RESET command timeout

-21 COM-flag not set

-22 IO data exchange failed

-23 IO data exchange timeout

-24 IO data mode unknown

-25 Function call failed

-26 DPM size differs from configuration

-27 State mode unknown

-28 Output port already in use

-30 Driver not opened (device driver not loaded)

-31 Can't connect with device

-32 Board not initialized (DevInitBoard not called)

-33 IOCTRL function failed

-34 Parameter Device Number invalid

-35 Parameter Info Area unknown

-36 Parameter Number invalid

-37 Parameter Mode invalid

-38 NULL pointer assignment

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 29/31

-39 Message buffer too short

-40 Parameter Size invalid

-42 Parameter Size with zero length

-43 Parameter Size too long

-44 Device address null pointer

-45 Pointer to buffer is a null pointer

-46 SendSize parameter too long

-47 ReceiveSize parameter too long

-48 Pointer to buffer is a null pointer

-49 Pointer to buffer is a null pointer

-50 Memory allocation error

-51 Read I/O timeout

-52 Write I/O timeout

-53 PCI transfer timeout

-54 Download timeout

-55 Database download failed

-56 Firmware download failed

-57 Clear database on the device failed

-60 Virtual memory not available

-61 Unmap virtual memory failed

-70 General error

-71 General DMA error

-74 I/O WatchDog failed

-75 Device WatchDog failed

-80 Driver unknown

-81 Device name invalid

-82 Device name unknown

-83 Device function not implemented

-100 File not opened

-101 File size zero

-102 Not enough memory to load file

-103 File read failed

-104 File type invalid

-105 File name not valid

-110 Firmware file not opened

-111 Firmware file size zero

-112 Not enough memory to load firmware file

-113 Firmware file read failed

-114 Firmware file type invalid

-115 Firmware file name not valid

-116 Firmware file download error

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 30/31

-117 Firmware file not found in the internal table

-118 Firmware file BOOTLOADER active

-119 Firmware file no file path

-120 Configuration file not opend

-121 Configuration file size zero

-122 Not enough memory to load configuration file

-123 Configuration file read failed

-124 Configuration file type invalid

-125 Configuration file name not valid

-126 Configuration file download error

-127 No flash segment in the configuration file

-128 Configuration file differs from database

-131 Database size zero

-132 Not enough memory to upload database

-133 Database read failed

-136 Database segment unknown

-150 Version of the descript table invalid

-151 Input offset is invalid

-152 Input size is 0

-153 Input size does not match configuration

-154 Invalid output offset

-155 Output size is 0

-156 Output size does not match configuration

-157 Station not configured

-158 Cannot get the Station configuration

-159 Module definition is missing

-160 Empty slot mismatch

-161 Input offset mismatch

-162 Output offset mismatch

-163 Data type mismatch

-164 Module definition is missing,(no Slot/Idx)

Advantech Error Codes

Error
Code

Description

995 Users cancel the operation or reset chip while drivers are receiving data

31 Busoff of device is discovered before drivers read any frames

87 Drivers cannot allocate resources according to the number defined by the third parameter frame

997 In asynchronous mode, operation will be pending if drivers cannot complete user's write request at present

CAN – Driver Version 1.3

Doc. Revision D – Jan. 14, 2016

Page 31/31

Revision History

Doc.
Revision

Driver
Version

Author Date Description of Changes

A 1.00 Fellipe Peternella Aug. 03, 2010 Initial version

B 1.01 André Körbes Sep. 16, 2010
Included header CANBATCH
Fixed “TPC” interface for Advantech devices on WinCE.

C 1.2 Paulo Balbino Jan. 26, 2015
Added support for the CANSLAVE mode to handle multiple messages with
different IDs

D 1.3 Priya Yennam Jan. 14, 2016 Fixed CAN driver performance issue of driver being incredibly slow.

