
Technical Note – IWS Internal Tasks
October 3, 2003 – Rev. B
©Copyright InduSoft Systems Ltd. 2003

Page 1 / 8

IWS Internal Tasks

Introduction

This document describes the internal structure of Studio, explaining how data flows through the runtime module and
how they are executed. A good understanding of the information covered in this document is important to avoid
unexpected behavior when developing complex applications and to guarantee the best performance during the
execution of the application.

This document presumes that the reader is familiar with the basic components of Studio and how to configure them.

Internal Structure and Data Flow

Studio is composed by the following runtime tasks (threads):

� Background Tasks : Execute the scripts configured in the Math and Scheduler worksheets and manage the
settings configured in the Alarm, Trend, Recipe and Report worksheets.

� Database Spy : Debugging tool used to: Read data from the tags database (for example: tags values); Write

data to the tags database (for example: tags values); Execute functions and/or expressions for testing
purposes.

� DDE Client : Manage the DDE communication messages with any local/remote DDE Server, according to the

settings configured in the DDE Client worksheets.

� DDE Server : Manage the DDE communication with any local/remote DDE Client.

� Driver Runtime : Manage the reading/writing commands configured in the Driver worksheets.

� LogWin : Debugging tool used to trace messages generated from the other tasks.

� ODBC Runtime : Manage the ODBC data communication with any SQL Relational database, according to the
settings configured in the ODBC worksheets.

� OPC Client : Manage the OPC communication messages with any local/remote OPC Server, according to the

settings configured in the OPC Client worksheets.

� OPC Server : Manage the OPC communication with any local/remote OPC Client.

� TCP/IP Client : Manage the TCP/IP communication messages with a remote TCP/IP Server module (from
Studio), according to the settings configured in the TCP/IP Client worksheets.

� TCP/IP Server : Manage the TCP/IP communication messages with a remote TCP/IP Client module (from

Studio).

� Viewer : Execute the scripts configured on the screen (On Open, On While, On Close, Command, Hyperlink,
etc) and updates the objects on the screen.

All runtime tasks exchange messages directly with the Tags Database . The Tags Database is the “heart” of Studio
and it keeps the current values and status of each tag configured in the application. The tasks never exchange data

Technical Note – IWS Internal Tasks
October 3, 2003 – Rev. B
©Copyright InduSoft Systems Ltd. 2003

Page 2 / 8

each other directly. They always send/receive messages to/from the Tags Database and it manages the data flow
between all the modules.

The following diagram shows the internal structure of Studio, where all the runtime tasks exchange data directly with
the Tags Database :

For instance, if the Driver reads a new value from the PLC, it updates the value of the tag associated to this
information in the Tags Database . If this information must be shown on the screen, the Tags Database will send a
message to the Viewer with the new value of the tag, so the Viewer module will update this information on the screen.

Technical Note – IWS Internal Tasks
October 3, 2003 – Rev. B
©Copyright InduSoft Systems Ltd. 2003

Page 3 / 8

Notice that the Driver didn’t send the message directly to the Viewer . Also, there is not pooling between the tasks. As
soon as any information is updated on the Tags Database , it will forward this message to all runtime modules which
need this information. This behavior allows a high performance for the internal data flow. Also, a new task can easily
be included to this architecture, since each internal task (thread) works independently each other but can access any
information from any other task, by the Tags Database .

� Note: The Tags Database stores not only the value of each tag, but also the status of all properties associated to
each tag (alarm conditioning, timestamp, quality, etc.).

Each task keeps one virtual table with the tags which are relevant for them at the current time. The Tags Database
uses this table to decide which information must be updated in each task. For instance, the Viewer module keeps one
virtual table with the list of all tags configured in the screens which are open. If any of these tags change value in the
Tags Database , it will send a message to the Viewer. Then, the Viewer will update all objects where this tag is
configured.

� Tips: It is important to keep in mind that the Viewer module updates each object only when at least one tag
configured in the object changes value. If a dynamic (for example: Text I/O) is configured with a function which
does not require any tag (for example: NoInputTime()), then the object will not be updated by the Viewer because
there is no tag associated to the object.

Execution (Tasks switching)

Studio is a SCADA system composed of several modules and they must be executed simultaneously. Based on the
multitasking concept, each runtime task (Viewer , Driver , etc) is a thread and the operating system switches
automatically from one thread to another.

There is a common misunderstanding between the execution of a SCADA system with the execution of a PLC
program. In a PLC program, there is a simple loop as shown in the following diagram:

Technical Note – IWS Internal Tasks
October 3, 2003 – Rev. B
©Copyright InduSoft Systems Ltd. 2003

Page 4 / 8

For a SCADA system, there is not only one program to be scanned. There are several tasks running simultaneously
and most of them can read and write data. The data (value of the tags) are modified continuously during the execution
of the tasks. Therefore, the diagram above is NOT applied for a SCADA system.

Studio has only one process (Studio Manager.exe). When the runtime application is executed, this process starts the
Tags Database and all the runtime modules configured in the application. The user can configure which modules
should be started during the runtime (for example: Viewer and Driver runtime modules).

Each process keeps a list of active threads for the operating system. Actually, each process can activate and
inactivate each thread during the runtime, according to the algorithm of each process. Also, each thread has a priority
value, configured when each thread is created. The operating system keeps scanning all threads active at the current
time. The threads with higher priority value are executed first. While threads with higher priority value are active, the
threads with lower priority value are not executed at all. If there is more than one thread with the same priority number
and there is not any other thread with higher priority, the operating system keeps switching through the threads with
the same priority.

� Note: All threads of Studio are set with priority number 7 (THREAD_PRIORITY_NORMAL). Most of programs
have this priority number. Real-time programs (for example: SoftPLCs) and Device Drivers have higher priority
numbers (THREAD_PRIORITY_HIGHEST). However, they must provide a mechanism to keep them inactive for
some time; otherwise, the threads with normal priority will not be executed. Studio uses the UNICOMM.DLL library
for serial drivers. This library creates a thread with THREAD_PRIORITY_HIGHEST that keeps it inactive
(sleeping) until data arrives in the serial channel. When new data is detected in the serial channel, this thread
wakes up and transfers the data from the operating system buffer to the thread buffer, in order to be treated by the
Driver. This is the only thread with highest priority created by Studio.

Each thread cannot be kept active all the time, otherwise the CPU usage would consistently be 100% – a situation that
must be avoided. Each program provides its own mechanism to avoid keeping each thread active all the time. The
following text describes some parameters which are used to explain the mechanism used by Studio to avoid having all
threads active all the time.

� TimeSlice (from the operating system): The operating system switches automatically between all the active
threads. By default, the operating system executes each thread for about 20ms and then switches to the next
active thread. Therefore, the operating system does not keep executing the same thread for more than 20ms if
there are other active threads with the same priority number waiting to be executed.

� TimeSlice (from Studio): In addition to the TimeSlice from the operating system, Studio sets a TimeSlice time

for each thread. The TimeSlice time can be configured for each thread of Studio (except for Background
Task) and it sets the amount of time that each thread remains continuously active. When a thread becomes
active, the operating system can switch to it.

� Period (from Studio): This parameter can be configured for each thread of Studio (except for Background

Task) and it sets the maximum time that each thread will keep inactive.

Technical Note – IWS Internal Tasks
October 3, 2003 – Rev. B
©Copyright InduSoft Systems Ltd. 2003

Page 5 / 8

The TimeSlice and Period parameters from Studio can be set in the Program Files.INI file stored in the \BIN
subfolder of Studio. The default values are listed below (the values are set in milliseconds):

[Period]
DBSpy=1000
UniDDEClient=200
UniDDE=200
Driver=20
LogWin=100
UniODBCRT=100
OPCClient=20
OPCServer=20
TCPClient=100
TCPServer=100
Viewer=50

[TimeSlice]
UniDDEClient=100
Driver=10
OPCClient=10
OPCServer=10
TCPClient=200
TCPServer=200
Viewer=200

� Caution: The default settings should not be modified, unless strictly necessary. The wrong configuration of these

parameters can result in malfunctioning of the whole system (for example: CPU usage at 100%) and/or bad
performance of some tasks.

The diagram below illustrates the execution of a generic thread (for example: Viewer). In the example, the Period time
was set in Studio with the value 50ms (signal �) and the TimeSlice time was set in Studio with the value 30ms

(signal �). The signal � shows when the thread is active for the operating system and the signal 	 shows the
execution of the thread itself.

Studio generates a Period message each 50 milliseconds (signal �). Whenever this message is generated, its thread
turns to the active state and becomes this state until the TimeSlice time (from Studio) is over. Then, the thread will
remain inactive until the next Period message is generated by Studio (signal �).

While the thread is active, the operating system is in charge of executing it. The fact that the thread is active does not
mean that the operating system will start executing it immediately – it may be executing other threads when this thread
became active. For example, when the thread is executed by the operating system, the TimeSlice timer will start
counting. The thread is executed for 20ms (TimeSlice from the operating system). Then, the operating system
switches automatically to the next active thread (for example: Driver) and so on.

Technical Note – IWS Internal Tasks
October 3, 2003 – Rev. B
©Copyright InduSoft Systems Ltd. 2003

Page 6 / 8

In the previous example, the TimeSlice time from Studio was set with the value 30ms which means that the thread is
not supposed to be executed more than once in each TimeSlice of Studio. However, if the Studio TimeSlice is set
with higher values, the same thread is likely to be executed more than once in the same TimeSlice time.

In the next example, the Period was set to 100ms and the Studio TimeSlice was set to 80ms. Note that the thread
can be executed more than once during the same TimeSlice time. When the Studio TimeSlice time is over, the thread
execution is interrupted. Regardless of the Studio Period and TimeSlice settings, the thread is not executed
contiguously for more than 20ms, due to the TimeSlice time from the operating system.

In the previous example, while the Viewer thread is not being executed, the CPU may be executing any other thread
or may be idle (if there is not any other active thread to be executed). It is important to remember that the Period and
TimeSlice settings from Studio were created to avoid having all threads active all the time. It would require 100% of
the CPU usage – a condition that must be avoided.

While each thread is executed, it must treat its pendent messages. For instance, the Viewer module must update the
objects on the screen(s) which must be updated. When there is no message to be treated, the thread becomes
inactivate and gives the control back to the operating system, which will then immediately switch to the next active
thread. Therefore, the thread can interrupt its own execution even before the TimeSlice time from the operating
system is over. It happens often in real-world applications.

� Note: The threads Database Spy , LogWin , DDE Server and ODBC Runtime do not have a TimeSlice setting
from Studio. When each one of these threads treats all pendent messages, they became inactive until the next
Period message.

Technical Note – IWS Internal Tasks
October 3, 2003 – Rev. B
©Copyright InduSoft Systems Ltd. 2003

Page 7 / 8

The mechanism above does not apply to the Background Task thread. Its mechanism is described in the following
paragraphs.

The Background Task executes the scripts from the Math and Scheduler sheets, such as the messages from the
Alarm and Trends sheets. In addition, it executes the Recipe and Report commands when the Recipe() or Report()
functions are executed during the runtime.

Although Math , Scheduler , Alarm and Trend are not threads, it is possible to set their Period time in the Program
Settings.INI file from the \BIN subfolder of Studio. The default values are listed below (the values are set in
milliseconds):

[Period]
Math=100
Sched=50
Alarm=100
Trend= 1000

This means that in each 100ms, Studio generates a Period message for the Math task. In each 50ms, it generates a
Period message to the Scheduler task and so on. These settings should not be modified, unless strictly necessary.

It is necessary to keep in mind that the Background Task is a thread with the same priority as the other threads in
Studio (Viewer , Driver , etc.). This means that it will not be executed by the operating system contiguously for more
than 20ms.

The Recipe and Report commands are executed by the Background Task when the Recipe() or Report() functions
are executed. These functions are synchronous and once the Background Task start executing them, it will not switch
to other tasks (Math , Scheduler , Alarm or Trend) until the function has been completely executed. Recipe() or
Report() functions usually take a few milliseconds to execute.

Backgound Task must switch between the Math , Scheduler , Alarm and Trend tasks. When Background Task
switches to the Scheduler task, it will not switch to other task (Math , Alarm or Trend) until all Scheduler worksheets
are executed. After executing all Scheduler sheets, the Scheduler will not be executed again until the next Period
message for the Scheduler task. The same behavior is applied for the Alarm and Trend tasks: When Background
Task switches to each one of these tasks, it does not switch to other tasks managed by Background Task until all
pendent messages are treated. They will not be executed again, until the next Period message for each of these tasks
is generated by Studio.

The Scheduler , Alarm and Trend tasks are typically executed in a few milliseconds. However, the Math sheets can
take a longer time to be executed, due to loops and complex scripts. Therefore, the same mechanism applied to the
Scheduler , Alarm and Trend cannot be applied to the Math task.

The Background Task executes the Math sheet for no more than 10ms continuously and switches to other tasks (for
example: Scheduler). Background Task cannot execute the Math task again during for the next 50ms. During these
50ms, Background Task can execute other tasks (Scheduler , Alarm , Trend , Recipe or Report). When all Math
worksheets are fully executed, a new scan of the Math worksheets will not begin until a new Period message for the
Math task is generated by Studio.

It is important to emphasize that this mechanism was created to avoid having the CPU usage at 100% all the time.

Technical Note – IWS Internal Tasks
October 3, 2003 – Rev. B
©Copyright InduSoft Systems Ltd. 2003

Page 8 / 8

� Caution: Special caution must be taken when using the Math() function. If this function is configured in a

Scheduler worksheet, it will be executed by the Scheduler task. This means that as soon as it is triggered in the
Scheduler worksheet, no other task will be executed by the Background Task until the entire Math worksheet
called by the Math() function is completely executed. It can take several milliseconds or even seconds, according
to the script configured in the Math worksheet (especially for loops). If the Math() function is configured on any
screen (for example: a Command dynamic), the Viewer thread will stop updating the screen until the Math
worksheet called by the Math() function is completely executed. To avoid this situation, when the Scheduler or an
object on the screen must enable the execution of a Math worksheet, the following procedure is recommended:
Set one auxiliary tag with the value 1 (the Scheduler or the Viewer task will send a message to the Tags
Database to update the value of this tag). Configure this tag in the Execution field of the Math worksheet that
must be executed. When the Background Task scans this Math worksheet, it will be executed. Finally, reset this
tag in the last line of the Math worksheet (writes the value 0 to this tag). Therefore, this Math worksheet will not be
executed in the next scan, unless the auxiliary tag is set with the value 1 again.

Map of Revision

Revision Author Date Comments

0 Fabio Terezinho Jan/30/2002 Initial revision

A Fabio Terezinho Feb/04/2002
Updated the default values for the parameters Period and
TimeStamp

B Fabio Terezinho Oct/3/2003 Layout revision

