

VBScript Reference Manual
for InduSoft Web Studio

www.InduSoft.com

info@indusoft.com

VBScript Reference Manual InduSoft Web Studio

2 InduSoft, Ltd.

Copyright © 2006-2007 by InduSoft®. All rights reserved worldwide.

No part of this publication may be reproduced or transmitted in any form or by any means without written authorization from InduSoft.

InduSoft is a registered trademark of InduSoft. CEView is a trademark of InduSoft.

The information contained within this document is subject to change without notice. InduSoft does not assume responsibility for any errors or
inaccuracies that may occur in this publication.

Visual Basic and VBScript are registered trademarks of Microsoft Corporation in the United States and other countries.

Other brand or product names are trademarks or registered trademarks of their respective owners.

Last updated: 09 April 2007

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 3

Table of Contents

About VBScript ..5
VBScript Limitations in IWS..7
The Microsoft Visual Basic Family...8
Differences between VBScript and VBA ..9
VBScript Hosting Environments...10
VBScript Language Overview ..11

VBScript Functionality ...11
VBScript Elements ...11
Variable Data Types and Subtypes..12
Data Subtype Identification...12
Data Subtype Conversion..12
Variable Naming Rules & Conventions...13
Variable Scope..13
VBScript Constants...13
Declaring VBScript Variables and Constants ..14
VBScript Keywords..14
Operators ..14
Operator Precedence ...15
Functions ..15
Statements ..18

Objects and Classes ..21
VBScript Object Commands ...23
VBScript User-Defined Class Objects...24
VBScript Objects and Collections ...28

Err Object ...29
Scripting Dictionary Object...30
Scripting FileSystemObject...31

COM Objects and Collections...39
VBScript Configuration and Operation in IWS ...43

Global Procedures...45
Graphics Script ...46
Screen Scripts ...47
Command Dynamic ..49
ActiveX Events...50
Background Task Startup Script..51
Background Task Script Groups..51
Scope of VBScript Procedures and Variables..53
Accessing IWS Tags and IWS Built-in functions ..55
Accessing ActiveX Objects from VBScript...58
IntelliSense ...60
VBScript with Web Thin Clients...62

VBScript Language Reference..63
VBScript Variables ...64

Variable Data Types and Subtypes ..64

VBScript Reference Manual InduSoft Web Studio

4 InduSoft, Ltd.

Array Variables...66
Boolean Variables...67
Byte, Integer & Long Variables...69
Currency Variables ...69
Date (and Time) Variables ..70
Empty Variables ...72
Error Variables..72
Null Variables...72
Object Variables ...73
Real (Single, Double) Variables ..73
Strings Variables..74
Data Subtype Identification...76
Data Subtype Conversion..79
VBScript Naming Rules and Conventions...80
Variable Scope..82

VBScript Constants...84
Explicit Constants ...84
Implicit Constants ...86
Declaring Variables, Objects and Constants ..95

VBScript Keywords..97
VBScript Literals ..97

VBScript Operators...98
Arithmetic Operators...98
Assignment Operator ..98
Comparison Operators ..98
String Concatenation Operators...98
Logical Operators..99
Is Operator ..99
$ Operator...99
Operator Precedence ...111

VBScript Functions...112
VBScript Derived Functions ...169
VBScript Statements...170
VBScript Objects and Collections ...196
Scripting Type Library..212
FileSystemObject (FSO) ...216
TextStream Object ..250

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 5

Using VBScript With InduSoft HMI/SCADA Applications

InduSoft Web Studio (IWS) supports both a simple, proprietary scripting language (worksheet style) using one
or more Math worksheets, as well as VBScript (new with IWS Version 6.1). Developers can use either
scripting language or a combination of both. VBScript code is placed in one of several modules, based on the
functionality to be performed and the scope of the code and its variables. This subject is covered more
completely in the VBScript Configuration and Operation in IWS section.

Examples of how VBScript can be used:
• To execute a logic sequence or a routine when opening or closing a screen, or while the screen is open
• To execute a logic sequence in the background
• Run a simple VBScipt code segment based on an IWS object’s command dynamic
• Interaction with IWS Tags and control of IWS built-in functions
• Manipulation of ActiveX Controls and ActiveX Control event handler
• Simple file I/O (e.g. text files)
• Database interfaces (e.g. via ADO.NET), especially where use of SQL is required
• Interface to Windows Management Instrumentation (WMI) and Web Services (via WSDL)
• Interface to Microsoft Office applications (e.g. Excel, Access, Word) and Microsoft Office components

via OLE Automation
• Run on a Web Thin Client

Where you should use IWS instead of VBScript
• User Interface. IWS does not support Windows Scripting, which typically provides the User Interface for

VBScript via Forms.
• Device I/O (e.g. PLC communications). VBScript does not directly support serial or network

communications.

About VBScript
Visual Basic Script Language (VBScript) is one of Microsoft’s scripting languages that is commonly
associated with Server-side and Client-side web applications. However, Microsoft has opened up
VBScript to developers and now VBScript can be found in a variety of applications. InduSoft has
standardized on VBScript since it provides a significant subset of Microsoft Visual Basic’s functionality,
and VBScript supports all of Microsoft’s operating system platforms including Windows CE, unlike VBA
(Visual Basic for Applications) which cannot support the Windows CE runtime environment.

VBScript is a programming language that is often viewed as a dialect of VBA (Visual Basic for
Applications), although it is really its own language. The VBScript language attempts to balance
flexibility, capability and ease of use. VBA is a subset of Visual Basic that was developed to automate
Microsoft Office applications, whereas VBScript was originally developed to support Server-side and
Client-side web applications. Although VBScript and VBA provide many of the same features, there are
some differences between them, primarily due to the applications they were each developed to support.

So before we get into details of the VBScripting language, perhaps it is worthwhile to review how
VBScript is used with InduSoft Web Studio (IWS) or alternatively, why VBScript is included with IWS.
IWS provides an easy-to-use development environment that configures predefined objects to support
an HMI/SCADA application. Applications can be built quickly and are relatively easy to support, even by
someone other than the original developer. By comparison, programming languages such as Visual
Basic can be used to develop an HMI/SCADA application, but the lower per-copy licensing cost savings
quickly gets offset by much higher development costs and support costs. A programming development
environment is clearly more flexible than a configuration development environment, but there is a
significant cost associated with programming that makes it an unattractive alternative for HMI/SCADA
applications. By adding VBScript support to IWS, InduSoft lets you chose between configuration and
programming to meet your application needs and develop applications efficiently.

VBScript Reference Manual InduSoft Web Studio

6 InduSoft, Ltd.

IWS implements Visual Basic Script Edition 5.5 or higher, and functions as the “host” for VBScript. IWS
provides an integrated development environment where the HMI/SCADA application developer can
take advantage of the functionality and ease of use of VBScript, yet have access to all IWS tags and all
built-in functions directly from VBScript. The diagram below illustrates the IWS architecture. Since
VBScript is an interpreted language, the VBScript Engine parses the language at runtime and executes
commands subject to limitations placed by the VBScript Host. InduSoft allows VBScript code to be
located several areas in an IWS application:
• Global Procedures. This is an area for subroutines and functions that can be called by any other

VBScript routine, or by a built-in IWS function (requires IWS Version 6.1 Service Pack 1 or later).
• Graphic Script. Code in this area gets executed whenever any graphics (screens) are active.
• Screen Script. This is where code is executed when an individual screen is active.
• Command Dynamic. When an object has a Command Dynamic, one option is to run VBScript

code.
• ActiveX Events. A VBScript code segment can be run based on an ActiveX event
• Background Task. VBScript code can be running as a background task. One or more VBScript

groups are supported, allowing conditional processing of the various VBScript background tasks.

This subject is covered more completely later in the VBScript Configuration and Operation in IWS
section.

InduSoft Web Studio Version 6.1 Internal Architecture

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 7

In a Web Thin Client configuration, VBScripts associated with a screen can run either on the
workstation runtime display or on a Web Thin Client station running Microsoft Internet Explorer. The
VBScript routines that can execute on a Web Thin Client include those located in a Screen Script, a
Command Dynamic, and an ActiveX Event. Since VBScript runs on all Microsoft operating system
platforms, there are no limitations to VBScript running on any Microsoft compatible platform.

VBScript Limitations in IWS
Microsoft initially developed VBScript to work with websites (web pages). In the web server
environment, VBScript was designed to work with the Windows Scripting host and ASP, which provide
file access and form generation. On the web client side, VBScript was designed to work with Microsoft
Internet Explorer using HTML and DHTML, which provide display generation. So as a result of the initial
design goals, VBScript does not have much in the way of built-in language support for Forms, File I/O,
Communications or direct Printing control. Additionally, IWS has its own built-in web server and does
not use ASP.

By using IWS built-in functions, ActiveX controls and Microsoft Office Applications (or components),
there are several methods for workarounds to these limitations as well as to extend VBScript’s
capability.

The following are some of VBScript’s limitations and workarounds.
Item VBScript Workarounds
Forms Does not support Use IWS objects for user interface, pass parameters to

IWS. Can also use ActiveX Controls.
File I/O Limited support directly Use Scripting Objects and/or IWS built-in functions. Can

also use ActiveX Controls.
Communications Does not directly support Use IWS built-in functions or 3rd party ActiveX controls
Printing Does not directly support Use Microsoft Office Applications or IWS built-in functions
Charting/Graphing Does not directly support Use IWS trending, Microsoft Office Applications, Microsoft

Office Components, or 3rd party ActiveX controls
DDE Does not support Supported in IWS built-in commands (not under Windows

CE).

VBScript Reference Manual InduSoft Web Studio

8 InduSoft, Ltd.

Basic, VB (Visual Basic), VB.NET, VBA and VBScript – The Evolution

Most everyone is familiar with Basic, the Beginner’s All-purpose Symbolic Instruction Code that has been
around since 1964. Originally designed to teach non-science students about computers, it was one of the first
high-level programming languages ported to the PC in the 1980’s. It has continued to evolve with
programming and operating system technology. Here is a quick summary of the different versions today:
• Basic A simple high-level programming language developed in 1964. Migrated to the PC platform in

the 1980’s, with many versions developed.
• VB Visual Basic. An event-driven programming version of Basic, supporting graphical user

interfaces (GUI), database access and ActiveX controls that was introduced in 1991. VB
Version 6 was the last version released (1998).

• VB.NET The successor to VB launched in 2002. Supports Microsoft .NET framework architecture and is
a true object-oriented programming language.

• VBA Visual Basic for Applications is a version of VB (most compatible with Version 6) that is built
into Microsoft Office products (Word, Excel, Access, Outlook, PowerPoint) and into some other
3rd party products. Unlike VB or VB.NET, VBA does not run stand-alone and only runs from a
host application, usually within a Microsoft Office application. VBA can control an second
application while running in a host application. VBA works on Windows XP/2000/NT platforms
only.

• VBScript VBScript is considered a dialect of VBA and is the default language for website Active Server
Pages (ASP). Like VBA, VBScript does not run stand-alone and only runs from a host
application. It is run by the operating system’s Windows Script Host and can be used for
Server-side Windows scripting or Client-side Web Page scripting using Microsoft Internet
Explorer. A key advantage of VBScript is that it is supported under Windows CE.

The Microsoft Visual Basic Family
VBScript is part of a family of Microsoft programming languages that support object-oriented
programming. This family of products is derived from the Basic programming language, first developed
in 1964. Once study recently indicated that over 50% of all programmers are familiar with VB (Visual
Basic) programming.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 9

Differences between VBScript and VBA
Since other HMI/SCADA products support VBA, it might be worth highlighting some of the key
differences between VBScript and VBA. For HMI/SCADA applications, these differences are relatively
minor. However, VBScript support for the Windows CE operating system is a major differentiator
between the two products. For additional details or a complete listing of the differences, please
reference the MSDN website at http://msdn.microsoft.com.

Key differences between VBScript vs. VBA
Item VBA VBScript

Primary Purpose Automation of MS Office Applications Automation of Web Services
Support for Windows CE No Yes
Data Types Stronger Type Declaration. Many

data types supported. (e.g. String,
Integer, Date, Boolean)

Typeless, uses Variant Type. The final
data subtype will be determined at
runtime based on use. Supports same
data subtypes as VBA and VB (e.g.
String, Integer, Date, Boolean, etc)

Dimension Statement Dim Var as Type Dim Var
(Cannot specify Type, but it is
determined at runtime based on use)

Class Block declaration Must use separate Class Module Class Block Declaration supported
Object Clipboard

Collection
Not supported

Object Manipulation TypeOf Not supported
Eval function Not supported Expression evaluation supported
Execute function Not supported Allows interpreted code to be executed

on the fly.
RegExp No Allows creation of regular expressions
Error Handling Several different types Supported but more limited
Arrays Lower bound can be <>0 Lower bound is 0
File I/O Supported Not directly supported but VBScript can

use FileSystemObject and can access
IWS built-in I/O functions

DDE Supported Not supported
Financial functions Supported Not supported
Strings Fixed length strings Variable length only
Debugging Debug, Print, End, Stop Use MsgBox or IWS built-in functions
Line labels Supported Not supported

VBScript Reference Manual InduSoft Web Studio

10 InduSoft, Ltd.

VBScript Hosting Environments
While much of the material contained in the document covers the VBScript language and its use for
IWS applications, it is important to understand conceptually how VBScript works in an IWS environment.
If you browse the web for information on VBScript, you will likely find a plethora of information, but
many of the examples are for running VBScript with ASP using the Windows Scripting Host.

VBScript was developed using a Microsoft technology called ActiveX scripting, which is a COM-based
specification that allows the development of runtime engines for virtually any scripting language. Other
scripting languages include JScript. VBScript can create an instance, or instantiate, a COM object, and
thus through VBScript, many system features can be controlled such as ActiveX Controls, the
FIleSystemObject (providing access to the Windows file system), Microsoft Office Automation (COM),
and ActiveX Database Objects (ADO).

The VBScript Scripting Engine runs on a host, and there are several hosts that can run VBScript (or
any ActiveX Scripting-compliant engines) including Windows Scripting Host and Microsoft Internet
Explorer. VBScript can be used in conjunction with Windows Scripting Host (WSH) to automate system
administration tasks. WSH is part of the Microsoft operating system and treats a VBScript application
like a powerful batch file. VBScript applications can also be found with Web-based shell views. Most
frequently, VBScript is used with Active Server Pages (ASP) for Server-side web applications and
Microsoft Internet Explorer for Client-side web applications.

Stating with Version 6.1, IWS is now a host for the VBScript Scripting Engine. When used in
conjunction with IWS, IWS becomes the only host for the VBScript Scripting Engine that is used. WSH
is not used by IWS, even though WSH may be resident on the PC running the IWS application.

InduSoft has placed implemented VBScript host environment in a manner that is logically consistent
with the current IWS application development environment and licensing method. What this means is
that there are multiple locations in the development environment where VBScript code segments can
be located (so the code is located close to its use), and restrictions placed on the scope of procedures
and variables. In IWS, there is no such thing as a Global Variable that is accessible by any VBScript
code segment. The IWS tags and built-in procedures can be accessed by any VBScript code segment.
The restrictions and interaction with IWS tags and built-in functions implemented by the IWS VBScript
Host are covered in more detail in the VB Configuration and Operation in IWS section.

The VBScript Scripting Engine performs a few key functions. It performs syntax checking in the
development environment (e.g. right mouse click on a VBScript Interface, then select Check Script). It
also interacts with IntelliSense, an auto-completion tool that provides reference to available functions
(VBScript and IWS), IWS tags and ActiveX Controls (name, Properties and Methods). And most
importantly, it executes the VBScript code at runtime, providing error messages if an error occurs. It
should be noted that unlike most programming languages, VBScript is not compiled; it runs in an
interpreted mode. The VBScript Scripting Engine (vbscript.dll) is responsible for interpreting (via the
VBScript Parser, a part of the VBScript Scripting Engine) and executing the VBScript statements, and it
does so quite efficiently. IWS uses Version 5.6 or later of the Microsoft VBScript Scripting Engine.

There are no limitations on the number of VBScript variables supported in IWS, however the amount of
storage for VBScript variables is determined by the amount of memory available in your system.
VBScript variables do not count against IWS tag limits for licensing purposes.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 11

VBScript Language Overview
This section contains a short summary of the VBScript Language. A more complete reference of the
VBScript language can be found in the Appendix at the end of these materials.

VBScript Functionality
VBScript has inherited much of VB & VBA’s functionality including support for math operations, string
manipulation, arrays, flow control, data conversion, procedures, COM objects, and date/time functions.
Since VBScript was initially designed for Web applications, direct support for file I/O and user interface
functions was not included. However, VBScript can use the FileSystemObject COM object (scrrun.dll)
to manipulate local files and folders.

VBScript does not support explicitly declared data types. This was eliminated to speed up the runtime
performance of the VBScript Scripting Engine. All variables are type Variant and their subtype (e.g.
Integer, Real, etc.) is determined at runtime.

VBScript Elements
There are several VBScript elements, but the most important ones are variables, constants and types.
A variable is an item holding data that can change during the execution of the VBScript program. A
constant is an item that holds data but cannot change during the execution of the VBScript program.
The data that variables and constants hold can be classified into types.

Note that with IWS, you can check the VBScript syntax for errors by choosing the Check VBScript
command (right mouse click when in a VBScript interface). VBScript is always checked when saving
the Script interface.

The VBScript elements that are covered in this material (and the Appendix) include:

• Variables (Type, Declaration, Scope)
• Constants (Explicit, Implicit)
• Keywords
• Errors (Runtime, Syntax)
• Operators
• Functions and Procedures
• Statements
• Objects and Collections
• Example VBScript Applications

The Check Script function can
be invoked following a right
mouse click when the cursor is
on the VBScript Interface. Note
that Comments are in Green,
VBScript Functions and
KeyWords are in Blue,
Variables are in Black

VBScript Reference Manual InduSoft Web Studio

12 InduSoft, Ltd.

Variable Data Types and Subtypes
All variables in VBScript are a data type called Variant. This means that you do not (and cannot)
explicitly declare the variable type. In fact, with VBScript you do not need the Dim statement to allocate
storage for a variable. At runtime, the Parser in the VBScript Scripting Engine determines the Variant
data subtype to be used. These correspond to the more traditional classifications of data types (see
chart below).

Variant data subtypes

Subtype Description
Boolean Either True or False

Byte Contains integer in the range 0 to 255
Currency Floating-point number in the range -922,337,203,685,477.5808 to 922,337,203,685,477.5807

Date(Time) Contains a number that represents a date between January 1, 100 to December 31, 9999
Double Contains a double-precision, floating-point number in the range -1.79769313486232E308 to -

4.94065645841247E-324 for negative values; 4.94065645841247E-324 to
1.79769313486232E308 for positive values

Empty Uninitialized Variant
Error Contains an error number used with runtime errors

Integer Contains integer in the range -32,768 to 32,767
Long Contains integer in the range -2,147,483,648 to 2,147,483,647
Null A variant containing no valid data

Object Contains an object reference
Single Contains a single-precision, floating-point number in the range -3.402823E38 to -1.401298E-45

for negative values; 1.401298E-45 to 3.402823E38 for positive values
String Contains a variable-length string that can be up to approximately 2 billion characters in length.

The Parsers choice of data subtype will depend on how the variable is used in a statement or function.
Note that a variable’s subtype can change within a code segment.

Data Subtype Identification
If it is important to determine the Variant data subtype used at runtime, you may use any of the three
categories of functions to determine the data subtype:

• The VarType(variable) function which returns a code based on the Variant data subtype used
• Various IsXxxx(variable) functions which return boolean values indicating whether the variable

is of a specific data subtype.
• A TypeName(variable) function which returns a string based indicating the data subtype

Example: If varType(a) = vbInteger Then
 Msgbox “a is an Integer”
 EndIf

Data Subtype Conversion
VBScript provides several functions that convert a variable from one data subtype to another. Since
VBScript uses the Variant data type, these functions are not generally required. However, when
passing data between IWS (or CEView) and VBScript, or calling built-in IWS functions from VBScript
where variables need to be put into the proper argument format, these VBScript data subtype
conversion functions can be very useful.

 Example: a = 4.2
 b = cInt (a) ‘ b is an Integer with a value of 4

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 13

Variable Naming Rules & Conventions
VBScript has four primary rules for naming. These are:

1. Variable names must begin with an alpha character (a..z, A...Z) or an underscore character
2. After the first character, the variable name can contain letters, digits and underscores
3. Variable names must be less than 255 characters in length
4. The variable name must be unique in the scope in which they are declared

VBScript variable names are not case sensitive. Microsoft recommends following their naming
convention for variables, which puts attaches different prefixes to the variable name based on the data
subtype.

Variable Scope
Variables have “scope” which defines a variable’s visibility or accessibility from one procedure (or
VBScript Interface) to another, which is principally determined by where you declare the variable.
Generally, when you declare a variable within a procedure, only code within that procedure can access
or change the value of that variable. This is called local scope and is for a procedure-level variable.

If you declare a variable outside a procedure, you make it recognizable to all the procedures in your
Script. This is a Script-level variable, and it has Script-level scope. However, as previously noted,
InduSoft enforces certain restrictions on the scope of Variables and Procedures.

VBScript Constants
VBScript supports both explicit and implicit constants. Constants should never be used as variable
names.

Explicit constants are defined by the programmer. Explicit constants have a defined value which, unlike
a variable, is not allowed to change during the life of the script.

Implicit constants are pre-defined by VBScript. VBScript implicit constants usually begin with a vb
prefix. VBScript implicit constants are available to the VBScript programmer without having to define
them. Other objects, such as those used by ADO.NET, also have implicit constants predefined, usually
with different prefixes. However, the implicit constants for these objects may not be know to VBScript
and if not, will have to be defined as an explicit constant.

VBScript defines the following categories of implicit Constants:

Intrinsic Constant Category Intrinsic Constant Category
Color Constants File Attribute Constants

Comparison Constants File Input/Output Constants
Date and Time Constants MsgBox Constants
Date Format Constants MsgBox Function Constants

Days of Week Constants SpecialFolder Constants
New Years Week Constants String Constants

Error Constants Tristate Constants
VBScript Runtime Errors VarType Constants
VBScript Syntax Errors Locale ID (LCID)

VBScript Reference Manual InduSoft Web Studio

14 InduSoft, Ltd.

Declaring VBScript Variables and Constants
VBScript does not require the explicit declaration of scalar variables, i.e. those variables with only one
value assigned at any given time. Arrays, Objects (except Err) and Constants must be declared. While
it may initially be convenient not to declare variables, any typing (spelling) errors of the variable or
constant names may produce unexpected results at runtime.

VBScript Keywords
VBScript has many keywords. Keywords are merely the names or symbols used with built-in VBScript
functions. Keywords are reserved, i.e. they may not be used by the programmer as names of variables
or constants. VBScript keywords can be grouped into categories which include:

• Constants & Literals
• Operators
• Functions
• Statements
• Objects

Operators
VBScript defines various operators that perform operations based on the Variant subdata type(s).
Arithmetic operators are used to perform operations on two or more numbers.

Arithmetic Comparison

Symbol Definition
+ Add
- Subtract
* Multiply
/ Divide
\ Integer Divide
^ Exponentiation

MOD Modulus Division

Logical String
Symbol Definition
AND And
OR, | Or
XOR Exclusive OR
Eqv Equivalence
Imp Implication
Not NOT

Object IWS
Symbol Definition
Is Is (compare)

Symbol Definition
< Less than
<= Less than or equal
> Greater than
>= Greater than or equal
= Equal or assignment
<> Not equal

Symbol Definition
&, + Concatenation

Symbol Definition
$ Access to IWS Tags and Built-in functions

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 15

Operator Precedence
When several operations occur in an expression, each part is evaluated and resolved in a
predetermined order called operator precedence. Parentheses can be used to override the order of
precedence and force some parts of an expression to be evaluated before other parts. Operations
within parentheses are always performed before those outside. Within parentheses, however, normal
operator precedence is maintained.

When expressions contain operators from more than one category, arithmetic operators are evaluated
first, comparison operators are evaluated next, and logical operators are evaluated last. Comparison
operators all have equal precedence; that is, they are evaluated in the left-to-right order in which they
appear. Arithmetic and logical operators are evaluated in the following order of precedence:

When multiplication and division occur together in an expression, each operation is evaluated as it
occurs from left to right. Likewise, when addition and subtraction occur together in an expression, each
operation is evaluated in order of appearance from left to right.

The string concatenation operator (&) is not an arithmetic operator, but its precedence does fall in after
all arithmetic operators and before all comparison operators. The Is operator is an object reference
comparison operator. It does not compare objects or their values; it only checks to determine if two
object references refer to the same object.

Operator Precedence

Arithmetic Comparison Logical
Negation (-) Equality (=) Not
Exponentiation (^) Inequality (<>) And
Multiplication and division (*, /) Less than (<) Or
Integer division (\) Greater than (>) Xor
Modulus arithmetic (Mod) Less than or equal to (<=) Eqv
Addition and subtraction (+, -) Greater than or equal to (>=) Imp
String concatenation (&, +) Is &

Functions
VBScript contains a number of built-in functions (not to be confused with the Function Procedure).
These functions may or may not have arguments. These functions are called in a statement and may
return a result that can be assigned to a variable. VBScript’s functions are grouped as follows:

Array Functions

Array Functions Description
Array Returns a variant containing an array
Filter Returns a zero-based array that contains a subset of a string array based on a filter criteria
IsArray Returns a Boolean value that indicates whether a specified variable is an array
Join Returns a string that consists of a number of substrings in an array
LBound Returns the smallest subscript for the indicated dimension of an array
Split Returns a zero-based, one-dimensional array that contains a specified number of substrings
UBound Returns the largest subscript for the indicated dimension of an array

VBScript Reference Manual InduSoft Web Studio

16 InduSoft, Ltd.

Data Conversion Functions
Function Description
Abs Returns the absolute value of a specified number
Asc Converts the first letter in a string to its ASCII decimal representation
CBool Converts an expression to a variant of subtype Boolean
CByte Converts an expression to a variant of subtype Byte
CCur Converts an expression to a variant of subtype Currency
CDate Converts a valid date and time expression to the variant of subtype Date
CDbl Converts an expression to a variant of subtype Double
Chr Converts the specified ANSI code to a character
CInt Converts an expression to a variant of subtype Integer
CLng Converts an expression to a variant of subtype Long
CSng Converts an expression to a variant of subtype Single
CStr Converts an expression to a variant of subtype String
Fix Returns the integer part of a specified number
Hex Returns the hexadecimal value of a specified number
Int Returns the integer part of a specified number
Oct Returns the octal value of a specified number
Round Returns a rounded number
Sgn Returns the integer portion of a number

Date and Time Functions

Function Description
CDate Converts a valid date and time expression to the variant of subtype Date
Date Returns the current system date
DateAdd Returns a date to which a specified time interval has been added
DateDiff Returns the number of intervals between two dates
DatePart Returns the specified part of a given date
DateSerial Returns the date for a specified year, month, and day
DateValue Returns a date
Day Returns a number that represents the day of the month (between 1 and 31, inclusive)
FormatDateTime Returns an expression formatted as a date or time
Hour Returns a number that represents the hour of the day (between 0 and 23, inclusive)
IsDate Returns a Boolean value that indicates if the evaluated expression can be converted to a

date
Minute Returns a number that represents the minute of the hour (between 0 and 59, inclusive)
Month Returns a number that represents the month of the year (between 1 and 12, inclusive)
MonthName Returns the name of a specified month
Now Returns the current system date and time
Second Returns a number that represents the second of the minute (between 0 and 59, inclusive)
Time Returns the current system time
Timer Returns the number of seconds since 12:00 AM
TimeSerial Returns the time for a specific hour, minute, and second
TimeValue Returns a time
Weekday Returns a number that represents the day of the week (between 1 and 7, inclusive)
WeekdayName Returns the weekday name of a specified day of the week
Year Returns a number that represents the year

Expression Functions

Expressions Description
Eval Evaluates an expression and returns the result
RegExp Provides simple regular expression support.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 17

Format Functions
Function Description

FormatCurrency Returns an expression formatted as a currency value
FormatDateTime Returns an expression formatted as a date or time
FormatNumber Returns an expression formatted as a number
FormatPercent Returns an expression formatted as a percentage

I/O Functions

Input/Output Description
InputBox Displays a prompt in a dialog box, waits for the user to input text or click a button, and

returns the contents of the text box.
MsgBox Displays a message in a dialog box, waits for the user to click a button, and returns a

value indicating which button the user clicked.
LoadPicture Returns a picture object

Math Functions

Function Description
Abs Returns the absolute value of a specified number
Atn Returns the arctangent of a specified number
Cos Returns the cosine of a specified number (angle)
Exp Returns e raised to a power
Hex Returns the hexadecimal value of a specified number
Int Returns the integer part of a specified number
Fix Returns the integer part of a specified number
Log Returns the natural logarithm of a specified number
Oct Returns the octal value of a specified number
Randomize Initializes the random-number generator
Rnd Returns a random number less than 1 but greater or equal to 0
Sgn Returns an integer that indicates the sign of a specified number
Sin Returns the sine of a specified number (angle)
Sqr Returns the square root of a specified number
Tan Returns the tangent of a specified number (angle)

Miscellaneous Functions

Miscellaneous Description
GetLocale Returns the current locale ID
RGB Returns a whole number representing an RGB color value
SetLocale Sets the current locale ID

Script Engine Functions

Script Engine ID Description
ScriptEngine Returns a string representing the scripting language in use
ScriptEngineBuildVersion Returns the build version number of the scripting engine in use
ScriptEngineMajorVersion Returns the major version number of the scripting engine in use
ScriptEngineMinorVersion Returns the minor version number of the scripting engine in use

VBScript Reference Manual InduSoft Web Studio

18 InduSoft, Ltd.

String Functions
Function Description

InStr Returns the position of the first occurrence of one string within another. The search begins at the
first character of the string

InStrRev Returns the position of the first occurrence of one string within another. The search begins at the
last character of the string

LCase Converts a specified string to lowercase
Left Returns a specified number of characters from the left side of a string
Len Returns the number of characters in a string
LTrim Removes spaces on the left side of a string
Mid Returns a specified number of characters from a string
Replace Replaces a specified part of a string with another string a specified number of times
Right Returns a specified number of characters from the right side of a string
RTrim Removes spaces on the right side of a string
Space Returns a string that consists of a specified number of spaces
StrComp Compares two strings and returns a value that represents the result of the comparison
String Returns a string that contains a repeating character of a specified length
StrReverse Reverses a string
Trim Removes spaces on both the left and the right side of a string
UCase Converts a specified string to uppercase

Variant Identification Functions

Variant
Function

Description

IsArray Returns a Boolean value indicating whether a variable is an array
IsDate Returns a Boolean value indicating whether an expression can be converted to a date
IsEmpty Returns a Boolean value indicating whether a variable has been initialized.
IsNull Returns a Boolean value that indicates whether an expression contains no valid data (Null).
IsNumeric Returns a Boolean value indicating whether an expression can be evaluated as a number
IsObject Returns a Boolean value indicating whether an expression refers to a valid Automation

object.
TypeName Returns a string that provides Variant subtype information about a variable
VarType Returns a value indicating the subtype of a variable

Statements
VBScript statements are used to perform fundamental operations such as decision making, repetition
(looping) and assignments. Statements combined with Operators are the building blocks for more
complex code.

Multiple statements can appear on the same line as long as they are separated by a colon (:). For
purposes of code readability, it is recommended to use one statement per line.

Assignment Statements
Many of VBScripts assignment statements have already been covered. For consistency purposes, they
are listed here. Please refer to the Appendix for a more detailed description of their use.

Assignment Statements

Statement Description
Const Declares constants for use in place of literal values
Dim Declares variables and allocates storage space
Erase Reinitializes the elements of fixed-size arrays, deallocates dynamic-array storage space.
Option Explicit Forces explicit declaration of all variables in the script
Private Declares private variables and allocates storage space
Public Declares public variables and allocates storage space
ReDim Declare dynamic array variables, allocates or reallocates storage space at procedural level

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 19

Comment Statements
Comment statements are used to provide documentation comments with the code.

Comment Statements

Comments Description
Rem Includes explanatory remarks in a program
‘ Includes explanatory remarks in a program (single quote)

Control Flow Statements
By default, VBScript sequentially moves (flows) through the script from statement to statement. As is
typical with virtually all high-level programming languages, control flow statements can alter this flow by
branching to other code sections based upon logic conditions, inputs, errors, etc.

One of the most commonly used control flow statement is the If..Then..Else statement. This control
flow statement takes the following format:

{simple format} If condition Then statement(s) [Else elsestatement(s)]

{block format}
 If condition Then
 [statement(s)]
 [ElseIf condition-n Then
 [elseifstatement(s)]] . . .
 [Else
 [elsestatement(s)]]
 End If

The condition can be a boolean constant or boolean variable, or a numeric or string expression that
evaluates to True or False.

Refer to the Appendix for a detail description of these functions.

Control Flow Statements

Function Description
Do…Loop Repeats a block of statements while a condition is True or until a condition becomes True
Execute Executes one or more specified statements
Execute Global Executes one or more specified statements in the global namespace of a script
Exit Do Exit a Do Loop Function. Transfers control to the statement following the Loop statement.
Exit For Exit a For Loop Function (For…Next or For Each…Next loop). Transfers control to the

statement following the Next statement.
For...Next Repeats a group of statements a specified number of times
For Each…Next Repeats a group of statements for each element in an array or collection
If…Then…Else Conditionally executes a group of statements, depending on the value of an expression
Select Case Executes one of several groups of statements, depending on the value of an expression
While…Wend Executes a series of statements as long as a given condition is True
With…End With Executes a series of statements on a single object

VBScript Reference Manual InduSoft Web Studio

20 InduSoft, Ltd.

Procedure Statements
There are two types of procedure statements; the Sub procedure and the Function procedure. Both of
these procedure statements are intended to encapsulate a set of statements that provide functionality
that can be repeatedly called, but the difference between the two is how arguments are passed and
results returned.

The Sub procedure is a series of VBScript statements (enclosed by Sub and End Sub statements) that
perform actions but don't return a value as part of the Sub name. A Sub procedure can take arguments
(constants, variables, or expressions that are passed by a calling procedure). A resultant value or set of
values can be returned through the arguments. If a Sub procedure has no arguments, its Sub
statement must include an empty set of parentheses ().

The Function procedure is a series of VBScript statements enclosed by the Function and End
Function statements. A Function procedure is similar to a Sub procedure, but can also return a value
in the Function name. A Function procedure can take arguments (constants, variables, or expressions
that are passed to it by a calling procedure). If a Function procedure has no arguments, its Function
statement must include an empty set of parentheses. A Function returns a value by assigning a value
to its name in one or more statements of the procedure. The return type of a Function is always a
Variant.

Procedure Statements

Function Description
Call Transfers control to a Sub or Function procedure
End Function Immediately exits a Function procedure
End Sub Immediately exits a Sub procedure
Exit Function Exit a Function, generally as a result of a condition
Exit Sub Exit a Subroutine, generally as a result of a condition
Function Declares the name, arguments, and code that form the body of a Function procedure
GetRef Associates an event handler with a specific function
Sub Declares the name, arguments, and code that form the body of a Sub procedure

(Subroutine).

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 21

Objects and Classes
Traditional programming is made up of a collection of subroutines and functions that are typically
processed in a sequential or looping manner. In contrast, object oriented programming is a different
programming methodology where a program is viewed as being composed of a collection of individual
objects. These objects process data and can interact with other objects directly without having to be
explicitly programmed to do so. The advantages claimed by object-oriented program include code
reusability, rapid deployment of large-scale complex tasks, and ease of use/debugging. Today, object-
oriented programming is widely used and is supported with both programming languages (e.g. VB.NET,
C++, Visual C++) and operating systems (e.g. Microsoft’s .NET architecture). Object-oriented
programming has also become popular within scripting languages, such as VBScript. Beginning with
VBScript 5.0, developers have been able to use user-defined Classes.

The key concepts with object-oriented programming include:
• Class

The class is the highest level that defines a unit (set) of data and its behavior. Classes form the
basis for modularity and structure in an object-oriented program. The class should sufficiently
describe the set of data, and the code for a class should be contained within it and be self-
sufficient (except for operating system support). While the terms classes and objects often get
used interchangeably, classes describe the structure of objects. One way to think of a class is
that it is a container for code. It can also be viewed as a template for an object. When a class is
declared (instantiated) by the Set statement, it then becomes an object and memory is allocated
for it.

• Object
An object is an in-memory instance of a class. In computer science terms, it is a run-time
manifestation (instantiation) of a particular exemplar of a class. Each object has its own data,
but the code within a class can be shared (for efficiency). Programs generally have multiple
objects. Multiple copies (objects) of a given class can be created. Objects are temporary, i.e.
they can be created and removed at will, depending on the programming needs.

• Encapsulation
Encapsulation wraps the data and functions into a single unit, ensuring that the object can be
changed only through established interfaces. Encapsulation is sometimes referred to as
information hiding. Some of these common interfaces are:

o Fields
Fields are simply public variables stored within the object, as defined by the class. These
variables store items of information about an object.

o Properties
Properties, like fields, also store items of information on an object. But Properties use
Property procedures to control how values are set or returned. VBScript has two primary
Property procedures; Let and Get. The Get property procedure retrieves a Property
value, while the Let Property procedure assigns a value to the property value. A third
Property procedure Set is used with an Object inside of the Class block.

o Methods
Methods are a collection of subroutines (Sub) and function procedures (Function)
declared within a class.

o Events
An event is a message sent by an object announcing that something important has
happened.

VBScript Reference Manual InduSoft Web Studio

22 InduSoft, Ltd.

Access of an object’s methods, properties and fields are made by referring to the object,
followed by a period, then the particular method, property or field of interest. E.g.

Object.Method
Object.Property
Object.Property.Item

• Dynamism
Dynamism relates to the method of allocating computer resources and definition resources
required to run an object-oriented program. There are different types, but VBScript used late-
bound (late-binding) dynamic typing. This means that the VBScript engine will make the object
type determination at runtime and allocate sufficient memory at that time. Note that VBScript
and VB.NET are slightly different in their approach to dynamism, and therefore they can declare
some variables and objects in different manners (although many forms of declaration are the
same).

• Outlet Connections
At times, Objects will connect together and this connection needs to be defined. With IWS, an
example of a connection would be between a VBScript object (e.g. ADODB) and a Database
Provider (a Provider is a front-end to a database). This connection needs to be defined, and
then the connection string (of parameters) between the objects gets defined. When the need for
the connection is finished, the connection should be closed.

While a full treatment of object-oriented programming is beyond the scope of these materials, the
fundamental concepts of Objects and Classes are important to understand. VBScript supports COM-
based Objects (Component Object Module, a Microsoft standard) such as the ActiveX controls,
ADO.NET, FileSystemObject, and Microsoft Office Automation objects. VBScript also supports user-
defined classes, or Class Objects.

VBScript COM objects and VBScript Class objects differ from each other in several important respects.
These differences lead to each type of object having its unique strengths:

• VBScript classes are more flexible than VBScript COM objects. Class Objects have an abstract
subtype that encapsulates the data you want and the functions you need to work with that data.
VBScript COM objects have only basic subtypes (integer or string).

• VBScript classes are slightly more efficient than COM objects. The VBScript parser can execute
the classes' code directly instead of asking the COM object to execute a method.

• COM objects are binary modules. VBScript classes are ASCII files.
• You can use any scripting language to write COM objects. You can only use VBScript to write

VBScript classes.
• You can use COM objects from within any development environment that supports COM

automation. VBScript classes can only be used within development and runtime environments
that support VBScript (e.g IWS and Microsoft Internet Explorer).

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 23

VBScript Object Commands
VBScript includes several Functions and Statements that can be used to access objects, including their
methods and properties. There are a large variety of objects available to VBSript, including user-
defined objects, intrinsic objects and extrinsic objects.

VBScript Object Functions

Function Description
CreateObject Creates and returns a reference to an Automation object
GetObject Returns a reference to an Automation object from a file
IsObject Returns a Boolean value indicating whether an expression references a valid Automation

object.

Object Statements

Error Handling Statements

Statement Description
On Error Enables or disables error-handling

Object & Collection Summary

Objects & Collections Description

Debug The Debug object is an intrinsic global object that can send an output to a script
debugger, such as the Microsoft Script Debugger.

Dictionary An associative array that can store any type of data. Data is accessed by a key.
Drive An object that refers to a specific Drive
Drives A collection of Drive objects.

Err Contains information about the last run-time error. Accepts the Raise and Clear
methods for generating and clearing run-time errors.

File An object that refers to a specific File
Files A collection of File objects.
FileSystemObject An object model used to access the Windows file system
Folder An object that refers to a specific Folder
Folders A collection of Folder objects.
Match Provides access to the read-only properties of a regular expression match.
Matches Collection of regular expression Match objects.
RegExp Provides simple regular expression support.
Submatches A collection of regular expression submatch strings.
TextStream An object that refers to a text File

Statement Description
Class Declares the name of a class, as well as a definition of the variables, properties, and

methods that comprise the class
Exit Property Forces an exit from inside a Property Set function.
For Each…Next Repeats a group of statements for each element in an array or a collection.
Property Get Declares, in a Class block, the name, arguments, and code that form the body of a Property

procedure that gets (returns) the value of a property
Property Let Declares, in a Class block, the name, arguments, and code that form the body of a Property

procedure that assigns (sets) the value of a property
Property Set Sets a reference to an object
Set Assigns an object reference to a variable or property, or associates a procedure reference

with an event. Usually used to instantiate an object.

VBScript Reference Manual InduSoft Web Studio

24 InduSoft, Ltd.

VBScript User-Defined Class Objects
To define a user-defined Class Object, you use the Class statement to declare a class. The End Class
statement defines the termination of the Class. Together, these statements form a Class construct, or
Class block. E.g.
 Class objName
 ‘ Place the Class variables, Properties and Methods here
 End Class

In this syntax, objName is the name given to the Class Object. The class object name must follow
standard VBScript variable naming conventions. Class Objects are usually declared in the variable
definition sections. You can have multiple Class blocks in a single VBScript file, but each block must
contain the Class …End Class statements. Classes cannot be nested.

Once you have defined the Class Object, you need to create an instance of the Class, similar to how
other objects are created. When the Class Object is instantiated, memory is allocated for the Class
Object. The Set statement is used with the New keyword to assign an instance of the class to a
variable. With VBScript, this is the only time the New keyword is used (i.e. to instantiate a user-defined
Class). E.g.
 Dim MyObj
 Set MyObj = New objName

The Object name MyObj is the Object variable name, and must follow standard VBScript variable
naming conventions. The Object variable name is a reference (address) of the Object stored in
memory, it is not the Object itself.

Inside the Class block, any Class variables, Properties, Methods and Events can be defined by the
developer. The developer does not have to use all of the capabilities of the Class construct, i.e. Classes
can be created without Methods or Properties. The design of the Class Object is completely up to the
developer.

Class variables are created within the Class structure by using the Dim, Public, or Private statements.
Variables defined within the Class structure by any of these statements must follow the standard
VBScript variable naming conventions. Variables can be simple variables or arrays. E.g.
 Class className
 Dim var1, var2
 Public var3, var4
 Private var5, var6
 End Class

The choice of the Dim, Public, or Private statements determine whether the variable is accessible
outside of the Class Object. Variables are public by default, i.e. they are accessible outside of the Class
Object. Both the Dim and the Public statements create public variables, while the Private statement
creates variables that are not public. As a general rule, it is good programming practice to make all
Class variables private, since the developer will want to tightly control when these variables are
changed.

VBScript does not support Class-level Constants, i.e. named constants declared at the Class level. You
cannot use the Const statement at the Class-level so that a constant can be used throughout a Class,
but you can use the Const statement within a Property or Method. However, the constant will only have
local scope within the Property or Method.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 25

Class Object variables are accessible to VBScript code outside the Class through Class Properties.
Class Properties “wrap” the Private variables of a Class. Inside the Class block, the Properties are
defined by Property Get [|Let|Set] … End Property statement(s). For VBScript code outside the
Class, the Property is accessed by referencing the Object Name.Property.

There are different type of Class Properties, depending on whether the Class variable is to be read,
written to, or the Class variable is itself a Class Object. These Properties can be declared Public or
Private.

Property Get
The Property Get procedure is used to access (return) private variables inside of the Class
structure that are used as a read-only Property, or the read portion of a read-write Property. For
VBScript code outside the Class, this type of Class Object Property is generally assigned to a
variable or used in a conditional expression. The Property Get procedure returns a value to the
calling code, and is general not used with any arguments. [Note: VBScript will let you add
arguments to the Property Get procedure, but if you do so you must add the additional
argument to the corresponding Property Let or Property Set procedure, since Property
Let/Property Set must have one more argument than the corresponding Property Get
procedure. It is generally considered bad programming form to have arguments in the Property
Get procedure].

Property Let
The Property Let procedure is used to access (assign) private variables inside of the Class
structure that are used as a write-only Property or are the write portion of a read-write Property.
For VBScript code outside of the Class, this type of Class Object Property is usually assigned
by a variable or a constant.

Property Set
The Property Set procedure is exclusively used when the Class Object needs to store
Properties that are object-based instead of numeric, date, boolean or string subtype variables.
Property Set replaces the Property Let procedure. While Property Set and Property Let are
functionally similar, there are two key differences:
1. With the Property Set procedure, in the VBScript code segment (outside the Class block)

you must use the syntax
 Set Object1.Property = Object2
This is because VBScript does not let you use the assignment operator (=) to assign objects
without the Set command.

2. The Property Set procedure makes it clear that the Property is an object-based Property

Example:
 Class FileSpec ‘ Define a Class block
 Private master_file
 Private master_FSO
 Public Property Let FileName(strName) ‘ Define a Public Property to assign the file name
 master_file = strName
 End Property
 Public Property Get FileName ‘ Define a Public Property to retrieve a file name
 FileName = master_file
 End Property
 Public Property Set FSO(m_FSO) ‘ Define a Public Property for an object
 Set master_FSO = m_FSO

VBScript Reference Manual InduSoft Web Studio

26 InduSoft, Ltd.

 End Property
 End Class

Rem Below is the VBScript code

 Dim objFSO ‘ Declare variables and objects
 Dim objFilePointer, cur_file
 Set objFSO = CreateObject(“Scripting.FileSystemObject”) ‘ Instantiate the COM object
 Set objFilePointer = New FileSpec ‘ Instantiate the Class Object
 objFilePointer.FileName = “Myfile.mdb” ‘ Assigns “Myfile.mdb” as the file name
 cur_file = objFilePointer.FileName ‘ Retrieves the current file name “Myfile.MDB”
 Set objFilePointer.FSO = objFSO ‘ Assigns an Object to the Property
 Set objFilePointer = Nothing ‘ Keyword Nothing releases the object memory

A couple notes on the example above. The CreateObject command is used to instantiate an Object
that is known at the system level (e.g. a COM object). Also, so far this example only shows how to
assign and retrieve property values. It is generally the Method(s) that control the action an object
performs, not the properties.

A Property can be made read-only by only providing a Property Get procedure, or by declaring the
Property Let procedure as Private instead of Public. A Property can be made write-only by only
providing the Property Let procedure, or by declaring the Property Get procedure as Private instead of
Public.

Class Methods are really just Functions and Subroutines inside of a Class block. These functions and
subroutines can be either Private or Public. If they are public, they will be accessible to a VBScript code
segment outside of the Class block by referencing the obj.Method. If they are private, they will only be
available to code within the Class block.

An example of Class Methods is as follows:

Class FileSpec
 Private master_file

Private master_FSO Private master_file
Private Sub Class_Initialize ‘ Class Object initialization code
 ‘ code goes here
End Sub
Private Sub Class_Terminate ‘ Class Object termination code
 ‘ code goes here
End Sub

 Public Property Let FileName(strName) ‘ Define a Public Property to assign the file name
 master_file = strName
 End Property
 Public Property Get FileName ‘ Define a Public Property to retrieve a file name
 FileName = master_file
 End Property
 Public Property Set FSO(m_FSO) ‘ Define a Public Property for an object
 Set master_FSO = m_FSO
 End Property

Public Sub Delete ‘Method to delete the master file
 master_FSO.DeleteFile (master_file)
End Sub

End Class

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 27

Rem Below is the VBScript code
 Dim objFSO ‘ Declare variables and objects
 Dim objFilePointer, cur_file
 Set objFSO = CreateObject(“Scripting.FileSystemObject”) ‘ Instantiate the COM object
 Set objFilePointer = New FileSpec ‘ Instantiate the Class Object
 objFilePointer.FileName = “Myfile.mdb” ‘ Assigns “Myfile.mdb” as the file name
 cur_file = objFilePointer.FileName ‘ Retrieves the current file name “Myfile.MDB”
 Set objFilePointer.FSO = objFSO ‘ Assigns an Object to the Property
 objFilePointer.Delete ‘ Executes a Method to delete a file
 Set objFilePointer = Nothing ‘ Keyword Nothing releases the object memory

VBScript Class Objects automatically supports two type of Class Events; Class_Initialize and
Class_Terminate Events. The code inside the Class_Initialize event executes once when an Object
based on the Class is first instantiated. Any code put in this event is optional, and is typically used for
initialization. Code inside the Class_Terminate event executes once just before the Object based on the
Class is destroyed (i.e. Set to Nothing, or the Object goes out of scope). Usage is as follows:

Class FileSpec
 Private master_file

Private master_FSO Private master_file
Private Sub Class_Initialize ‘ Class Object initialization code
 ‘ code goes here
End Sub
Private Sub Class_Terminate ‘ Class Object termination code
 ‘ code goes here
End Sub

 Public Property Let FileName(strName) ‘ Define a Public Property to assign the file name
 master_file = strName
 End Property
 Public Property Get FileName ‘ Define a Public Property to retrieve a file name
 FileName = master_file
 End Property
 Public Property Set FSO(m_FSO) ‘ Define a Public Property for an object
 Set master_FSO = m_FSO
 End Property

End Class

VBScript Reference Manual InduSoft Web Studio

28 InduSoft, Ltd.

VBScript Objects and Collections
VBScript has certain Objects and Collections that are inherent with VBScript. These include:

• Debug
• Err Object
• Match Object & Matches Collections
• Scripting Dictionary Object
• Scripting FileSystemObject

o Drive Object
o File Object
o FileSystemObject Collections
o Folder Object

• Regular Expression Object & Submatches Collection
• TextStream Object

VBScript Implicit Objects and Collections

Objects & Collections Description

Class Object Declares the name of a class, as well as a definition of the variables, properties,
and methods that comprise the class

Debug The Debug object is an intrinsic global object that can send an output to a script
debugger, such as the Microsoft Script Debugger.

Err Contains information about the last run-time error. Accepts the Raise and Clear
methods for generating and clearing run-time errors.

Match Object
Dictionary An associative array that can store any type of data. Data is accessed by a key.

Matches Collection
RegExp Object
SubMatches Collection

Object & Collection Summary

Objects & Collections Description

Drive An object that refers to a specific Drive
Drives A collection of Drive objects.

File An object that refers to a specific File
Files A collection of File objects.
FileSystemObject An object model used to access the Windows file system
Folder An object that refers to a specific Folder
Folders A collection of Folder objects.
Match Provides access to the read-only properties of a regular expression match.
Matches Collection of regular expression Match objects.
RegExp Provides simple regular expression support.
Submatches A collection of regular expression submatch strings.
TextStream An object that refers to a text File

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 29

Err Object
The VBScript Err object contains information about run-time errors.

Err Object Properties

Properties Description
Description The descriptive string associated with an error.
HelpContext A context ID for a topic in a Windows help file.
HelpFile A fully qualified path to a Windows help file.
Number A numeric value identifying an error.
Source The name of the object or application that originally generated the error.

Err Object Methods

Properties Description
Clear Clears all property settings.
Raise Generates a run-time error.

The properties of the Err object are set by the generator of an error-Visual Basic, an Automation object,
or the VBScript programmer.

The default property of the Err object is Number. Err.Number contains an integer and can be used by
an Automation object to return an SCODE.

When a run-time error occurs, the properties of the Err object are filled with information that uniquely
identifies the error and information that can be used to handle it. To generate a run-time error in your
code, use the VBScript Err Object Raise Method. The Err object's properties are reset to zero or zero-
length strings ("") after an On Error Resume Next statement. The VBScript Err Object Clear Method
can be used to explicitly reset Err.

The Err object is an intrinsic object with global scope-there is no need to create an instance of it in your
code.

VBScript Reference Manual InduSoft Web Studio

30 InduSoft, Ltd.

Scripting Dictionary Object
A dictionary object is part of the Scripting type library. The dictionary object is a special type of an array
which stores a data item that is associated with a unique key. The key, which is usually a number or a
string, is used to retrieve an individual item. You can use a Dictionary when you need to access random
elements frequently or need to access information contained in the array based on its value, not
position.

The Dictionary object has both Methods and Properties that can be used to manipulate the Dictionary.

Dictionary Methods

Method Description
Add Adds a key and item pair
Exists Indicates if a specific key exists
Items Returns an array containing all items in a Dictionary object
Keys Returns an array containing all keys in a Dictionary object
Remove Removes a key, item pair
RemoveAll Removes all key, item pairs

Dictionary Properties

Method Description
CompareMode The comparison mode for string keys
Count The number of items in a Dictionary object
Item An item for a key
Key A key

The following code creates a Dictionary object and adds items and keys:
 Dim d 'Create a variable
 Set d = CreateObject("Scripting.Dictionary")
 d.Add "a", "Athens" 'Add some keys and items
 d.Add "b", "Belgrade"
 d.Add "c", "Cairo"

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 31

Scripting FileSystemObject
The VBScript FileSystemObject object provides access to a computer's file system

FileSystemObject Methods

Method Description
BuildPath Appends a name to an existing path.
CopyFile Copies one or more files from one location to another.
CopyFolder Recursively copies a folder from one location to another.
CreateFolder Creates a folder.
CreateTextFile Creates a specified file name and returns a TextStream object.
DeleteFile Deletes a folder and its contents.
DeleteFolder Deletes a folder and its contents.
DriveExists Indicates the existence of a drive.
FileExists Indicates the existence of a file.
FolderExists Indicates the existence of a folder.
GetAbsolutePathName Returns a complete and unambiguous path from a provided path specification.
GetBaseName Returns the base name of a path.
GetDrive Returns a Drive object corresponding to the drive in a path
GetDriveName Returns a string containing the name of the drive for a path.
GetExtensionName Returns a string containing the extension for the last component in a path.
GetFile Returns a File object corresponding to the file in a path.
GetFileName Returns the last component of a path that is not part of the drive specification.
GetFolder Returns a Folder object corresponding to the folder in a specified path.
GetParentFolderName Returns a string containing the name of the parent folder of the last component in a

path.
GetSpecialFolder Returns the special folder requested.
GetTempName Returns a randomly generated temporary file or folder name.
MoveFile Moves one or more files from one location to another.
MoveFolder Moves one or more folders from one location to another.
OpenTextFile Opens a file and returns a TextStream object

FileSystemObject Properties

Properties Description
Drives A Drives collection of all Drive objects available on the local machine.

Collections returned by FileSystemObject method calls reflect the state of the file system when the
collection was created. Changes to the file system after creation are not reflected in the collection. If the
file system might be changed during the lifetime of the collection object, the method returning the
collection should be called again to ensure that the contents are current.

Set fs = CreateObject("Scripting.FileSystemObject")
Set a = fs.CreateTextFile("c:\testfile.txt", True)
a.WriteLine("This is a test.")
a.Close

In the code shown above, the CreateObject function returns the FileSystemObject (fs). The
CreateTextFile method then creates the file as a TextStream object (a) and the VBScript
TextStream Object WriteLine Method writes a line of text to the created text file. The VBScript
TextStream Object Close Method flushes the buffer and closes the file.

VBScript Reference Manual InduSoft Web Studio

32 InduSoft, Ltd.

Drive Object
The Drive object provides access to the properties of a particular disk drive or network shared drive.

Drive Object Properties

Properties Description
AvailableSpace The amount of space available to a user on the specified drive or network share.
DriveLetter The drive letter of a physical local drive or network share
DriveType A value indicating the type of a drive.
FileSystem The amount of free space available to a user on the drive or network share.
FreeSpace The amount of free space available to a user on the drive or network share.
IsReady True if the drive is ready, False if not.
Path The file system path for a drive.
RootFolder A Folder object representing the root folder of a drive.
SerialNumber The decimal serial number used to uniquely identify the disk volume.
ShareName The network share name of a drive
TotalSize The total space, in bytes, of a drive or network share
VolumeName The volume name of a drive.

The following code illustrates the use of the Drive object to access drive properties:

Sub ShowFreeSpace(drvPath)
Dim fs, d, s
Set fs = CreateObject("Scripting.FileSystemObject")
Set d = fs.GetDrive(fs.GetDriveName(drvPath))
s = "Drive " & UCase(drvPath) & " - "
s = s & d.VolumeName & vbCrLf
s = s & "Free Space: " & FormatNumber(d.FreeSpace/1024, 0)
s = s & " Kbytes"
Response.Write s
End Sub

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 33

File Object
The File object provides access to all the properties of a file.

File Object Methods

Properties Description
Copy Copies a file from one location to another.
Delete Deletes a file.
Move Moves a file from one location to another.
OpenAsTextStream Opens a file and returns a TextStream object.

File Object Properties

Properties Description
Attributes The attributes of a file.
DateCreated The date and time that the file was created.
DateLastAccessed The date and time that the file was last accessed.
DateLastModified The date and time that the file was last modified.
Drive The drive letter of the drive on which the file resides.
Name The name of the file.
ParentFolder The Folder object for the parent of the file.
Path The file system path to the file.
ShortName The short name used by programs that require 8.3 names.
ShortPath The short path use by programs that require 8.3 names.
Size The size, in bytes, of a file.
Type Information about the type of a file.

The following code illustrates how to obtain a File object and how to view one of its properties.

Sub ShowFileInfo(filespec)
Dim fs, f, s
Set fs = CreateObject("Scripting.FileSystemObject")
Set f = fs.GetFile(filespec)
s = f.DateCreated
Response.Write s
End Sub

VBScript Reference Manual InduSoft Web Studio

34 InduSoft, Ltd.

Folder Object
The VBScript Folder object provides access to all the properties of a folder.

Folder Object Methods

Properties Description
Copy Copies a folder from one location to another.
Delete Deletes a folder.
Move Moves a folder from one location to another.
CreatTextFile Creates a file and returns a TextStream object.

Folder Object Properties

Properties Description
Attributes The attributes of a folder.
DateCreated The date and time a folder was created.
DateLastAccessed The date and time that the folder was last accessed.
DateLastModified The date and time that the folder was last modified.
Drive The drive letter of the drive on which the folder resides.
Files A Files collection of all File objects in the folder.
IsRootFolder True if this is the root folder of a drive.
Name The name of the folder.
ParentFolder The Folder object for the parent of the folder.
Path The file system path to the folder.
ShortName The short name used by programs that require 8.3 names.
ShortPath The short path used by programs that require 8.3 names.
Size The size, in bytes, of all files and subfolders contained in a folder
SubFolders A Folders collection containing all the folders in a Folder object

The following code illustrates how to obtain a Folder object and how to return one of its properties:
Sub ShowFolderInfo(folderspec)
Dim fs, f, s,
Set fs = CreateObject("Scripting.FileSystemObject")
Set f = fs.GetFolder(folderspec)
s = f.DateCreated
Response.Write s
End Sub

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 35

Example
Const OverWrite = TRUE
Const DeleteRdOnly = True

SourceFile = “C:\data\MyData.MDB”
SourceFiles = “C:\data*.MDB”
DestPath = “C:\Backup”
DeleteFile = “C:\backup\Mydata.MDB”
DeleteFiles = “C:\backup*.MDB)

Set objFS = CreateObject(“Scripting.FileSystemObject”)

‘ Copy a single file to a new folder, overwrite any existing file in destination folder
objFS.CopyFile (SourceFile, DestPath, OverWrite)

‘ Copy a set of files to a new folder, overwrite any existing files in destination folder
objFS.CopyFile (SourceFiles, DestPath. OverWrite)

‘ Delete a file
objFS.DeleteFile(DeleteFile)

‘ Delete a set of files in a folder
objFS.DeleteFile(DeleteFiles, DeleteRdOnly)

‘ Move a file to a new folder
objFS.MoveFile(SourceFile, DestPath)

‘ Move a set of files to a new folder
objFS.MoveFile(SourceFiles, DestPath)

‘ Rename a file
objFS.MoveFile(SourceFile, “C:\data\MyData041406.MDB”)

‘ Verify if a file exists
If objFS.FileExists (SourceFile) Then
 Set objFolder =objFS.GetFile(SourceFile)
 MsgBox “File Exists “ & objFolder ‘ Will display “File Exists “ and Path + File
Else
 MsgBox “File does not exist”
End If

VBScript Reference Manual InduSoft Web Studio

36 InduSoft, Ltd.

VBScript Drives Collection
Read-only collection of all available drives. Removable-media drives need not have media inserted for
them to appear in the Drives collection.

Drives Collection Object Properties

Properties Description
Count Returns the number of items in a collection. Read-only
Item Returns an item on the specified key. Read/Write

The following code illustrates how to get the Drives collection and iterate the collection using the For
Each...Next statement:

Sub ShowDriveList
Dim fs, d, dc, s, n
Set fs = CreateObject("Scripting.FileSystemObject")
Set dc = fs.Drives
For Each d in dc
 s = s & d.DriveLetter & " - "
If d.DriveType = Remote Then
 n = d.ShareName
Else
 n = d.VolumeName
End If
s = s & n & vbCrLf
Next
Response.Write s
End Sub

VBScript Files Collection
Collection of all File objects within a folder.

Files Collection Object Properties

Properties Description
Count Returns the number of items in a collection. Read-only
Item Returns an item on the specified key. Read/Write

The following code illustrates how to get a Files collection and iterate the collection using the For
Each...Next statement:

Sub ShowFolderList(folderspec)
Dim fs, f, f1, fc, s
Set fs = CreateObject("Scripting.FileSystemObject")
Set f = fs.GetFolder(folderspec)
Set fc = f.Files
For Each f1 in fc
s = s & f1.name
s = s & vbCrLf
Next
Response.Write s
End Sub

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 37

VBScript Folders Collection
Collection of all Folder objects contained within a Folder object.

Folders Collection Methods

Properties Description
Add Adds a new Folder to a Folders collection

Folders Collection Properties

Properties Description
Count Returns the number of items in a collection. Read-only
Item Returns an item on the specified key. Read/Write

The following code illustrates how to get a Folders collection and how to iterate the collection using the
For Each...Next statement:

Sub ShowFolderList(folderspec)
Dim fs, f, f1, fc, s
Set fs = CreateObject("Scripting.FileSystemObject")
Set f = fs.GetFolder(folderspec)
Set fc = f.SubFolders
For Each f1 in fc
s = s & f1.name
s = s & vbCrLf
Next
Response.Write s
End Sub

VBScript Reference Manual InduSoft Web Studio

38 InduSoft, Ltd.

TextStream Object
The VBScript TextStream object facilitates sequential access to a file

TextStream Object Methods

Properties Description
Close Closes an open stream.
Read Reads a specified number of characters from a stream.
ReadAll Reads an entire stream.
ReadLine Reads an entire line from a stream.
Skip Skips a specified number of characters when reading a stream.
SkipLine Skips the next line when reading a stream.
Write Writes a specified string to a stream.
WriteBlankLines Writes a specified number of newline characters to a stream.
WriteLine Writes a specified string and newline character to a stream.

TextStream Object Properties

Properties Description
AtEndOfLine True if the file pointer is before the end-of-line marker.
AtEndOfStream True if the file pointer is at the end of the stream
Column The column number of the current character in the stream.
Line The current line number of the stream.

VBScript TextStream Object
Description: The VBScript TextStream object
Usage: oTextStream.{property | method}
Return: Depends on Property or Method used
Remarks
Example: In the following code, a is the TextStream object returned by the CreateTextFile method on the

FileSystemObject:
Set fs = CreateObject("Scripting.FileSystemObject")
Set a = fs.CreateTextFile("c:\testfile.txt", True)
a.WriteLine("This is a test.")
a.close

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 39

COM Objects and Collections
In addition to user-defined Class Objects and VBScript Objects and Collections, there are many
different COM Objects (and Object Collections) and other system objects based on COM technology
that are accessible from VBScript. These Objects include:

• ActiveX Controls inserted on an IWS Screen (via Insert OCX tool)
• ActiveX Controls instantiated via VBScript
• ADODB and ADOX Objects and Collections
• Microsoft Office OLE Automation (Word, Excel, Access, Outlook & Components)
• WMI
• WSH
• WSDL
• XMLDOM

ActiveX Controls Inserted On An IWS Screen
InduSoft Web Studio (IWS) serves as an ActiveX control container, which is a parent program that
supplies the environment for an ActiveX control to run. Through the IWS development interface (insert
OCX tool), one or more ActiveX controls can be added to a screen. The OCX (ActiveX Control) must
first be registered, if it was not already done so as part of the installation of the ActiveX control. IWS
provides a Register Controls tool (under Tools on the toolbar) to allow registration of ActiveX controls,
and to verify if a control has already been registered.

After the OCX is inserted on the screen, IWS will assign the control a name. This name can be
changed in the Object Properties dialog box, accessed by double clicking on the control in the IWS
development environment, but the name of the control must be unique from any other control used by
the current IWS application. In the Object Properties dialog box, the Configuration button will provide
access to the Properties, Methods and Events accessible for this ActiveX control. In the Configuration
dialog box, there is a tab for Events, which allow for the execution of a VBScript code segment if an
Event is triggered for the ActiveX control. In the Properties and Methods tabs, parameters, triggers,
IWS tags, etc. can be tied to the various Properties and Methods.

Microsoft Slider Control 6.0

Configure the Control’s Properties,
Methods & Events

Select to input VBScript code
segments for the ActiveX
Control Events

VBScript Reference Manual InduSoft Web Studio

40 InduSoft, Ltd.

Interaction with the ActiveX control from VBScript is accomplished through VBScript code placed in a
Screen Script that is associated with the screen where the ActiveX control is placed. By entering a right
mouse click on a blank portion of the screen, and selecting Screen Script, the Screen Script is
accessed. For ActiveX Objects placed on the screen, you do not need to instantiate the Object in
VBScript, IWS has already taken care of this. You simply need to reference the ActiveX control by its
name, found in the Object Properties dialog box. Note: when referring to the name from VBScript,
the ActiveX control name is case sensitive for IWS versions 6.1 SP1 and earlier. From the
VBScript screen interface, you can access the ActiveX control’s Properties and Methods. Events are
not accessible from the VBScript Screen Script interface. The Active

Additional information on this topic is covered in the VBScript Configuration and Operation in IWS
section later in this material.

ActiveX Controls Instantiated from VBScript
ActiveX controls can be instantiated from VBScript by using the CreateObject and referencing the
Program ID (ProgID) of the ActiveX object, although the ActiveX object will not show up on the IWS
screen if the script segment is associated with a Screen.

ADODB and ADOX Objects and Collections
ADODB is the database wrapper for ADO.NET, or ActiveX Data Objects for Microsoft’s .NET
Framework. ADO.NET is Microsoft’s database interface technology that provides an API to database
client applications (i.e. IWS and VBScript), supporting a common interface to access and manipulate
data contained in a wide variety of database servers from different vendors. From the database client
side, there is a level of abstraction provided by the API that enables interaction (e.g. database access
and manipulation) to various vendor’s databases with virtually no code changes, except for the

Key Notes:
• You must use the VBScript Screen Script interface for the screen which contains the

ActiveX control in order to access the ActiveX control’s Properties and Methods. You
cannot access the ActiveX control’s Properties and Methods from another Screen
Script, or from any other VBScript interface in IWS.

• From VBScript, you can only access the ActiveX control’s Properties and Methods.
VBScript code segments for Events that are triggered by the ActiveX control can be
entered, but these VBScript code segments must be entered from the Configuration
dialog box (i.e. Object Properties  Configuration  Events).

• When the ActiveX control is referenced from the VBScript Screen Script interface, the
ActiveX control’s name is case-sensitive for IWS version 6.1 SP1 and earlier.

• You do not need to instantiate the ActiveX control. IWS has already taken care of this.
Simply refer to the ActiveX control name followed by a “.” and then the Property or
Method.

• In the VBScript Screen Script interface, place the cursor in a code segment area
(Subroutine) and press Ctrl –Space to invoke IntelliSense to see the VBScript
statements and functions, as well as the ActiveX controls available for this Script
Interface.

• Once you enter the ActiveX control object name, when you type a period (“.”),
Intellisense will display a list of available Properties and Methods for the ActiveX
control referenced.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 41

connection string to the database Provider (an object that interacts with the physical database). There
are various ADODB Objects and Collections available to the developer.

ADOX is Microsoft’s ActiveX Data Object Extensions for Data Definition Language (database schema
creation, modification and deletion) and Security. It is a companion set of Objects to the core ADO.NET
objects.

Microsoft Office Automation
VBScript can access the various Microsoft Office Automation COM servers. These include:

• Microsoft Access (“Access.Application”)
• Microsoft Excel (“Excel.Application”)
• Microsoft Word (“Word.Application”)
• Microsoft Outlook (“Outlook.Application”)
• Microsoft Graph
• Microsoft Excel Chart (“Excel.Chart”)

To instantiate a Excel and a Word Application, for example, we would use the following VBScript
statements:
 Set objXL = CreateObject(“Excel.Application”)
 Set objWrd = CreateObject(“Word.Application”)

Once the Microsoft Office COM object is instantiated, the VBScript Programmer can access the various
Properties and Methods. Using VBScript, objects can be moved from one Microsoft application to
another.

WMI
Windows Management Instrumentation, or WMI, is a set of extensions to the Windows Driver Model
that provide an interface from a program (such as VBScript) into various components of the Windows
operating system to retrieve information and notification. Using WMI and VBScript, management of
Windows-based PCs and Servers can be accomplished either locally or remotely. WMI is based on the
Common Information Model (CIM), allowing a uniform methodology of managing various Windows
components. WMI is available to all .NET applications and is supported under Windows 2000, XP or
Server 2003, but not Windows CE at present. Examples of Microsoft Windows components accessible
through WMI include:

• Control Panel (can manipulate basic system settings and controls)
• Device Manager (display and control hardware added to the PC, which drivers are used)
• Event Viewer (view the system event log locally or remotely)
• RegEdit (Windows Registry Editor)
• Various applications (Notepad, Command.Com and Cmd.exe)
• Windows Core Components

Windows Script Host
Windows Script Host, or WSH, is the successor to the Batch File first introduced for DOS. WSH
automates system administration tasks, and supports multi-lingual scripting including VBScript. Scripts
can be run locally, or on remote computers. There are several WSH objects including:

• WScript Object (not available from IWS, since IWS is the host)
• WshShell (allows scripts to work with the Windows Shell – e.g. read/write to registry, shortcuts,

system administration tasks, running programs)
• WshNetwork (manages network drives and printers)
• WshController (runs scripts locally or remotely)

VBScript Reference Manual InduSoft Web Studio

42 InduSoft, Ltd.

WSDL
Web Services Definition Language, or WSDL, is an XML-based language for describing network
services as a set of endpoints operating on messages containing either document-oriented or
procedure-oriented information. WSDL is frequently used in conjunction with SOAP (Simple Object
Access Protocol, a simple XML-based protocol for applications to exchange information using HTTP).
Common examples of WSDL are stock price, news services, weather information, currency conversion,
etc.

VBScript code in an IWS application can instantiate a SOAP client object through the following
statement:
 Set oSOAP = CreateObject("MSSOAP.SoapClient")

XMLDOM
XMLDOM is the XML Document Object Model that defines a standardized approach for creating,
accessing and manipulation XML documents. The DOM structures the XML document as a tree-like
structure (the node), with each node having elements, attributes and text. There is a root element,
which is the highest level element, and 0 or more child (sibling) nodes. Each node can also have 0 or
more child nodes.

A VBScript code segment can be created in an IWS application to allow creation, accessing and
manipulation of XML Documents. This allows passing of data between IWS and another computer in
XML format. Note that in addition to XMLDOM, ADO.NET also supports XML databases.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 43

VBScript Configuration and Operation in IWS

IWS acts as the host application for the Microsoft VBScript Engine. This means that to write VBScript,
you need to be in the IWS development (engineering) environment. It is important to note that there is
no one central location where a VBScript interface is located inside an IWS application. The location of
the VBScript interface (where the VBScript code gets placed) depends on the function the VBScript
code is to perform and the scope of access to its Procedures and Variables. InduSoft has implement
VBScript in this manner to simplify its use, and to be consistent with the IWS architecture as well as
current licensing methods.

VBScript is interpreted code. While it executes fairly efficiently, it is nevertheless interpreted and will
never execute as efficiently as compiled code. This should not present any concern for HMI/SCADA
applications since IWS is performing the real-time management of the tag database and key functions
such as alarming, logging, etc. The interpreted nature of VBScript allows changes to be made quickly to
an application. IWS supports dynamic, on-line configuration and this capability is maintained with the
addition of VBScript support

Developers familiar with IWS know that in the bottom left corner of the development window are tabs
that provide access to the Database, Graphics, Tasks, and Communications Workspace folders
containing the different application components. The developer will need to navigate among these
different folders and application components when using VBScript.

VBScript interfaces can be found in 6 different areas:

• Database Workspace folder – Global Procedures
• Graphics Workspace folder - Graphics Script
• Graphic Screens – Screen Scripts
• IWS Objects on a Screen – Command Dynamic
• ActiveX Objects on a screen – ActiveX Events
• Tasks Workspace folder – Background Startup Script and Background Script Groups

Tabs to access various
Workspace folders

Subfolders and Icons
within a Workspace
folders

VBScript Reference Manual InduSoft Web Studio

44 InduSoft, Ltd.

The figure below shows the structure of the VBScript interfaces within a typical IWS project
(application). Note that there are certain types of VBScript interfaces that have one instance (e.g.
Global Procedures, Background Startup Tasks and Graphic Script) while others can have multiple
instances (e.g. Background Script Groups, Screen Scripts, Command Dynamic and ActiveX Events).

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 45

Global Procedures
Global Procedures are located in the Database Worksheet folder. Global Procedures are shared by
both the Graphics Module Scripts (Graphics Script and Screen Scripts) and the Background Task
Scripts (Background Startup Script and Background Script Groups). Note that it this is only the
Procedures that are shared, not the Variables. Other VBScript interfaces within the Graphic Module or
Background Task do not share variables or procedures between them; they are independent of each
other.

VBScript Interface Global Procedures Subfolder in
Database Worksheet folder

Key Notes:
• Before executing the application, be sure to save (or close) the Screen after any

VBScript is entered. Otherwise the changes might not be updated. This is true for all
VBScript interfaces.

VBScript Reference Manual InduSoft Web Studio

46 InduSoft, Ltd.

Graphics Script
The Graphics Script is located in the Graphics Worksheet folder. Procedures and Variables declared in
the Graphics Script interface are available locally but are not accessible by any Screen Script interface,
or from any other VBScript interface within IWS. Procedures and Variables declared in a Screen Script
interface are not accessible by the Graphics Script. If common Procedure(s) are required, they should
be put into the Global Procedures interface. Note that the Graphics Script is scanned (processed) by
IWS before the Screen Scripts.

The Graphics Script has three different pre-configured subroutines to execute VBScript code. These
subroutines execute the VBScript contained in them based on the event state of the Graphics Module.
These are:

Graphics_OnStart
Code contained within this subroutine is automatically executed just once when the Graphics Module is
started. This is a good area to initialize variables or execute start-up code.

Graphics_WhileRunning
Code contained within this subroutine is automatically executed continuously while the Graphics Module
is running. The rate at which this subroutine is called depends on the performance of the hardware
platform and other tasks running at the time.

Graphics_OnEnd
Code contained within this subroutine is automatically executed just once when the Graphics Module is
closed.

VBScript Interface Graphic Script Icon in
Graphics Worksheet folder

Key Notes:
• Do not change the name of the pre-configured subroutines in the VBScript

interface. Otherwise they many not properly execute.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 47

The Graphics Script operates for both the Server (the host processor where the IWS application is
running) and Web Thin Clients (web browser interface using Microsoft Internet Explorer). For the
Server, the Graphics module is the Viewer task (the display on the host processor), while the ISSymbol
control is the Graphics module for Web Thin Clients.

The operation of the Graphics Script on the Server is described above, and starts when the application
is started on the Server, assuming there are one or more screens. But since Web Thin Clients can log
on at any time after the Server is started, the functioning of the Graphics Script is different for Web Thin
Clients and is independent of the operation of the Graphics Script on the host Server. Web Thin Client
operation is as follows:

• When a Web Thin Client logs on to the Server, following completion of the log on process, the
Graphics_OnStart subroutine will be executed for the Web Thin Client. This will occur each time
any new Web Thin Client logs on to the Server.

• Following completion of the execution of the Graphics_OnStart subroutine, the
Graphics_WhileRunning subroutine will be executed for as long as the Web Thin Client
(browser) hosts the ISSymbol control (i.e. while an active network link exists and the ISSymbol
is active in the browser).

• When the Web Thin Client is shut down or when the ISSymbol control is no longer hosted by
the browser, the Graphics_OnEnd subroutine is executed

Screen Scripts
Screen Scripts are associated with individual graphical screens. These screens can be for display on
the host Server (where the IWS application is running), for a Web Thin Client, or both. Procedures and
Variables declared in a Screen Script VBScript interface are not accessible by any other VBScript
interface within IWS. However, the Screen Script interface can access procedures declared in the
Global Procedures script interface.

 VBScript Interface Screen subfolder in

Graphics Worksheet folder

VBScript Reference Manual InduSoft Web Studio

48 InduSoft, Ltd.

There are two methods to access a Screen Script. The first is to select the
desired Screen and have it displayed on the active IWS workspace. Then,
perform a right mouse click while the cursor is located on the display screen. A
pop-up menu will let you select the Screen Script (as shown at the right). When
the Screen Script option is selected, the IWS workspace will display the Screen
Script VBScript interface.

Notice the Screen Script VBScript interface looks very similar to the Graphics
Script interface. The differences between the Screen Script and the Graphics
Script are:

• There is only one Graphics Script. The Graphics Script is activated when
the Graphics Module starts

• You can have multiple Screen Scripts. There is one Screen Script
available per Screen, but you can have multiple screens.

The second method to access a Screen Script is to select the desired Screen and
have it displayed on the active IWS workspace. Then from the top toolbar, select
View. A pull-down menu (as shown at the right) will have the Screen Script
option available. By selecting this option, you will activate the Screen Script
VBScripting interface.

The Screen Script interface has three predefined subroutines. These are:

Screen_OnOpen
Code contained within this subroutine is automatically executed just once when
the Screen is opened.

Screen_WhileOpen
Code contained within this subroutine is automatically executed continuously
while the Screen is open. The rate at which this subroutine is called depends on
the performance of the hardware platform and other tasks running at the time.

Screen_OnClose
Code contained within this subroutine is automatically executed just once when
the Screen is closed.

The execution of the Screen Script subroutines on the Server executes independently from the
execution on Web Thin Clients.

Key Notes:
• Do not change the name of the pre-configured subroutines in the VBScript

interface. Otherwise they many not properly execute.
• Before executing the application, be sure to save (or close) the Screen after any

VBScript is entered. Otherwise it might not be updated. This is true for all
VBScript interfaces.

• The Graphic Script is scanned (processed) by IWS before the Screen Scripts are
processed.

Pop-Up Menu

Pull-down Menu

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 49

Command Dynamic
A Command Dynamic is associated with a specific object on a Screen, and allows one or more actions
to take place when an event occurs with the specific object. A typical use is a button (perhaps a
rectangle) that is placed on the screen. When an operator selects on the button (via mouse click or
pressing a touch screen over the object), this action is expected to initiate some action. That action may
be to set/reset a PLC bit, jump to a different screen, whatever. The Command Dynamic allows the
developer to choose what action to take.

With Version 6.1, IWS adds new capability to the Command Dynamic interface. In addition to the IWS
built-in language command, the Command Dynamic can now execute VBScript code. The steps to
access the VBScript interface within a Command Dynamic are:

1. Select the object on the Screen currently opened in the IWS workspace. If the object has
a Command Dynamic associated with it, then right click on the object. Otherwise, click on
the Command Dynamic icon (right) from the Mode toolbar and then right click on the
object.

2. Now, the Object Properties dialog box for the

Command Dynamic will open. Click on the Config…
button in the lower right corner of the dialog box.

3. Select the event condition (e.g. On Down) where

your want code to be execute and then select
VBScript as the Type.

4. Enter your VBScript code (variable declarations

and executable statements).

Within the Command Dynamic, you enter VBScript
variables and executable statements subject to the
following conditions:

• Any variable declared in this interface will only
have a local scope.

• You cannot implement procedures (i.e.
Subroutines or Functions) within this interface.

Notwithstanding these restrictions, VBScript code within
a Command Dynamic still has access to all Global
Procedures.

VBScript code within the Command Dynamic interface is
executed whenever one or more of the selected event
conditions (listed in the Command Dynamic configuration screen) occur for the selected object. The
execution of the Command Object script on the Server executes independently from the execution on
Web Thin Clients.

Key Notes:
• Before executing the application, be sure to save (or close) the Screen after any

VBScript is entered. Otherwise it might not be updated. This is true for all VBScript
interfaces.

VBScript Reference Manual InduSoft Web Studio

50 InduSoft, Ltd.

ActiveX Events
IWS is an ActiveX container, supporting ActiveX controls, generally inserted on a given graphical
screen. With IWS Version 6.1, there is a VBScript interface to ActiveX Events so that an ActiveX object
event can trigger a VBScript code segment.

The steps to accessing the VBScript ActiveX Event interface are as follows:

1. Select the ActiveX object on the Screen currently opened in the IWS workspace. Right
click on the object to open its Object Properties dialog box. If you need to insert an
ActiveX object, select the ActiveX Control icon from the Mode toolbar and then right click
on the object

In the lower right corner of the ActiveX
Object Properties dialog box will be a
Configuration button. Click this to open up
the Configuration options dialog box.

2. Click on the Events tab (as
shown at the right).

3. Click on the … button in the
Script Column for the event you
want to write VBScript for.

This is the scripting interface for ActiveX Events. Be sure
VBScript language is selected. You can now insert code that
will execute when the selected ActiveX Event is triggered.

Within the ActiveX Event interface, you enter VBScript
variables and executable statements subject to the following
conditions:

• Any variable declared in this interface will only have a
local scope.

• You cannot implement procedures (i.e. Subroutines or
Functions) within this interface.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 51

Notwithstanding these restrictions, VBScript code within the
ActiveX Event interface still has access to all Global
Procedures, as well as any procedures in the Screen Script
for the same Screen where the ActiveX object is configured.
VBScript code within the ActiveX Event interface is executed whenever one or more of the selected
Event conditions (listed in the Configuration dialog box) occur for the selected ActiveX object. The
execution of the script on the Server executes independently from the execution on Web Thin Clients.

Background Task Startup Script
In the Tasks Worksheet folder is the Script subfolder which
will contain a default Startup Script icon and any
Background Task Script Groups declared. To edit the
Background Task Startup Script:

1. Click on the Tasks Worksheet folder

2. Click on the Script subfolder.

Any VBScript code placed in this interface will execute when
the Background Task module is started, which occurs when
the IWS application is started. This code will only execute
once, and is meant for initialization purposes.

Variables and Procedures declared in the Background Task
Startup Script are available to the Background Task Script Group, but are not available to any VBScript
interfaces in the Graphic Module. Remember that the Background Task Group Startup Script can
access the procedures declared in Global Procedures.

Since the Background Task Startup Script has no interaction with a Graphics script, the only Server
display I/O functions that can be implemented are MsgBox and InputBox functions.

Since the Background Task Startup Script runs on the IWS Server, there is no effect with Web Thin
Clients.

Background Task Script Groups
The Background Task Script Groups consist of one or more VBScript interface groups that run in the
Background Task. By default, there are no Background Task Script Groups unless added by the
developer. These Script Groups will execute in a background as long as their Execution Field is in a
TRUE state.

Background Task Script Groups have the following limitations:

Key Notes:
• Before executing the application, be sure to save (or close) the Screen

after any VBScript is entered. Otherwise it might not be updated. This is
true for all VBScript interfaces.

VBScript Reference Manual InduSoft Web Studio

52 InduSoft, Ltd.

• Variables declared in a Background Task Script Group have a local scope for its specific Script
Group only. Variables cannot be shared with other Script Groups, nor any other VBScript
Interface.

• Background Task Script Groups cannot declare their own Procedures (Subroutines and
Functions).

• The Execution Field of the Script Group will only support IWS tags or built-in functions. No
support for VBScript variables or Procedures is provided in the Execution Field.

However, the Background Task Script Groups can do the following:

• Access Procedures and Variables within the Background Task Startup Script.
• Access Procedures declared in Global Procedures.

To create a new Script Group, right-click on the Script
subfolder in the Tasks tab of the Workspace. Select the
Insert option from the pop-up menu. Note that the Startup
Script is already defined. To open (edit) an existing Script
Group, simply click its icon in the Script subfolder of the
Tasks workspace tab.

The code configured in each Script Group is executed by
the Background Task. IWS scans the Script Groups
sequentially (based on the number of the group) and
executes only the Groups in which the condition configured
in the Execution Field of the Script Group is set to or is
evaluated to be TRUE (a value different from 0).

When any Script Group is saved during runtime (e.g. from an on-line configuration download), the
Startup Script interface will be executed again, and the current value of the local variables contained in
any Script Group will be reset, if any exist.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 53

Since the Background Task Script Groups run on the IWS Server, there is no effect with Web Thin
Clients.

Scope of VBScript Procedures and Variables
The following table summarizes the relationship between the IWS VBScript interface location and its
Scope of Variables and Procedures. The table also defines where the Scripts are located

Item
Scope of

Procedures and
Variables

Execution Functionality Location/Access

Global
Procedures

All Procedures are
global, Variables

are accessible only
within Global

Procedures (local)

Procedures are
accessible to any
Script on the host

Server

Declaration of
Procedures

(Functions and
Subroutines) that

are available
globally

Database
Workspace Folder

Graphics Scripts

Procedures and
Variables

accessible within
Graphics Script

interface only. Can
Call Global
Procedures.

Executes on host
Server and/or Web

Thin Client where any
screen is displayed.

Condition-based
execution

- Graphics Start
- Graphics Open
- Graphics Close

Graphics Scripts
execute before
Screen Scripts

Graphics Workspace
Folder

Screen Scripts

Procedures and
Variables

accessible within
Screen where the
Script is written.
Screen Script
procedures

accessible to
ActiveX Events for

ActiveX objects
contained in the
Screen. Can Call

Global Procedures.

Executes on host
Server and/or Web

Thin Client where the
specific screen is

displayed

Condition-based
execution

- Screen Start
- Screen Open
- Screen Close

Within the Screen.

Command
Dynamic

Variables and Script
accessible only in
Object where the

Script is configured.
Can Call Global

Procedures.

Executes on host
Server and/or Web

Thin Client where the
screen with the specific

Object is displayed

Execution of Script
when Object

condition is met

Within Object
(Command)

Properties. The
Screen that uses the
Object must be open.

Key Notes:
• The Execution Field of the Script Group only supports syntax as specified by the IWS

built-in language.
• Before executing the application, be sure to save (or close) the Screen after any

VBScript is entered. Otherwise it might not be updated. This is true for all VBScript
interfaces.

• If any Script Group is saved during runtime (i.e. on-line configuration), the Startup
Script Group will be executed again and the current value of local variables will be
reset

VBScript Reference Manual InduSoft Web Studio

54 InduSoft, Ltd.

ActiveX Events

Variables
accessible only in
Object where the

Script is configured.
Screen Script

Procedures are
accessible. Can Call
Global Procedures.

Executes on host
Server and/or Web

Thin Client where the
screen with the specific

Object is displayed

Execution of Script
when selected
ActiveX Event

occurs

Within the ActiveX
object. The Screen
that uses the Object

must be open.

Background
Startup Script

Procedures and
Variables

accessible within
the Script Group.
Can Call Global

Procedures.

Executes on Server as
a background task

Declaration of
Procedures and

Variables that are
available for

Background Scripts

Tasks Workspace
Folder

Background
Script Groups

Accessible within
Script Group only.
Can Call Global

Procedures.

Executes on Server as
a background task

Condition-based
execution in

background mode.
Can have multiple

Script pages.

Tasks Workspace
Folder

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 55

Accessing IWS Tags and IWS Built-in functions
When writing your code in a VBScript interface, you can access any tag from the IWS tags database or
any function from the IWS built-in language by applying the "$" prefix to the tag/function name, as in the
examples below:

CurTime = $Time ‘ Returns the value of the tag Time from the tags database
a = $MyTag ‘ Sets a to the value of the IWS tag MyTag
$Open("main.scr") ‘ Executes the Open() function to open the "main" screen

IWS tags and built-in functions are accessible from any VBScript code segment, regardless where
located. If the IWS function returns a value (e.g. error or status information), this can be assigned to a
VBScript variable. IWS tags can be used as arguments in VBScript statements and functions.

If an undefined name follows the “$”, when the programmer does a Check Script function or attempts
to Save the script, IWS will ask the programmer if they want to define the IWS tag, and if so, prompt for
the tag type.

IWS supports the following application tag types:

• Boolean (a Boolean (True/False) or digital value (0 or 1))
• Integer (a 32-bit long-word signed integer type)
• Real (a real number stored as a double precision word)
• String (a string of characters of up to 255 characters that holds letters, numbers, or special

characters)
• Class (a user-defined, compound tag)
• Array (an array of values from 0 to 16,384)

Passing variables between VBScript and IWS is straightforward but there are some conversion
considerations that should be noted:

IWS Boolean
With VBScript, variable can be of the data subtype Boolean. VBScript defines keywords True and
False for logical states True and False, respectively. In VBScript, False has a numeric value of 0,
while True has a numeric value of -1. This is because Booleans are not actually stored as bits, but
as 32-bit signed integers. If all bits are zero, then it is a 0 or logical False. If all bits are set to 1, then
it is a signed value of -1 or a logical True.

IWS objects that display IWS-defined boolean tags (e.g. Text I/O) will have the boolean values
displayed as 0 or 1 (0=False, 1=True), not as False or True. Consider the following VBScript code
segment:

$MyBool = True ‘ Will be displayed as a “1” in an IWS object (*see below)
$MyBool = False ‘ Will be displayed as a “0” in an IWS object

The value for True assumed by Boolean IWS tags depends on the value of the parameter
BooleanTrueAboveZero that is located in the [Options] section of the <Application>.APP file. To
access this parameter, you need to open the <Application>.APP file with a simple text editor such
as Microsoft Notepad. For example:

[Options]
BooleanTrueAboveZero = 0 IWS Boolean tag set to value 1 (True) when value <> 0

[Options]
BooleanTrueAboveZero = 1 IWS Boolean tag set to value 1 (True) only when value > 0

VBScript Reference Manual InduSoft Web Studio

56 InduSoft, Ltd.

One item to watch for is the boolean NOT operator. With an IWS tag, even though the tag is of type
Boolean, it is really stored internally as a 32-bit signed variable. If you NOT a 0, the lower bit is set
to one but in reality all the bits are set to 1’s, meaning that with a variable that is a signed integer,
the NOT of 0 is really -1. For example,

a = CBool(Not(0))
$c = a ‘ $c (IWS tag c) will display as -1

One programming trick that can be used when attempting to toggle IWS Boolean Tags between 0
and 1 is either:

$tag = Abs ($tag=0) ‘ Either one of these statements will toggle the tag
$tag = $If ($tag=0,1,0) ‘ between 0 and 1

IWS Integer
All IWS integer tags are stored as 32-bit values. VBScript has 3 different variant subtypes that are
of interest. Bytes are 8-bit values that are positive whole numbers ranging from 0 to 255. Integers
are 16-bit signed values that range from -32,768 to 32,767. Long Integers are 32-bit values that
range from -2,147,483,648 to 2,147,483,647.

When storing to an IWS integer tag, the conversion to a 32-bit signed integer type will be
automatically made. For example:

a = CInt (-30) ‘ a is a 16-bit signed integer with a value of -30
$MyInt = a ‘ MyInt is a 32-bit signed integer with a value of -30
b = CByte (-30) ‘ Generates an error since Bytes are 0 to 255, not negative
b = CByte (30) ‘ b is a 8-bit unsigned integer with a value of 30
$MyInt = b ‘ MyInt is a 32-bt signed integer with a value of 30

When converting from an IWS integer tag to an IWS tag, this is really not a problem since VBScript
variables are type variant. For example:

$MyInt = 400 ‘ Store a vale larger than 255 (the Byte limit)
a = CByte (10) ‘ store as a byte subdata type
a = $MyInt ‘ a will equal 400.

IWS Strings
In IWS, strings are up to 255 in length, while VBScript strings can be virtually unlimited in length
(limited by available memory only). During the conversion from a VBScript string variable to an IWS
string, any characters beyond the first 255 will be truncated. For example:

a = “ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789”
a = a & a & a & a & a & a & a & a & a & a ‘ String is 360 characters long
$MyStr = a ‘ Store string in IWS string
 ‘ Result is 7 strings of a + “ABC” for total of 255 characters

In most cases, this string length difference is not of material significance. However, certain ActiveX
Controls can be used for block transfer of data to real-world devices and strings are ideal for
forming variable length data blocks. The string can then be parsed to extract the data of interest.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 57

IWS Classes
IWS Classes are simply user-defined compound tags that can be made up of one or more IWS tag
type. The IWS Classes and Tags are defined in the Database Worksheet. For example, if we define
a IWS Class (under the Classes Folder in the Database worksheet) called MyClass with the
following elements

MyClass
Item1 Integer
Item2 Integer
Message String

Next, a Class tag is created (in the Application Tags Folder)
Cls1 MyClass

Finally, in VBScript, we can refer to the elements in the Class tag as follows:

$Cls1.Item1 = 10
$Cls1.Item2 = 20
$Cls1.Message = “Hello World”

IWS Arrays
Using the Class example from above, if (in the Application Tags folder) we had declared the
variable Cls1 to have a size of 10, this would be an array with 11 elements. [Remember that the
count starts at 0, not 1].

In VBScript, we would refer to the elements in the Class array tag as follows:

$Cls1[1].Item1 = 10
$Cls1[1].Item2 = 20
$Cls1[1].Message = “Hello World”

We can also use a VBScript variable for the index of the Class array tag. For example:

Dim i
i = 1
$Cls1[i].Item1 = 10
$Cls1[i].Item2 = 20
$Cls1[i].Message = “Hello World”

Key Notes:
• IWS tags can be added through the VBScript interface. Simply type a “$” followed by a

valid IWS name, and when the Script is Saved, Closed or Check Script function invoked,
the programmer will be prompted to create new IWS tag(s).

• VBScript variables and IWS variables can be passed to each other.
• Watch for string length differences with IWS (max. 255 characters) versus VBScript (no

limit).

VBScript Reference Manual InduSoft Web Studio

58 InduSoft, Ltd.

Accessing ActiveX Objects from VBScript
Any of the VBScript interfaces relating to a Screen (i.e. Screen Script, Command Dynamic, and/or
ActiveX Events) can directly access the Properties and Methods of an ActiveX control (OCX) that is
inserted on a screen.

Using ActiveX Controls is fairly straight forward. First, the ActiveX controls must be registered (i.e. the
Operating System Windows Registry must have an entry and Class ID (CLSID) established for the
ActiveX Control). Usually when an ActiveX Control is installed in the PC, the installation program will
register the ActiveX Control in the final stage of the installation process. If not, registration can be done
with one of two methods:

1. Use the Microsoft RegSvr32 command
- Invoke the Microsoft Windows Run command
- In the dialog box, type CMD, then OK
- Type REGSVR32 “C:\<path to OCX control>\<ActiveX Control Name>.OCX”, then Enter

(Be sure path name is in quotes)
- If the ActiveX Control registers properly, you will get a message indicated this
- Close the dialog box

2. Use the Register Controls utility provided by IWS (under Tools on the main toolbar)
- Click on Tools, then Register Controls
- On the dialog box that pops up, click on Register
- Use the file navigator to locate the ActiveX Control that you want to register
- Click on Open.
- Click on Close in the Register Controls dialog box.

You can also use the IWS Register Controls utility to verify that the ActiveX Control has been
registered. Beware that the registered name and the file name may not be the same, and in many
cases they are not. The best way to verify the control is properly registered is to examine the path of
the registered Control.

When the ActiveX Control has been registered, it can be inserted onto a display screen using either the
OCX tool in the IWS toolbar or by using the Insert -> ActiveX Object from the top toolbar. A dialog box
will appear with a scrolled list of ActiveX objects that are available. Insert the ActiveX object(s) that are
appropriate for the application by clicking on OK. IWS will automatically assign a unique name to the
ActiveX control. You can use this name or change it, the only requirement being that it must be unique
from other ActiveX controls.

Now that an ActiveX Control has been placed on the Screen, any VBScript interface associated with
that screen can access the ActiveX Control. These VBScript interfaces are limited to the Screen Script,
Command Dynamic for objects located on the same Screen, and ActiveX Event Handler for other
ActiveX objects located on the same Screen.

For example, Microsoft has an ActiveX scrollbar control called “MicrosoftFlatScrollBarControl 6.0 (SP6)”.
Assuming this was inserted for the first time onto a Screen in an IWS application, IWS would likely
name this Control “MicrosoftFlatScrollbarControl1”. For brevity, let us rename this to “MFSC1”. I could
easily click on the ActiveX Control on the screen to access its Property Pages, Properties, Methods and
Events.

Note that Property Pages and Events are not accessible through the VBScript Interface, although a
VBScript Interface is available with the ActiveX’s Event Handler. Only an ActiveX Control’s Properties
and Methods are available from VBScript as implemented in IWS. By clicking on the object to get the
Object Properties dialog box

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 59

To access the ActiveX Control’s Properties and Methods from VBScript, you simply type the name of
the Control, followed by a Period “.” and then the Property or Method. You will need to reference
documentation from the developer of the ActiveX Control to determine which properties are setting (Set)
or retrieving (Get), and the functioning of the Methods available. For example, with the Microsoft scroll
bar control, we access Properties using the following code:
 MFSC1.Min = 0 ’ Set the min value of the scroll bar to 0
 MFSC1.Max = 100 ’ Set the max value of the scroll bar to 100
 $LocTag = MFSC1.Value ’ Get the current location of the scroll bar, pass to IWS tag

IWS tools such as Position and Command can be used with ActiveX controls. To enable these tools,
insert the ActiveX control on the Screen and then make sure the ActiveX control is selected
(highlighted). Then, select the Position or Command tool. For example, with the Position tool, you
can control the visibility of the ActiveX Control, or change its location on the screen.

Key Notes:
• All ActiveX Controls must have a unique name
• When referencing an ActiveX object name that has been inserted on a screen, note that

the reference is case-sensitive from VBScript for IWS 6.1 SP1 or earlier.
• Only ActiveX Properties and Methods can be accessed via VBScript. Event handling

must be set-up by configuring the object (i.e. right click on the object)
• ActiveX Controls can only be accessed by VBScript interfaces associated with the

Screen which contains the ActiveX Control (i.e. Screen Script, Command Dynamic,
ActiveX Event Handler)

ActiveX Control Name
established by IWS. You
can rename this Control.

Use this interface to tie
Properties and Methods to

IWS tags.

VBScript Reference Manual InduSoft Web Studio

60 InduSoft, Ltd.

IntelliSense
The VBScript Editor provides a useful tool called IntelliSense, a feature first popularized in Microsoft
Visual Studio. Intellisense can be thought of providing “auto-completion” based on the language
elements, variables and class members, as well as a convenient listing of available functions. As the
developer

IntelliSense the dialog box can display the following:

• VBScript Functions
• ActiveX Controls, Properties and Methods (the ActiveX Control must be inserted on the Screen

where the Screen Script, Command Dynamic or ActiveX Event is used)
• IWS tags and tag fields.
• IWS built-in functions

As the programmer begins to type and characters are recognized, IntelliSense may turn on. If not, the
programmer can activate IntelliSense by pressing the Ctrl key plus the Spacebar (“Ctrl” + “ “). By typing
a “$” at the beginning of a line, this allows access to IWS tags and built-in functions to be referenced.

When IntelliSense is activated, a pop-up box will appear. The contents of the pop-up box depend on
what the programmer has already typed. Sample IntelliSense pop-up dialogs are shown below:

Note that VBScript variables are not accessible through the IntelliSense dialog box.

IntelliSense uses different Icons to indicate the type of item that is being referenced. Some Icons are
used to indicate different items, so it is important to notice what object is being referenced (i.e. is it an
IWS tag, ActiveX Control, VBScript function, etc.)

IntelliSense Icon Use
 IWS Boolean Tag

 IWS Integer Tag

 IWS Real Tag
 IWS String Tag

 IWS Class Tag
 VBScript Function, built-in IWS function, or ActiveX Control Method

 ActiveX Control Property, VBScript Constants

IntelliSense Dialog for
VBScript Functions

IntelliSense Dialog for
IWS Functions

IntelliSense Dialog for
IWS Tag Fields

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 61

For many of the functions (both VBScript functions and IWS built-in functions), IntelliSense provide a
Parameter Quick Info pop-up dialog. This pop-up dialog may appear once the VBScript or IWS function
is entered. An example is:

Key Notes:
• Use the Ctrl key plus Spacebar key (“Ctrl” + “ ”) to activate IntelliSense. Doing this on

a blank line will show all available VBScript functions and any ActiveX controls
available.

• Use the Ctrl key plus Spacebar key (“Ctl” + “ ”) to auto-complete any VBScript function,
IWS tag, IWS tag field, IWS Class or Class Member, IWS built-in function, or ActiveX
Control name, Property or Method once enough of the characters have been entered so
that the reference is no longer ambiguous.

• Typing a “$” at the beginning of a line will invoke IntelliSense, referencing existing IWS
tags and built-in functions

• Typing the name of an IWS tag, followed by the minus key “-“ plus a greater than arrow
key “>” will open the list of available fields for the IWS tag

VBScript Reference Manual InduSoft Web Studio

62 InduSoft, Ltd.

VBScript with Web Thin Clients
In a Web Thin Client environment, the browser serves as the host for both HTML web pages published
by the IWS Server, as well as the host for VBScript code segments that are associated with a particular
Screen or object on the Screen. Generally, Microsoft Internet Explorer serves as the browser in a Web
Thin Client environment. A InduSoft ActiveX Control (ISSymbol) is used to coordinate communications
between the IWS Server and a Web Thin Client.

In a Windows XP/2000/NT-based Web Thin Client environment, Microsoft Internet Explorer (e.g.
Version 6 or later) supports VBScripts and ActiveX by default. In a Windows CE-based Web Thin Client
environment, Microsoft Internet Explorer (typically provided with PocketPC products) supports both
VBScript and ActiveX, but VBScript support must be enabled in the Windows CE image (part of the
Platform Build process, typically done by the hardware supplier). Windows CE systems with Microsoft
Pocket Explorer (different that Microsoft Internet Explorer) will not work with VBScript as Pocket
Explorer does not support VBScript due to memory limitations. Also remember that any ActiveX
controls used on a Windows CE Web Thin Client must be developed to support Windows CE.

VBScript Interface Functioning related to a Web Thin Client
Global Procedures VBScript Global Procedures are accessible to VBScript code segments that

execute on a Web Thin Client

Graphics Module Operates on IWS Server PC only. Procedures and Variables not accessible to a
Web Thin Client.

Screen Scripts

This VBScript interface (for a Web Page) executes independently from the
VBScript Interface for a Screen running on the IWS Server.

• The Graphics_OnStart() subroutine starts when the Web Thin Client
Station is successfully logged in and ISSymbol is hosted on the Web
Browser

• The Graphics_WhileRunning() subroutine executes on the Web Thin Client
while the Web Thin Client remains logged in and the ISSymbol Control
remain hosted on the Web Browser

• The Graphics_OnEnd() subroutine is executed once the Web Thin Client
logs off or the ISSymbol Control is no longer hosted by the Web Browser

Command Dynamic This VBScript interface (for a Web Page) executes independently from the
VBScript Interface for a Screen running on the IWS Server.

ActiveX Event Handler This VBScript interface (for a Web Page) executes independently from the
VBScript Interface for a Screen running on the IWS Server.

Background Task Startup Operates on IWS Server PC only. Procedures and Variables not accessible to a
Web Thin Client.

Background Task Scripts Operates on IWS Server PC only. Procedures and Variables not accessible to a
Web Thin Client.

Key Notes:
• Under Windows XP/2000/NT, to check or modify Internet Explorer’s settings for support

of VBScript and ActiveX Controls, open Internet Explorer, then click on Tools ->
Internet Options -> Security -> Custom Level.

• All VBScript interfaces unique to the Web Thin Client continue to have access to IWS
tags and IWS built-in functions.

• When using a Windows CE device for the Web Thin Client, be sure ActiveX support and
VBScript support is enabled. This is a function of the Windows CE OS image built
using Microsoft Platform Builder.

• When using a Windows CE device for the Web Thin Client, verify that MsgBox and
InputBox functions are enabled in the Windows CE OS image if you intent to use them,

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 63

VBScript Language Reference

This Language Reference section is intended to cover VBScript as it is intended to be used with
InduSoft Web Studio (IWS) and CEView.

VBScript, or more properly Microsoft Visual Basic Scripting Edition, is one of the members of the
Microsoft Visual Basic family. VBScript is primarily a subset of VBA, or Visual Basic for Applications,
although VBA and VBScript are targeted at different applications. VBA was intended to be used for the
automation of Microsoft Office and Microsoft Project applications, while VBScript was designed for use
with Web-based applications, both on the client side (e.g. Microsoft Internet Explorer) where it
compliments Jscript, and on the Server side, where it works with ASP (Active Server Pages)
applications and WSH (Windows Script Host) scripts.

InduSoft provides a VBScript Hosting environment for the InduSoft Web Studio (IWS) and CEView
HMI/SCADA software, allowing developers to use both VBScript programmability and native IWS (and
CEView) configurability. This combination of development methodologies lets developers chose which
development methodology best suits their application requirements. InduSoft has chosen to implement
VBScript instead of VBA, since VBScript has a number of advantages not inherent in VBA, including
the support for thin clients and Windows CE runtime environments.

This VBScript Language Reference covers the following material:

• Variables (Type, Declaration, Scope)
• Constants (Explicit, Implicit)
• Keywords
• Errors (Runtime, Syntax)
• Operators (Type, Precedence)
• Functions and Procedures
• Statements
• Objects and Collections
• VBScript restrictions within the IWS development environment
• Example VBScript Applications

VBScript Reference Manual InduSoft Web Studio

64 InduSoft, Ltd.

VBScript Variables

Variable Data Types and Subtypes
VB and VBA are compiled languages that require you to explicitly declare the variables you are going to
use and their data type. To explicitly declare a VB or VBA variable, you would use the Dim keyword.
The following example shows how VB or VBA would declare the variable x as an integer:
 Dim x As Integer

Dim a, b, c As Integer

With VBScript, you also use the Dim statement to explicitly declare a variable. However, you are not
required to explicitly declare variables in VBScript. If you do not explicitly declare a variable, it is
implicitly declared when the variable is used. However, typing (spelling) errors can typically go
undetected until a problem occurs, and then must be detected and corrected. By adding the Option
Explicit command at the beginning of the script, you can force the VBScript Scripting Engine to only
use the variables that are explicitly declared.

Example Dim a, b ‘ explicitly declares the variables a & b
 a = 4 ‘ assigns the value of 4 to variable a
 b = 4 ‘ assigns the value of 4 to variable b
 c = a + b ‘ VBScript will create a variable c, and then perform the
add

Example Option Explicit ‘ Force explicit definition of variables
 Dim a, b ‘ declare variables a and b
 a = 4 ‘ define variable a
 b = 4 ‘ define variable b
 c = a + b ‘ will generate an error since c not explicitly declared

Interestingly, VBScript does not allow you declare the variable data type (i.e. integer, real, etc.) in the
Dim statement. In fact, VBScript does not support data Type declarations. This is a major difference
between VBScript and VB/VBA. Instead, all VBScript variables are of a data type called Variant,
meaning the data type can be whatever is required. However, there are a variety of VBScript Variant
data subtypes that correspond to traditional data types familiar to programmers. These variant data
subtypes are:
Variant data subtypes

Subtype Description
Array An indexed list of variants

Boolean Boolean value of either True or False. False has a value of 0, and True has a value of -1.
Byte Contains integer in the range 0 to 255

Currency Floating-point number in the range -922,337,203,685,477.5808 to 922,337,203,685,477.5807
Date(Time) Contains a number that represents a date between January 1, 100 to December 31, 9999

Double Contains a double-precision, floating-point number in the range -1.79769313486232E308 to -
4.94065645841247E-324 for negative values; 4.94065645841247E-324 to
1.79769313486232E308 for positive values

Empty Uninitialized Variant
Error Contains an error number used with runtime errors

Integer Contains integer in the range -32,768 to 32,767
Long Contains integer in the range -2,147,483,648 to 2,147,483,647
Null A variant containing no valid data

Object Contains an object reference. Note that this is not the object itself.
Single Contains a single-precision, floating-point number in the range -3.402823E38 to -1.401298E-45

for negative values; 1.401298E-45 to 3.402823E38 for positive values
String Contains a variable-length string that can be up to approximately 2 billion characters in length.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 65

This relationship between type Variant and the various data subtypes is explained by the fact that
VBScript uses what is called “late-bound” typing, meaning that the data subtype is determined at
runtime by its usage or by a function. At runtime, the Parser in the VBScript Scripting Engine will
determine the data type required and allocate storage accordingly, then execute the statements or
functions accordingly for the data type. Microsoft reportedly implemented VBScript with late-bound data
typing in order to improve execution speed.

In its simplest form, a Variant contains either numeric or string data. A Variant behaves as a number
when you use it in a numeric expression and as a string when you use it in a string expression. That is,
if you are working with data that looks like numbers, VBScript assumes that it is a number and does
what is most appropriate for numbers. Similarly, if you're working with data that can only be string data,
VBScript treats it as string data. If you enclose a variable in quotation marks (" "), you will always make
the variable behave as a strings. When variables are initialized, a numeric variable is initialized to 0 and
a string variable is initialized to a zero-length string ("").

A variable that refers to an object must be assigned to an existing object using the Set statement
before it can be used. Until it is assigned an object, the declared object variable has the special value
Nothing.
Beyond simple numeric or string classifications, a Variant can be distinguished by the specific nature of
data it contains or represents. For example, numeric information can represent date or time. When the
variable is used with other date or time variables or operations, the result is always expressed as a date
or a time.

The Variant type is best thought of as a super data type which includes all the data subtypes. You can
change a variable’s value and subtype at runtime by assigning a new value to the variable from one
previously assigned to it. For example:
 Dim x
 x = “message1” ‘ x would be a string subtype
 x = 1 ‘ x would now become a integer subtype

Just to make this a little more confusing, if you had the statement
 x = 2.5
this could be a Currency, Single or Double data subtype. By default, VBScript would consider 2.5 to be
a Double data subtype. In the previous example, the variable x which was assigned a value of 1 could
be a data subtype of Boolean, Byte, Integer or Long. VBScript by default would consider the variable x
with a value of 1 to be an Integer data subtype.

Key Notes:
• The Dim keyword can be used to declare one or more variables. Multiple variables are

separated by comma(s).
• Option Explicit requires all variables to be declared, and is helpful to reduce typing

(spelling) errors
• The value assigned to a variable can be another variable, a named constant (implicit or

explicit) or a literal. A literal is simply static data, and can be a string of text, number,
date or a boolean value. E.g.

a = 2
myStr = “Alarm 1 on”

VBScript Reference Manual InduSoft Web Studio

66 InduSoft, Ltd.

Array Variables
Most variables discussed to this point have been of the type that contain a single value. These are
called scalar variables. Variables that contain a series of values are called array variables. Scalar
variables and array variables can be explicitly declared the same way using the Dim keyword, except
that array variables use the parentheses () following the variable name, used to indicate the size of the
array. An example of a single dimension array containing 10 elements is declared by:
 Dim a(9)

All arrays in VBScript are zero-based, meaning that the number of array elements is always equal to
the number of elements shown in the parentheses plus one. This is consistent with arrays in IWS.

Arrays that are declared with a number in the parentheses are called fixed-size arrays. Data can be
assigned to each element of the array as follows:
 Dim a(9)
 a(0) = 1
 a(1) = 20
 a(2) = -3

Data can be retrieved from an element of the array by using an index into the array. For example:
 Dim a(9), array_index, x, y
 a(0) = 1
 a(1) = 20
 a(2) = -3
 x = a(0) ‘ variable x is assigned a value of 1
 array_index = 2
 y = a(array_index) ‘ variable y is assigned a value of -3

Arrays can be multi-dimensional, with up to 60 dimensions. For a two-dimensional array, the first
number is referred to as the number of rows, and the second number being the number of columns.
Examples of multi-dimensional array declaration is as follows:
 Dim a(4,9) ‘ array has 5 rows and 10 columns
 Dim b(4,4,9) ‘ a 5 x 5 x 10 3-dimensional array

VBScript supports dynamic arrays, whose size can change during runtime. Dynamic arrays can change
the number of dimensions and the size of any or all dimensions. These arrays are initially declared
using the Dim (or ReDim) keyword followed by a closed parenthesis. Then, prior to using the dynamic
array, the ReDim keyword is used to specify the number of dimensions and size of each dimension.
The ReDim can subsequently be used to modify the dynamic array’s number of dimensions or size of
each dimension. The Preserve keyword can be used to preserve the contents of the array as the
resizing takes place. For example:
 Dim MyArray(), x
 ReDim MyArray(19) ‘ MyArray has 20 elements
 MyArray(0) = 10 ‘ Assign values to first 2 elements
 MyArray(1) = 20
 ReDim Preserve MyArray(24) ‘ change MyArray to a 25 element array
 x = MyArray(0) ‘ variable x is assigned value of 10

There is no limit to the number of times you can resize a dynamic array. However, if you make the array
smaller you will lose the data in the eliminated elements.

VBScript provides several functions for the manipulation of arrays. These include:

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 67

Array Functions & Statements
Array Functions Description
Array Returns a variant containing an array
Dim Declares variables and allocates storage space
Erase Reinitializes the elements of fixed-size arrays, deallocates dynamic-array storage space.
Filter Returns a zero-based array that contains a subset of a string array based on a filter criteria
IsArray Returns a Boolean value that indicates whether a specified variable is an array
Join Returns a string that consists of a number of substrings in an array
LBound Returns the smallest subscript for the indicated dimension of an array
ReDim Declare dynamic array variables, allocates or reallocates storage space at procedural level
Split Returns a zero-based, one-dimensional array that contains a specified number of substrings
UBound Returns the largest subscript for the indicated dimension of an array

Examples using these array functions are:

Dim MyArray(3), MyString, VarArray(), MyIndex, littleArray
MyArray(0) = “President ”
MyArray(1) = “George ”
MyArray(2) = “W. ”
MyArray(3) = “Bush”
MyString = Join(MyArray) ‘ MyString equals “President George W. Bush”
MyString = “HelloxWidexWorld”
MyArray = Split (MyString, “x”, -1,1) ‘ MyArray(0) contains “Hello”
 ‘ MyArray(1) contains “Wide”
 ‘ MyArray(2) contains “World”
MyIndex = Filter(MyArray, “W. “) ‘ MyIndex will equal 2
ReDim VarArray(10) ‘ Redimension the VarArray array
ReDim VarArray(20) ‘ Redimension the VarArray array
VarArray(19) = 19
VarArray(20) = 20
littleArray = Array(12.3.64, 15) ‘ Populate the array with the Array function
Erase VarArray ‘ Deallocates memory for the dynamic array
Erase MyArray ‘ Simply erases the fixed size array

Boolean Variables
Boolean variables have one of two values; True or False. The VBScript Keywords True or False can
be used to assign a value to the boolean variable. A boolean False is stored as a 0, but the boolean
True is not stored as a 1. Since the data storage element for the boolean value is a signed 32-bit value,
a boolean True will have all bits in the 32-bit value set to 1, which is a negative signed integer value of -
1. It is best to work with the boolean values True or False when working with boolean variables.

Key Notes:
• VBScript Array indices always start with 0. This is not the case with VBA.
• An array MyArray(2) has 3 elements, with indices 0, 1, and 2.
• Multi-dimensional arrays are supported up to 60 dimensions.
• Dim MyArray() is a dynamic array, and must be sized later with the ReDim statement .
• The Preserve keyword will preserve existing elements in a dynamic array
• Erase function deallocates memory for dynamic arrays, only clears fixed size arrays

VBScript Reference Manual InduSoft Web Studio

68 InduSoft, Ltd.

Literal Keywords used with Boolean data subtypes
Keyword Description
False Boolean condition that is not correct (false has a value of 0)
True Boolean condition that is correct (true has a value of -1)

An example would be:
 Dim overtemp_condition
 If $temperature > 100 then
 overtemp_condtion = True
 Else
 Overtemp_condition = False
 End If

There are several logical operators available in VBScript that can be used to evaluate logical
expressions. These logical operators can be used with both Boolean data subtypes as well as in
Comparison expressions. In the table below, a and b are assumed to represent logical expressions.
Logical Operators
Logic Operator Example Returns
AND And a AND b True only if a and b are both true
OR Or, | a OR b True if a or b is true, or both are true
Exclusive OR Xor a Xor b True if a or b is true, but not both
Equivalence Eqv a Eqv b True if a and b are the same
Implication Imp a Imp b False only if a is true and b is false otherwise

true
NOT Not a Not b True if a is false; False if a is true

A couple examples of the logical operators are:
 Dim temp, pressure
 If (temp > 212) And (pressure > 1) then ‘ evaluate a conditional expression
 Call Alarm_routine
 End If

 Dim a, b, temp, pressure
 a = (temp > 212) And (pressure > 1) ‘ conditional expression stored as a boolean
 If a = True Then ‘ logical condition test
 Call Alarm_routine
 End If

Note that the | operator (shift \) can be used instead of the Or logical operator. The statements (a | b)
and (a Or b) are equivalent.

Logical Truth Table
a b a And b a Or b a Xor b a Eqv b a Imp b Not a
T T T T F T T F
T F F T T F F F
F T F T T F T T
F F F F F T T T

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 69

Byte, Integer & Long Variables
These three data subtypes are whole numbers that vary by the range of values that they can hold. Note
that the Byte data subtype has only a positive range (i.e. it is an unsigned value), while Integer and
Long are signed values. Byte is an 8-bit number, Integer a 16-bit number and Long a 32-bit number.
 Subtype Range
 Byte 0 to 255
 Integer -32,768 to 32,767
 Long -2,147,483,648 to 2,147,483,647

There are several types of operations that can be performed on these data subtypes, such as
arithmetic, comparison and logical operators. Also, many math functions can be used with these data
subtypes. Some examples are:
 Dim MyByte, MyInt, MyHex
 MyByte = $input_val – 5 ‘ read integer IWS tag input_val and subtract 5
 If MyByte > 255 Then MyByte = 255 ‘ used in a condition statement. Make a byte value
 MyInt = 459
 MyHex = Hex(MyInt) ‘ returns 1CB

In addition to these functions, there are Byte versions of string operations that can be used with Byte
data contained in strings. For example, data from a serial port might be stored in a string. Remember
that strings can be essentially any length. The Mid function could be used to return a specified number
of characters from a string, but the MidB function will return a specified number of Bytes from the string.

Currency Variables
VBScript supports a currency data type. The valid range for currency is from -
922,337,203,685,477.5808 to 922,337,203,685,477.5807. You can perform most of the same
operations on the currency data type as you can perform on other numbers. The primary difference is
that the currency data subtype will contain the currency symbol, and is formatted using the
FormatCurrency function.

Currency Format Function

Function Description
FormatCurrency Returns an expression formatted as a currency value

Example1:
 Dim val, f_val ‘ This example limits the number of decimal places
 val = 123.456 ‘ assign a currency value to val
 f_val = FormatCurrency(val, 2) ‘ 2 digits after decimal, result is f_val = $123.45

Example2:
 Dim price ‘ This example changes the currency symbol
 price = 123.456
 SetLocale(1033) ' Set locale to United States, use $ currency symbol
 curDollars = FormatCurrency(price, 2) ' curDollars set to $123.46

 myLocale = SetLocale(2057) ' Set locale to UK, use £ currency symbol
 curPounds = FormatCurrency(price, 2) ' curPounds set to £123.46

Note: To use the Euro € symbol for a country that uses the Euro, make sure the system’s Region

Settings is properly set, otherwise the pre-Euro symbol will be used.

VBScript Reference Manual InduSoft Web Studio

70 InduSoft, Ltd.

Date (and Time) Variables
Date is another of VBScript’s data subtypes. The Date data subtype actually contains both date and
time information that can be stored in variables and constants. The Date format is Gregorian and the
Time is local, with Day Lights Savings changes ignored unless specified in the system settings. The
date subtype is a number that represents a date in the range of January 1, 100 to December 31, 9999.
The following are valid ranges for the date and time fields:
 Second 0 to 59
 Minute 0 to 59
 Hour 0 to 23
 Day 0 to 31
 Month 1 to 12
 Year 100 to 9999

With the date subtype, there are predefined VBScript constants that refer to the day of the week and
New Year’s week. There are also Date and Time formatting constants that are used with the
FormatDateTime function. In addition, there are several Date and Time functions available in VBScript.

A literal date can be defined by surrounding a date/time value with the # symbol on each end.

Some examples using Date and Time include:
 Dim CurDay, OldDay, DayDiff, HourDiff
 Dim MyDay, MyMonth, MyYear, RecentDay, OtherDay, MyDate
 OldDay = #3/27/2006 08:20:59# ‘ Set an old date
 CurDay = Now() ‘ reads current System time and date
 DayDiff = DateDiff(“d”. OldDay. CurDay) ‘ returns # days between OldDay and CurDay
 HourDiff = DateDiff(“h”, OldDay, CurDay) ‘ returns # hours between OldDay and CurDay
 MyDay = 27 ‘ specify day, month, year
 MyMonth = 3
 MyYear = 2006
 RecentDay = DateSerial(MyYear, MyMonth, MyDay) ‘ converts into a Date subtype variable
 OtherDay = DateSerial(MyYear, MyMonth-2, MyDay) ‘ you can use expressions in this
function
 MyDate = FormatDateTime(CurDay, vbLongDate) ‘ displays a date in the long format,
 ‘ uses computer’s regional settings

Days of Week Constants

Constant Value Description
vbUseSystem 0 Use system value
vbSunday 1 Sunday (Default)
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday

New Years Week Constants

Constant Value Description
vbUseSystem 0 Use system value
vbFirstJan1 1 Start with the week in which January 1st occurs (default)
vbFirstFourDays 2 Start with the week that has at least four days in the new year
vbFirstFullWeek 3 Start with the first complete week of the new year

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 71

Date and Time Format Constants (used with FormatDateTime function)
Constant Value Description

vbGeneralDate 0
Display a date and/or time. For real numbers, display a date and time. If there is no
fractional part, display only a date. If there is no integer part, display time only. Date
and time display is determined by your system settings

vbLongDate 1 Display a date using the long date format specified in your computer's regional
settings.

vbShortDate 2 Display a date using the short date format specified in your computer's regional
settings.

vbLongTime 3 Display a time using the long time format specified in your computer's regional
settings.

vbShortTime 4 Display a time using the short time format specified in your computer's regional
settings.

Date and Time Functions

Function Description
CDate Converts a valid date and time expression to the variant of subtype Date
Date Returns the current system date
DateAdd Returns a date to which a specified time interval has been added
DateDiff Returns the number of intervals between two dates
DatePart Returns the specified part of a given date
DateSerial Returns the date for a specified year, month, and day
DateValue Returns a date
Day Returns a number that represents the day of the month (between 1 and 31, inclusive)
FormatDateTime Returns an expression formatted as a date or time
Hour Returns a number that represents the hour of the day (between 0 and 23, inclusive)
IsDate Returns a Boolean value that indicates if the evaluated expression can be converted to a

date
Minute Returns a number that represents the minute of the hour (between 0 and 59, inclusive)
Month Returns a number that represents the month of the year (between 1 and 12, inclusive)
MonthName Returns the name of a specified month
Now Returns the current system date and time
Second Returns a number that represents the second of the minute (between 0 and 59, inclusive)
Time Returns the current system time
Timer Returns the number of seconds since 12:00 AM
TimeSerial Returns the time for a specific hour, minute, and second
TimeValue Returns a time
Weekday Returns a number that represents the day of the week (between 1 and 7, inclusive)
WeekdayName Returns the weekday name of a specified day of the week
Year Returns a number that represents the year

Key Notes:
• VBScript Date and Time formats can change based on the user logged into the

system. Reference Microsoft Knowledge Base Article 218964.
http://support.microsoft.com/kb/q218964/

• VBScript Date and Time functions may not be formatted properly in non-English (US)
locales. Reference Microsoft Knowledge Base Article 264063.
http://support.microsoft.com/default.aspx/kb/264063

VBScript Reference Manual InduSoft Web Studio

72 InduSoft, Ltd.

Empty Variables
Empty is a single VBScript variable that has been declared, but has no explicitly assigned value. This is
also known as an uninitialized variable. There are two ways a variable can be uninitialized. The first is
when it is explicitly declared but has not yet been assigned a value. For example:

Dim a, b
a = 2 ‘ a is initialized, b is still uninitialized

The second way a variable can be uninitialized is by assigning it a value of Empty. Empty is VBScript
keyword. For example:

a = 2 ‘ a is a integer variable
b = “Hello” ‘ b is a string variable
a = Empty ‘ makes variable a uninitialized
b = Empty ‘ makes variable b uninitialized

If the variable was a numeric data subtype and set to a value of Empty (making it a Empty subtype), its
value will be 0. If the variable was a string data subtype and set to a value of Empty, its value will be “”.
The numeric and string subtypes can still be used in statements without generating a VBScript error
although their values were set to Null

Note that a variable being Empty is different that variable having a Null value. An Empty variable is
uninitialized, while a Null variable contains no valid data.

Error Variables
A variable with an Error data subtype contains an error number generated by the VBScript Parser or
Runtime Engine (signifying the VBScript Syntax error or Runtime error). An Error variant data subtype
can only be created by the VBScript Parser or Runtime Engine, or by calls to VBScript Object Methods.
The programmer cannot directly create or manipulate Error data subtypes.

See the Err Object for examples of how to use errors.

Null Variables
A Null variable is a single variable that indicates the variable contains no valid data. A null value is
typically used to represent missing data. A variable becomes a Null variable when it is assigned a null
value by using the Null keyword. For example:

Dim a, b
a = 2 ‘ a is initialized, b is uninitialized
a = Null ‘ a is Null, b is uninitialized (Empty)

One of the main differences between Empty and Null is that a variable can be of type Empty
(uninitialized) when it is declared but not assigned a value, or when it is assigned a value of Empty. A
Null variable, on the other hand, must be assigned a Null value.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 73

Object Variables
The Object data subtype references an object. Although the topic of objects will be covered in detail
later, at this point it is worth noting that there are two types of Objects; Intrinsic (i.e. VBScript-based)
and Extrinsic Objects.

Intrinsic Objects are pre-defined by VBScript. VBScript includes the intrinsic Err object for error
handling. The programmer can only use the Err object name for this object.

Extrinsic objects need to be declared, or instantiated (i.e. create an instance of the Object). With
extrinsic objects, the programmer defines an object name in the declaration statement. The object
name can be any valid variable name allowed by VBScript, although following variable naming
conventions is strongly suggested.

Depending on the type of extrinsic object, different statements are used to instantiate the object. For
example, with user-defined Classes, you would use the following format to instantiate the object.

Set cObj = New classname

where cObj is the name of the new object being instantiated, New is a VBScript Keyword, and
classname is the name of the user-defined class, which is merely a template for the object.

Other extrinsic objects include ActiveX Objects, ADO.NET, and OLE Automation Objects such as
Microsoft Office applications and components. These objects use a different statement format for
instantiation. They use either the CreateObject or GetObject functions. For example:

Set cObj = CreateObject(“ADODB.Connection”)
Set xlObj = CreateObject(“Excel.Application”)
Set xlBook = GetObject(“C:\Test.XLS”)

The difference between CreateObject and GetObject is that CreateObject is used to create an interface
to a new instance of an application (or object) while the GetObject is used with an application that is
already loaded.

Real (Single, Double) Variables
Real data types in VBScript are floating point numbers that can be either single precision (Single) or
double precision (Double). Their ranges are:
 Single -3.402823E+38 to -1.401298E-45 for negative values
 1.401298E-45 to 3.402823E+38 for positive values

 Double -1.79769313486232E+308 to -4.94065645841247E-324 for negative values
 4.94065645841247E-324 to 1.79769313486232E+308 for positive values

There are several types of operations that can be performed on the Real data subtype, such as
arithmetic, comparison and logical operators. Also, many math functions can be used with this data
subtypes. Some examples are:
 Dim R1, R2, R3, Radius
 R1 = 3.14159
 Radius = 2
 R2 = R1 * radius * radius
 R3 = FormatNumber (R2, 2) ‘ R3 equals 12.57 (R2 = 12.56636)

VBScript Reference Manual InduSoft Web Studio

74 InduSoft, Ltd.

Number Format Functions
Function Description

FormatNumber Returns an expression formatted as a number
FormatPercent Returns an expression formatted as a percentage

Strings Variables
VBScript supports the String data subtype. Strings are variable length, limited only by the available
system memory. In practice of course, they are not that long. Strings are a set of characters enclosed in
(double) quotation marks. Variables are assigned a string value in the following manner:
 Dim str
 str = “hello”

The quotation marks signify the beginning and the end of a string. If you want to embed quotation
marks in a string (without intending to signify the end of the string), you need to use two double
quotation marks (adjacent) to embedded one of the quotation marks. For example,
 Dim msg
 msg = “Mr. Smith says “”hello””” ‘ String data is: Mr. Smith says “hello”

VBScript has predefined string constants that can be used for formatting strings used for text messages.
These string constants include:

String Constants

Constant Value Description
vbCr Chr(13) Carriage return
vbCrLf Chr(13) & Chr(10) Carriage return and linefeed combination
vbFormFeed Chr(12) Form feed
vbLf Chr(10) Line feed
vbNewLine Chr(13) & Chr(10) or Chr(10) Platform-specific newline character
vbNullChar Chr(0) Null Character
vbNullString Null String Null String - Not the same as a zero-length string ("")
vbTab Chr(9) Horizontal tab
vbVerticalTab Chr(11) Vertical tab

Strings can be easily concatenated by use of the & operator. For example:
 Dim str
 str = “hello”
 str = str & “ world” ‘ variable str now contains the string “hello world”

Using the string concatenation operator, another method of adding embedded quotation marks (or
other characters) to a string would be:
 Dim str, str_quotemark
 str_quotemark = chr(34)
 str = “Mr. Smith says” & str_quotemark & “hello” & str_quotemark

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 75

While VBScript string handling capability can be very useful, programmers should be aware of
information given in Microsoft Knowledge Base Article 1709641. This article states that when strings get
very large (e.g. 50kB or larger), the time to concatenate these strings can be very long. For example, a
typical string concatenation where:
 Dim dest, source ‘ String variables
 Dim i, N
 For i = 1 to N
 dest = dest & source
 Next N

Using the programming method above, the Article notes that the length of time to perform the
concatenation increase proportionately to N-squared. This increase in time is due to the method
VBScript uses to concatenate strings, which is:

• allocate temporary memory large enough to hold the result.
• copy the dest string to the start of the temporary area.
• copy the source string to the end of the temporary area.
• de-allocate the old copy of dest.
• allocate memory for dest large enough to hold the result.
• copy the temporary data to dest.

The Article details a method using the Mid$ statement and pre-allocation of memory to significantly
reduce the time to concatenate large strings. Also, you can reference the section on Classes for
another method to speed string concatenation.

There are several functions available to manipulate strings. Refer to the reference material in the
Appendix for a detail description of these functions.

String Functions

Function Description
InStr Returns the position of the first occurrence of one string within another. The search begins at the

first character of the string
InStrRev Returns the position of the first occurrence of one string within another. The search begins at the

last character of the string
LCase Converts a specified string to lowercase
Left Returns a specified number of characters from the left side of a string
Len Returns the number of characters in a string
LTrim Removes spaces on the left side of a string
Mid Returns a specified number of characters from a string
Replace Replaces a specified part of a string with another string a specified number of times
Right Returns a specified number of characters from the right side of a string
RTrim Removes spaces on the right side of a string
Space Returns a string that consists of a specified number of spaces
StrComp Compares two strings and returns a value that represents the result of the comparison
String Returns a string that contains a repeating character of a specified length
StrReverse Reverses a string
Trim Removes spaces on both the left and the right side of a string
UCase Converts a specified string to uppercase

1 See http://support.microsoft.com/kb/q170964/

VBScript Reference Manual InduSoft Web Studio

76 InduSoft, Ltd.

Data Subtype Identification
The Parser that is part of the VBScript Scripting Engine automatically defines a variable’s data subtype
for you at runtime. However, there are times when the programmer may need to know the variable’s
data subtype. To determine the specific data subtype used, VBScript you can use any of the three
categories of functions to determine the data subtype:

• The VarType(variable) function which returns a code based on the Variant data subtype used
• Various IsXxxx(variable) functions which return boolean values indicating whether the variable

is of a specific data subtype.
• A TypeName(variable) function which returns a string based indicating the data subtype

Variant Data Subtype Identification Functions

Variant
Function

Description

IsArray() Returns a Boolean value indicating whether a variable is an array
IsDate() Returns a Boolean value indicating whether an expression can be converted to a date
IsEmpty() Returns a Boolean value indicating whether a variable has been initialized.
IsNull() Returns a Boolean value that indicates whether an expression contains no valid data (Null).
IsNumeric() Returns a Boolean value indicating whether an expression can be evaluated as a number
IsObject() Returns a Boolean value indicating whether an expression refers to a valid Automation

object.
TypeName() Returns a string that provides Variant subtype information about a variable
VarType() Returns a value indicating the subtype of a variable

VarType() Function
This function is similar to TypeName except that a numeric value, or ID, is returned that is used to
identify the data subtype. This ID can then, as an example, be used in a flow control statement.

VarType Constants (returned from the VarType() function)

Constant Value Description
vbEmpty 0 Empty (uninitialized)
vbNull 1 Null (no valid data)
vbInteger 2 Integer
vbLong 3 Long Integer
vbSingle 4 Single-precision floating-point number
vbDouble 5 Double-precision floating-point number
vbCurrency 6 Currency
vbDate 7 Date
vbString 8 String
vbObject 9 Object
vbError 10 Error
vbBoolean 11 Boolean
vbVariant 12 Variant (Used only with Arrays)
vbDataObject 13 Data-access Object
vbDecimal 14 Decimal
vbByte 17 Byte
vbArray 8192 Array

Example:
 Myval = 23.3
 If VarType(Myval) = vbSingle Then
 Msgbox “MyVal is a Single Precision Floating Point Number”
 End If

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 77

IsXxxx() Functions

This is a series of functions that lets you determine whether a specific variable or constant is a
certain data subtype. These functions check the variable or constant against a specific data
subtype and return a Boolean value (True or False) indicating whether the variable or constant
is the specified data subtype. Examples include:

Dim MyArray(5) ‘ Declare an array
Dim MyVal ‘ Declare a variable
Date1 = “April 14, 2006” ‘ Assign Date
Date2 = #6/10/89# ‘ Assign Date
Date3 = “Hello World” ‘ Assign string
MyCheck = IsArray(MyArray) ‘ Returns a Boolean True
MyCheck = IsDate(Date1) ‘ Returns a Boolean True
MyCheck = IsDate(Date2) ‘ Returns a Boolean True
MyCheck = IsDate(Date3) ‘ Returns a Boolean False
MyCheck = IsEmpty(MyVal) ‘ Returns a Boolean True
MyVal = 5 ‘ Assign a value of 5
MyCheck = IsNumeric(MyVal) ‘ Returns a Boolean True
MyCheck = IsEmpty(MyVal) ‘ Returns a Boolean False
MyCheck = IsNull(MyVal) ‘ Returns a Boolean False
MyVal = Null ‘ Assign a null value (contains no valid data)
MyCheck = IsNull(MyVal) ‘ Returns a Boolean True
MyVal = Empty ‘ Assign Empty (uninitialized state)
MyCheck = IsEmpty(MyVal) ‘ Returns a Boolean True

Alternatively, you can use the IsXxxx() function in a conditional statement. For example,
Dim sInput
sInput = InputBox (“Enter a data value”)
If IsNumeric (sInput) Then
 MsgBox “Valid Input”
Else
 Msgbox “Invalid Input”
EndIf

Key Notes:
2. If VBScript detects that the variant subtype is an Array, the VarType function never

returns 8192. This is a base figure, and the actual value returned is 8192 plus the value of
the array type. For instance, if you have an Array of Boolean values, the value returned
would be vbArray + vbBoolean, or 8192 + 11 = 8203.

VBScript Reference Manual InduSoft Web Studio

78 InduSoft, Ltd.

TypeName() Function
TypeName is a read-only function that identifies the data subtype and returns a string that
contains the data subtype. This string can then be used in a flow control statement, or in a
message.

Return values from TypeName function

Return Value Description
<object type> Actual Type name of an Object
Boolean Boolean value (True or False)
Byte Byte value
Currency Currency value
Date Date or Time value
Decimal Decimal value
Double Double-precision floating-point value
Empty Uninitialized
Error Error
Integer Integer value
Long Long integer value
Nothing Object variable that doesn’t yet refer to an object instance
Null No valid data
Object Generic object
Single Single-precision floating-point value
String Character string value
Variant() Variant Array
Unknown Unknown object type

Dim MyVal
Dim a(9)
MsgBox TypeName(MyVal) ‘ Will get message “Empty”
MyVal = 5.2
MsgBox TypeName(MyVal) ‘ Will get message “Double”
Msgbox Typename(a) ‘ Will get message Variant()”

Key Notes:
1. When you pass an Array argument to the TypeName function, it will return value of

Variant(). This return value is not listed in Microsoft’s official documentation. Since
VBScript does not support data typing, there is no way to determine the data type of the
array. Instead, you must determine the data type of each element in the array, one
element at a time.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 79

Data Subtype Conversion
VBScript provides several functions that convert a VBScript variable from one data subtype to another.
Since VBScript uses the Variant data type, these functions are not generally required. However, when
passing data between IWS (or CEView) and VBScipt, or calling built-in IWS functions from VBScript
where variables need to be put into the proper argument format, these VBScript data subtype
conversion functions can be very useful.
Data Subtype Conversion Functions

Function Description
CBool() Converts an expression to a variant of subtype Boolean
CByte() Converts an expression to a variant of subtype Byte
CCur() Converts an expression to a variant of subtype Currency
CDate() Converts a valid date and time expression to the variant of subtype Date
CDbl() Converts an expression to a variant of subtype Double
CInt() Converts an expression to a variant of subtype Integer
CLng() Converts an expression to a variant of subtype Long
CSng() Converts an expression to a variant of subtype Single
CStr() Converts an expression to a variant of subtype String

Example:
a = -5.2
b = 4
c = “A”
LState = True
StartDate = #4/6/2005#
StartTime = #10:05:20#
d = CByte(a) ‘ Will generate overflow error, Bytes are only positive
d = CByte(d) ‘ d will equal 5 (Byte)
d = CStr(a + b) ‘ d will be “-1.2” (string)
d = CDate(StartDate + 20) ‘ d will be 4/26/2005 (date)
d = CDate(StartTime) ‘ d will be 10:05:20 am (date/time)
d = CDate(StartTime + 20) ‘ d will be 1/19/1900 10:05:20 am (date/time)
d = CDate(StartTime + #1:5#) ‘ d will be 11:10:20 am
d = CInt(LState) ‘ d will be -1

Since VBScript does not use explicit data typing, one might expect that you would not get a type
mismatch error. This however, is not necessarily true. For example, if you attempted to sum a number
and a string, you will get a type mismatch error. Users are not allowed to freely mix heterogeneous data
even if all data is of type Variant. Again, type Variant allows the variable and constant data type to be
determined at runtime, instead of being explicitly predefined.

More detail on the Data Subtype Conversion Functions is provided in the VBScript Functions section.

Key Notes:
• You can’t pass an alphanumeric string to a conversion function that returns a number

(e.g. CInt() or CLng() functions) if the string has more than one character containing an
ASCII number. If you try to do this, a type mismatch error will occur

• The CStr() function provides the greatest flexibility when converting an expression into
a String data subtype. If you use the CStr() function with a Boolean expression, the
result will be a string of either “True” or “False”. If you use the CStr() function with a
date expression, the date string will follow the operating systems short date format.

• To convert a string into a date data subtype, you can use either the CDate() function, or
simply assign a date value to a variable, enclosing the value in hashes (#) as follows:
MyDate = “#3/22/2006#”

VBScript Reference Manual InduSoft Web Studio

80 InduSoft, Ltd.

VBScript Naming Rules and Conventions
VBScript has some simple standard rules that apply to all VBScript variable names. These are:

• Must begin with an alpha character (A...Z)
• After the first character, they can contain letters, digits and underscores. No other embedded

characters are permissible.
• Must be less than 255 characters in length
• Must be unique in the scope in which they are declared
• Cannot use names that are Keywords

Permissible Not permissible
a class.item
b2 +a
c_34_ @Test123

Microsoft recommends following a naming convention for variables, based on their data type. The
variable name would contain a prefix, signifying its data type. Microsoft used the vb prefix for VBScript
defined constants, and it is recommended to avoid using these prefixes with variables. The Microsoft
recommended prefixes for programmer defined variables and constants are:
Microsoft Suggested Naming Convention for Variables

The Microsoft suggested naming convention are part of the “Hungarian Notation Standard” prefixes,
developed by Microsoft in 1972. Although many of the other prefixes are for C++ programmers, there
are a couple other Hungarian Notation prefixes that might be useful:

Additional Hungarian Notation Prefixes

Data Subtype Prefix Example
Boolean bln blnFound

Byte byt bytRasterData
Currency cur curTotal
Date/Time dtm dtmStart

Double dbl dblTolerance
Error err errOrderNum

Integer int intQuantity
Long lng lngDistance

Object obj objCurrent
Single sng sngAverage
String str strFirstName
Variant Var varNumber

Use Prefix Example
Pointer p pIndex
Class c cObject
Float f fCalc

Nested Class X X

Key Notes:
• Good programming would suggest that variable names are descriptive
• While VBScript variable names are not case sensitive, the name of an ActiveX control

inserted by IWS is case sensitive when referenced from a VBScript code segment.
• Most VBScript naming rules can be overridden by enclosing the name in brackets. For

example, [@a.1] would be a valid VBScript name.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 81

VBScript Reference Manual InduSoft Web Studio

82 InduSoft, Ltd.

Variable Scope
All VBScript variables have “scope”. Scope defines a variable’s visibility or accessibility from one
procedure (or VBScript Interface) to another, which in IWS is principally determined by where you
declare the variable. As a general rule, when you declare a variable within a procedure, only code
within that procedure can access or change the value of that variable. This is called local scope and is
for a procedure-level variable.

If you declare a variable outside a procedure, you make it recognizable to all the procedures in your
Script. This is a Script-level variable, and it has Script-level scope. However, as previously noted,
InduSoft enforces certain restrictions on the scope of Variables and Procedures.

A variable’s lifetime depends on how long it exists (i.e. for how long memory is allocated for the
variable). The lifetime of a script-level variable extends from the time it is declared until the time the
script is finished running, or until the memory is released (e.g. SET obj = Nothing statement).

At procedure level, a variable exists only for as long as you are in the procedure. When the procedure
exits, the variable is destroyed, and the memory previously allocated to the variable is released. Local
variables are ideal as temporary storage space when a procedure is executing. Local variables with the
same name can exist in several different procedures since the local variable is recognized only by the
procedure in which it is declared.

VBScript allows for explicit declaration of the scope of a variable through the Public or Private
declarations. These declarations can also define the size of an array. The Public or Private
declarations must be made at the beginning of a script, while the Dim declaration can be made at any
point in the script. When using the Public or Private declarations with IWS, be sure to use them in the
variable declaration section. You cannot use Public or Private declarations in IWS with Global
Procedures, Command Dynamic or ActiveX events (these are sections in IWS where VBScript can be
placed). Note that the use of the Public declaration of a variable may be limited by IWS, as Public
variables defined in one section in an IWS application are not necessarily accessible in another section.
See the VBScript Configuration and Operation in IWS section for more details on this topic.
Example:

Sub MySub(a,b)
 Dim c
 c =a + b
End Sub

Call MySub (1,2) ‘ Call the subroutine MySub
MsgBox c ‘ c will be uninitialized, not the same variable as in

Example:
Sub Calc
 Dim a
 a = 6
End Sub

Dim a
a = 2
GoSub Calc
MsgBox “a = ” & a ‘ a would equal 2, not 6

Example:
Private MyArray(5) ‘ Private variables
Public MyVal, MyList(5) ‘ Public variables

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 83

The following table is a brief summary of a VBScript variable’s scope based on which IWS module the
variable is declared in.

VBScript Variable Scope based on IWS module

IWS Module Scope of Variables
Global Procedures Variables accessible only within Global Procedures
Graphics Scripts Variables accessible only within Graphics Script interface
Screen Scripts Variables accessible only within the Screen where the Script is written
Command Dynamic Variables accessible only in the IWS object where the Script is configured
ActiveX Events Variables accessible only in ActiveX object where the Script is configured

Background Startup Script Variables accessible within Background Startup Script and all Background Script
Groups, but no where else

Background Script Groups Variables accessible only within the Background Script Group where it is declared

Key Notes:
• A variable’s scope is determined by where the variable is located (i.e. in a Subroutine or

Procedure, or in a main code segment)
• A variable’s scope can be made Public or Private via Public and Private statements.

These statements can also be used to declare the variable (allocate storage).
• With IWS, be sure to use the Public and Private declarations in the variable declaration

section. You cannot use the Public or Private declarations in Global Procedures,
Command Dynamic, or ActiveX events (see below).

• IWS places further limits on a variable’s scope. Using the Public statement does not
insure the variable is accessible by all VBScript code segments.

VBScript Reference Manual InduSoft Web Studio

84 InduSoft, Ltd.

VBScript Constants
VBScript supports both explicit and implicit constants. Constants should never be used as variables,
and you can only assign a fixed value to a constant; assigning a variable to a constant is not allowed.

Explicit constants are defined by the programmer. Explicit constants have a defined value which, unlike
a variable, is not allowed to change during the life of the script.

Implicit constants are pre-defined by VBScript. VBScript implicit constants usually begin with a vb
prefix. VBScript implicit constants are available to the VBScript programmer without having to define
them. Other objects, such as those used by ADO.NET, also have implicit constants predefined, usually
with different prefixes. However, the implicit constants for these objects may not be know to VBScript
and if not, will have to be defined as an explicit constant.

Constants have scope similar to variables. Implicit constants have scope throughout a VBScript
program, while explicit constants can have the same or a more limited scope. You can use the Private
or Public keyword in front of the Const declaration statement to define the scope of the constant. Keep
in mind that the scope of a constant be have further limitations placed on it by IWS. Constants declared
at the script level (or code segment level) have scope within the script, whether used in the code,
procedures, functions or user-defined classes. Constants declared inside of a procedure or function
have procedure-level scope, and cannot be used outside of the procedure or function.

Explicit Constants
An explicit constant is one which has an explicitly defined value, such as a number, string or other data
subtype, assigned to a name by the programmer. The constant cannot be changed during the lifetime
of the script. Constants are used in place of explicit values, making the VBScript easier to read and
allowing for changes to be made simply.

The constant name needs to follow the same rules as VBScript variable naming. Some authors
advocate using all capital letters for constants in an effort to distinguish them from variables.

Key Notes:
• Use named constants instead of literals, especially if a literal is used more than once.

This will help reduce programming errors, and allow changes to be made from one
location. E.g.

Const max_speed = 200  Preferred method using constant
Dim speed
If speed >= max_speed Then GoSub SlowDown
vs.
Dim speed  Non-preferred method using literal
If speed >= 200 Then GoSub SlowDown

• Use the same naming rules for constants as for variables. Some authors recommend

using all capital letters for constants to easily differentiate them from variables.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 85

To create an explicit constant, you use the keyword Const. You cannot use a function or another
constant as part of the explicit value. You cannot use an expression with a VBScript Operator. For
example:

Const Threshold = 101.5 ‘ Explicit constant Threshold has a value of 101.5
Const MyColor = &hFFFF ‘ assigns a color constant to MyColor
Const CrLf = Chr(13) & Chr(10) ‘ Not allowed to use a function
Const MyVal = 2 + 4 ‘ Not allowed to have an operator in assignment

String literals are enclosed in double quotation marks (“), while date and time literals are enclosed in
hashes (#). For example:
 Const MyString = “Hello World”
 Const StartDate = #4-1-2006#

After creating the constant, you can use the constant name in lieu of specifying an explicit value. For
example:
 Dim Alarm1, Alarm2
 Const Threshold = 101.5 ‘ Create a constant, value = 101.5
 Alarm1 = Threshold ‘ Assigns the constant to the variable Alarm1
 Alarm2 = Threshold + 5 ‘ Adds 5 to the constant and assigns to Alarm2

Key Notes:
• Use the following formats to assign constant values

Const MyVal = &hFFFF to assign a hexadecimal value
Const MyVal = "Hello" to assign a string value
Const MyVal = “He was “”lost””” to embed quotation marks
Const MyVal = #9-11-2001# to assign a date and time literal

• Use the same naming rules for variables as for constants
• Can’t use functions or operators in the assignment statement

VBScript Reference Manual InduSoft Web Studio

86 InduSoft, Ltd.

Implicit Constants
VBScript defines a number of implicit (or intrinsic) constants that can be used by the programmer in
VBScript code, regardless of the location of the VBScript code in the IWS development environment.
The intrinsic constants are grouped into various categories based on their use. For example, Color
Constants are used to define a color, instead of entering a hex value. VBScript defines the following
different categories of intrinsic Constants:

• Color Constants
• Comparison Constants
• Date and Time Constants
• Date Format Constants
• Days of Week Constants
• New Years Week Constants
• Error Constants
• Errors - VBScript Runtime
• Errors - VBScript Syntax
• File Attribute
• File Input/Output
• MsgBox Constants (determines what buttons appear and which are default)
• MsgBox Function Constants (identifies what buttons have been selected)
• SpecialFolder Constants
• String Constants
• Tristate Constants
• VarType Constants
• Locale ID (LCID)

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 87

VBScript implicit constants do not need to be defined by the programmer, they are predefined by
VBScript. The VBScript implicit constants start with a prefix of “vb”. Some examples are:
 vbBlack ‘ The implicit color constant for black
 vbFriday ‘ The implicit day of week constant for Friday
 vbCrLf ‘ Implicit string constant for a Cr and a Lf

The following is a list of the various VBScript implicit constants:

Color Constants
Constant Hex Value Decimal Value Description
vbBlack &h00 0 Black
vbRed &hFF 255 Red
vbGreen &hFF00 65280 Green
vbYellow &hFFFF 65535 Yellow
vbBlue &hFF0000 16,711,680 Blue
vbMagenta &hFF00FF 16,711,935 Magenta
vbCyan &hFFFF00 16,776,960 Cyan
vbWhite &hFFFFFF 16,777,215 White

Comparison Constants

Constant Value Description
vbBinaryCompare 0 Binary Comparison
vbTextCompare 1 Text-based Comparison

VBScript Date and Time Format Constants

Constant Value Description

vbGeneralDate 0
Display a date and/or time. For real numbers, display a date and time. If there is no
fractional part, display only a date. If there is no integer part, display time only. Date
and time display is determined by your system settings

vbLongDate 1 Display a date using the long date format specified in your computer's regional
settings.

vbShortDate 2 Display a date using the short date format specified in your computer's regional
settings.

vbLongTime 3 Display a time using the long time format specified in your computer's regional
settings.

vbShortTime 4 Display a time using the short time format specified in your computer's regional
settings.

VBScript Days of Week Constants

VBScript New Years Week Definition

Constant Value Description
vbUseSystemDayOfWeek 0 Use system value for the first day of the week.
vbFirstJan1 1 Start with the week in which January 1st occurs (default).

This is the default value for both DateDiff and DatePart.

Constant Value Description
vbUseSystem 0 Use system value
vbSunday 1 Sunday (Default)
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

VBScript Reference Manual InduSoft Web Studio

88 InduSoft, Ltd.

vbFirstFourDays 2 Start with the week that has at least four days in the new year
vbFirstFullWeek 3 Start with the first complete week of the new year

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 89

VBScript Error Constants

Constant Value Description

vbObjectError -2147221504
The base error number, to which a user-defined error number is added when a
user-defined error is raised. To raise error #1000, the following format should
be used: Err.Raise Number = vbObjectError + 1000

VBScript Runtime Errors

Error Number Description
5 Invalid procedure call or argument
6 Overflow
7 Out of Memory
9 Subscript out of range
10 This array is fixed or temporarily locked
11 Division by zero
13 Type mismatch
14 Out of string space
17 Can't perform requested operation
28 Out of stack space
35 Sub or function not defined
48 Error in loading DLL
51 Internal error
91 Object variable not set
92 For loop not initialized
94 Invalid use of Null
424 Object required
429 ActiveX component can't create object
430 Class doesn't support Automation
432 File name or class name not found during Automation operation
438 Object doesn't support this property or method
445 Object doesn't support this action
447 Object doesn't support current locale setting
448 Named argument not found
449 Argument not optional
450 Wrong number of arguments or invalid property assignment
451 Object not a collection
458 Variable uses an Automation type not supported in VBScript
462 The remote server machine does not exist or is unavailable
481 Invalid picture
500 Variable is undefined
502 Object not safe for scripting
503 Object not safe for initializing
504 Object not safe for creating
505 Invalid or unqualified reference
506 Class not defined
507 An exception occurred
5008 Illegal assignment
5017 Syntax error in regular expression
5018 Unexpected quantifier
5019 Expected ']' in regular expression
5020 Expected ')' in regular expression
5021 Invalid range in character set

VBScript Reference Manual InduSoft Web Studio

90 InduSoft, Ltd.

VBScript Syntax Errors
Error Number Description
1052 Cannot have multiple default property/method in a Class
1044 Cannot use parentheses when calling a Sub
1053 Class initialize or terminate do not have arguments
1058 'Default' specification can only be on Property Get
1057 'Default' specification must also specify 'Public'
1005 Expected '('
1006 Expected ')'
1011 Expected '='
1021 Expected 'Case'
1047 Expected 'Class'
1025 Expected end of statement
1014 Expected 'End'
1023 Expected expression
1015 Expected 'Function'
1010 Expected identifier
1012 Expected 'If'
1046 Expected 'In'
1026 Expected integer constant
1049 Expected Let or Set or Get in property declaration
1045 Expected literal constant
1019 Expected 'Loop'
1020 Expected 'Next'
1050 Expected 'Property'
1022 Expected 'Select'
1024 Expected statement
1016 Expected 'Sub'
1017 Expected 'Then'
1013 Expected 'To'
1018 Expected 'Wend'
1027 Expected 'While' or 'Until'
1028 Expected 'While,' 'Until,' or end of statement
1029 Expected 'With'
1030 Identifier too long
1014 Invalid character
1039 Invalid 'exit' statement
1040 Invalid 'for' loop control variable
1013 Invalid number
1037 Invalid use of 'Me' keyword
1038 'loop' without 'do'
1048 Must be defined inside a Class
1042 Must be first statement on the line
1041 Name redefined
1051 Number of arguments must be consistent across properties specification
1001 Out of Memory
1054 Property Set or Let must have at least one argument
1002 Syntax error
1055 Unexpected 'Next'
1015 Unterminated string constant

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 91

VBScript MsgBox Constants (settings)
Constant Value Description
vbOKOnly 0 Display OK button only. This is the default value
vbOKCancel 1 Display OK and Cancel buttons.
vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons.
vbYesNoCancel 3 Display Yes, No, and Cancel buttons.
vbYesNo 4 Display Yes and No buttons.
vbRetryCancel 5 Display Retry and Cancel buttons.
vbCritical 16 Display Critical Message icon.
vbQuestion 32 Display Warning Query (question mark) icon.
vbExclamation 48 Display Warning Message icon.
vbInformation 64 Display Information Message icon.
vbDefaultButton1 0 First button is the default.
vbDefaultButton2 256 Second button is the default.
vbDefaultButton3 512 Third button is the default.
vbDefaultButton4 768 Fourth button is the default.
vbMsgBoxRight 524288 Right align text

vbMsgBoxRtlReading 1048576 On Hebrew and Arabic systems, specifies that text should appear from
right to left.

vbMsgBoxSetForeground 65536 Makes the message box the foreground window

vbApplicationModal 0 Application modal. The focus cannot move to another interface in the
application until the dialog is closed

vbSystemModal 4096
System modal. On Win32 systems, this constant provides an
application modal message box that always remains on top of any
other programs you may have running.

vbMsgBoxHelpButton 16384 Help button.

VBScript MsgBox Function Constants (identifies what buttons have been selected)

Constant Value Description
vbOK 1 OK button was clicked.
vbCancel 2 Cancel button was clicked.
vbAbort 3 Abort button was clicked.
vbRetry 4 Retry button was clicked.
vbIgnore 5 Ignore button was clicked.
vbYes 6 Yes button was clicked.
vbNo 7 No button was clicked.

VBScript String Constants

Constant Value Description
vbCr Chr(13) Carriage return
vbCrLf Chr(13) & Chr(10) Carriage return and linefeed combination
vbFormFeed Chr(12) Form feed
vbLf Chr(10) Line feed
vbNewLine Chr(13) & Chr(10) or Chr(10) Platform-specific newline character
vbNullChar Chr(0) Null Character
vbNullString 0 Null String - Not the same as a zero-length string ("")
vbTab Chr(9) Horizontal tab
vbVerticalTab Chr(11) Vertical tab

VBScript Reference Manual InduSoft Web Studio

92 InduSoft, Ltd.

VBScript Tristate Constants
Constant Value Description
vbFalse 0 False
vbTrue -1 True
vbUseDefault -2 Default. Uses default from computer’s regional settings

The tristate constants are used when there are three possible options: True, False and Default.

VBScript VarType Constants (defines the possible subtypes of variables)

Constant Value Description
vbEmpty 0 Empty (uninitialized)
vbNull 1 Null (no valid data)
vbInteger 2 Integer
vbLong 3 Long Integer
vbSingle 4 Single-precision floating-point number
vbDouble 5 Double-precision floating-point number
vbCurrency 6 Currency
vbDate 7 Date
vbString 8 String
vbObject 9 Object
vbError 10 Error
vbBoolean 11 Boolean
vbVariant 12 Variant (Used only with Arrays)
vbDataObject 13 Data-access Object
vbByte 17 Byte
vbArray 8192 Array

These constants are used with the VarType() function.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 93

VBScript Locale ID (LCID) Chart
Locale Short

String
Hex
Value

Dec.
Value Locale Short

String
Hex
Value

Dec.
Value

Afrikaans af 0x0436 1078 Icelandic is 0x040F 1039
Albanian sq 0x041C 1052 Indonesian id 0x0421 1057
Arabic - United Arab
Emirates ar-ae 0x3801 14337 Italian - Italy it-it 0x0410 1040

Arabic - Bahrain ar-bh 0x3C01 15361 Italian - Switzerland it-ch 0x0810 2064
Arabic - Algeria ar-dz 0x1401 5121 Japanese ja 0x0411 1041
Arabic - Egypt ar-eg 0x0C01 3073 Korean ko 0x0412 1042
Arabic - Iraq ar-iq 0x0801 2049 Latvian lv 0x0426 1062
Arabic - Jordan ar-jo 0x2C01 11265 Lithuanian lt 0x0427 1063
Arabic - Kuwait ar-kw 0x3401 13313 Macedonian (FYROM) mk 0x042F 1071
Arabic - Lebanon ar-lb 0x3001 12289 Malay - Malaysia ms-my 0x043E 1086
Arabic - Libya ar-ly 0x1001 4097 Malay – Brunei ms-bn 0x083E 2110
Arabic - Morocco ar-ma 0x1801 6145 Maltese mt 0x043A 1082
Arabic - Oman ar-om 0x2001 8193 Marathi mr 0x044E 1102
Arabic - Qatar ar-qa 0x4001 16385 Norwegian - Bokml no-no 0x0414 1044
Arabic - Saudi Arabia ar-sa 0x0401 1025 Norwegian - Nynorsk no-no 0x0814 2068
Arabic - Syria ar-sy 0x2801 10241 Polish pl 0x0415 1045
Arabic - Tunisia ar-tn 0x1C01 7169 Portuguese - Portugal pt-pt 0x0816 2070
Arabic - Yemen ar-ye 0x2401 9217 Portuguese - Brazil pt-br 0x0416 1046
Armenian hy 0x042B 1067 Raeto-Romance rm 0x0417 1047
Azeri - Latin az-az 0x042C 1068 Romanian - Romania ro 0x0418 1048
Azeri - Cyrillic az-az 0x082C 2092 Romanian - Moldova ro-mo 0x0818 2072
Basque eu 0x042D 1069 Russian ru 0x0419 1049
Belarusian be 0x0423 1059 Russian - Moldova ru-mo 0x0819 2073
Bulgarian bg 0x0402 1026 Sanskrit sa 0x044F 1103
Catalan ca 0x0403 1027 Serbian - Cyrillic sr-sp 0x0C1A 3098
Chinese - China zh-cn 0x0804 2052 Serbian - Latin sr-sp 0x081A 2074
Chinese - Hong Kong
SAR zh-hk 0x0C04 3076 Setsuana tn 0x0432 1074

Chinese - Macau SAR zh-mo 0x1404 5124 Slovenian sl 0x0424 1060
Chinese - Singapore zh-sg 0x1004 4100 Slovak sk 0x041B 1051
Chinese - Taiwan zh-tw 0x0404 1028 Sorbian sb 0x042E 1070
Croatian hr 0x041A 1050 Spanish - Spain es-es 0x0C0A 1034
Czech cs 0x0405 1029 Spanish - Argentina es-ar 0x2C0A 11274
Danish da 0x0406 1030 Spanish - Bolivia es-bo 0x400A 16394
Dutch - Netherlands nl-nl 0x0413 1043 Spanish - Chile es-cl 0x340A 13322
Dutch - Belgium nl-be 0x0813 2067 Spanish - Colombia es-co 0x240A 9226
English - Australia en-au 0x0C09 3081 Spanish - Costa Rica es-cr 0x140A 5130

English - Belize en-bz 0x2809 10249 Spanish - Dominican
Republic es-do 0x1C0A 7178

English - Canada en-ca 0x1009 4105 Spanish - Ecuador es-ec 0x300A 12298
English - Caribbean en-cb 0x2409 9225 Spanish - Guatemala es-gt 0x100A 4106
English - Ireland en-ie 0x1809 6153 Spanish - Honduras es-hn 0x480A 18442
English - Jamaica en-jm 0x2009 8201 Spanish - Mexico es-mx 0x080A 2058
English - New Zealand en-nz 0x1409 5129 Spanish - Nicaragua es-ni 0x4C0A 19466
English - Phillippines en-ph 0x3409 13321 Spanish - Panama es-pa 0x180A 6154
English - South Africa en-za 0x1C09 7177 Spanish - Peru es-pe 0x280A 10250
English - Trinidad en-tt 0x2C09 11273 Spanish - Puerto Rico es-pr 0x500A 20490
English – UK en-gb 0x0809 2057 Spanish - Paraguay es-py 0x3C0A 15370
English - United States en-us 0x0409 1033 Spanish - El Salvador es-sv 0x440A 17418
Estonian et 0x0425 1061 Spanish - Uruguay es-uy 0x380A 14346
Farsi fa 0x0429 1065 Spanish - Venezuela es-ve 0x200A 8202
Finnish fi 0x040B 1035 Southern Sotho st 0x0430 1072

VBScript Reference Manual InduSoft Web Studio

94 InduSoft, Ltd.

Locale Short
String

Hex
Value

Dec.
Value Locale Short

String
Hex
Value

Dec.
Value

Faroese fo 0x0438 1080 Swahili sw 0x0441 1089
French - France fr-fr 0x040C 1036 Swedish - Sweden sv-se 0x041D 1053
French - Belgium fr-be 0x080C 2060 Swedish - Finland sv-fi 0x081D 2077
French - Canada fr-ca 0x0C0C 3084 Tamil ta 0x0449 1097
French - Luxembourg fr-lu 0x140C 5132 Tatar tt 0X0444 1092
French - Switzerland fr-ch 0x100C 4108 Thai th 0x041E 1054
Gaelic - Ireland gd-ie 0x083C 2108 Turkish tr 0x041F 1055
Gaelic - Scotland gd 0x043C 1084 Tsonga ts 0x0431 1073
German - Germany de-de 0x0407 1031 Ukrainian uk 0x0422 1058
German - Austria de-at 0x0C07 3079 Urdu ur 0x0420 1056
German - Liechtenstein de-li 0x1407 5127 Uzbek - Cyrillic uz-uz 0x0843 2115
German - Luxembourg de-lu 0x1007 4103 Uzbek – Latin uz-uz 0x0443 1091
German - Switzerland de-ch 0x0807 2055 Vietnamese vi 0x042A 1066
Greek el 0x0408 1032 Xhosa xh 0x0434 1076
Hebrew he 0x040D 1037 Yiddish yi 0x043D 1085
Hindi hi 0x0439 1081 Zulu zu 0x0435 1077
Hungarian hu 0x040E 1038

Common VBScript Locale ID (LCID) Chart (partial list)

Locale Short
String

Hex
Value

Dec.
Value

English - United States en-us 0x0409 1033
English – UK en-gb 0x0809 2057
German - Germany de-de 0x0407 1031
Spanish - Mexico es-mx 0x080A 2058
Chinese - China zh-cn 0x0804 2052
Japanese ja 0x0411 1041
French - France fr-fr 0x040C 1036
Russian ru 0x0419 1049
Italian - Italy it-it 0x0410 1040

Key Notes:
• You cannot re-assign a value to an implicit VBScript Constant. E.g.

vbNull = 5 ‘ Will generate an error. vbNull = 1
• Use implicit constants instead of literals where possible in order to improve code

readability.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 95

Declaring Variables, Objects and Constants
VBScript does not require the explicit declaration of scalar variables, i.e. those variables with only one
value assigned at any given time. Arrays, Objects (except Err) and Constants must be declared. Scalar
variables used but not declared are called implicit variables. While it may initially be convenient not to
declare variables, any typing (spelling) errors of the variable or constant names may produce
unexpected results at runtime.

The Option Explicit statement can be invoked at the beginning of the variable declaration script
segment to force the declaration of variables. This statement must be placed above the first Dim
statement. Any variables not declared will invoke an error message “Variable is undefined”.

All variables and constants must follow the variable naming rules, and should follow standard naming
conventions although not required to do so. Multiple assignments can be made on the same line when
the variable declarations are separated by the colon character :.

Example:
 Dim a, b, c ‘ Declares variables a, b & c
 Dim k(9) ‘ Declares an array k with 10 elements
 ‘ since VBScript is 0 based
 a = 2 : b = 3 : c = 4 ‘ Assign values to variables
 d = a + b + c ‘ Implicitly defined variable d, equals 9

Example:
 Option Explicit ‘ Force explicit variable declaration
 Dim a, b, c ‘ Declares variables a, b & c
 a = 2 : b = 3 : c = 4 ‘ Assign values to variables
 d = a + b + c ‘ Error since d not explicitly defined

Scalar variables and Fixed-sized Arrays are declared using the Dim statement. Fixed-sized arrays have
a defined number of dimensions and defined size to each dimension that do not change during the life
of the variable.

Dynamic arrays are a type of array that can be dynamically resized during runtime. Dynamic arrays are
initially declared using the Dim statement followed by closed parentheses. Then, at one or more points
in the program, the ReDim statement is used to dynamically resize the array. For example:

Dim myDynamicArray() ‘ Declare a dynamic array
ReDim myDynamicArray(10) ‘ Now declare it to have 11 elements

The Array function can be used to initially populate the array. The following is an example
Dim myArray
myArray = Array(4.56.82. 3.82)

Extrinsic Objects must also be declared. Depending on the type of extrinsic object, different statements
are used to instantiate (declare and allocate memory for) the object. For example, with user-defined
Classes, you would use the following format to instantiate the object.

Set cObj = New classname

where cObj is the name of the new object being instantiated, New is a VBScript Keyword, and
classname is the name of the user-defined class, which is merely a template for the object.

VBScript Reference Manual InduSoft Web Studio

96 InduSoft, Ltd.

Other extrinsic objects include ActiveX Objects, ADO.NET, and OLE Automation Objects such as
Microsoft Office applications and components. These objects use a different statement format for
instantiation. They use either the CreateObject or GetObject functions. For example:

Set cObj = CreateObject(“ADODB.Connection”)
Set xlObj = CreateObject(“Excel.Application”)
Set xlBook = GetObject(“C:\Test.XLS”)

The difference between CreateObject and GetObject is that CreateObject is used to create an interface
to a new instance of an application (or object) while the GetObject is used with an application that is
already loaded.

To declare constants, you use the Const statement. An example is:

 Const mySetting = 100

As previously discussed, constants have scope. The scope of a constant can be modified by adding
either the keyword Public or Private in front of the Const declaration.

Key Notes:
• All Arrays in VBScript are zero-based, meaning that the array myArray(10) really has 11

elements. Unlike VB or VBA, all arrays in VBScript are zero-based.
• Arrays, Objects (except implicit Err Object) and Named Constants must be declared.
• Using Option Explicit forces all variables to be declared. This helps prevent runtime

errors due to mis-typing.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 97

VBScript Keywords
VBScript has many keywords. These keywords include the built-in constants and literals, operators,
functions, statements and objects. These keywords are reserved, i.e. they cannot be used as names of
variables or constants.

We have already covered the VBScript built-in implicit constants (keywords). Below are the VBScript
literal keywords, followed by operators, functions, statements and objects.

VBScript Literals
Literal keywords are used to define variables and constants, or comparison of variables.

VBScript Literal Keywords

Keyword Description
Empty Uninitialized variable value, e.g. a variable it is created but no value has been assigned to it, or

when a variable value is explicitly set to empty. Note: Empty is not the same as Null.
False Boolean condition that is not correct (false has a value of 0)
IsNothing Variable is an initialized object.
IsEmpty Variable is uninitialized.
IsNull Variable contains invalid data.
Nothing Indicates an uninitialized object value, or disassociate an object variable from an object to release

system resources.
Null Variable contains no valid data. Note: This is not the same as Empty or Nothing
True Boolean condition that is correct (true has a value of -1)

The following are example uses literal keywords
 Dim valve_closed, pump_on, a
 If valve_closed = True Then pump_on = False
 a = Empty

VBScript Reference Manual InduSoft Web Studio

98 InduSoft, Ltd.

VBScript Operators
Operators act on one or more operands. VBScript provides operators to perform arithmetic, assignment,
comparison, concatenation and logical operations. In some cases, the operation varies based on the
Variant subdata type.

Arithmetic Operators
Arithmetic operator are used to calculate a numeric value, and are normally used with in conjunction
with the assignment operator or one of the comparison operators. Note that the minus (–) operator can
also be a unary operator to indicate a negative number. The plus (+) operator can be used for addition
of two numbers or to concatenate strings, although the ampersand (&) operator is the preferred
operator for string concatenation.

Operators Name Description
+ Addition Adds two numbers together
- Subtraction Subtracts one number from the other
^ Exponentiation Raises number to the power of the exponent

Mod Mod Divides one number by the other and returns only the remainder
* Multiplication Multiplies two numbers
/ Division Divides one number by the other with a floating point result
\ Integer Division Divides one number by the other with an integer result

Assignment Operator
The assignment operator is used to assign a value to a variable or to a property of an object. See the
Set statement for referencing and assigning Objects.

Operators Name Description
= Assignment Assign a value to a variable or property, reference and assign objects

Comparison Operators
Comparison operators are used to compare numeric values and string expressions against other
variables, expressions or constants. The result of the comparison is either a logical True or a logical
False.

Operators Name Example Description
< Less than a < b Returns TRUE if a < b

<= Less than or equal a <= b Returns TRUE if a is not greater than b
> Greater than a > b Returns TRUE if a is greater than b

>= Greater than or equal a >=b Returns TRUE if a is not less than b
= Equals a = b Returns TRUE if a is equal to b

<> Not equal a <> b Returns TRUE if a is not equal to b

String Concatenation Operators
The String operators are used to concatenate (combine) strings. There are two string concatenation
operators, but it is recommended to use the & operator for string concatenation, so as not to confuse it
with the + addition operator.

Operators Name Description
& String Concatenation Concatenates two strings. Preferred method.
+ String Concatenation Concatenates two strings. Non-preferred method.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 99

Logical Operators
Logical Operators are used to perform logical operations on expressions, and can also be used as bit-
wise operators.

Operators Function Example Returns
And Logical And a AND b True only if a and b are both true
Eqv Logical Equivalent a Eqv b True if a and b are the same
Imp Logical Implication a Imp b False only if a is true and b is false otherwise true
Not Logical Not a Not b True if a is false; False if a is true
Or, | Logical Or a OR b True if a or b is true, or both are true
Xor Logical Exclusive Or a Xor b True if a or b is true, but not both

A word of caution about the NOT operator. The NOT operator inverts
boolean “True” and “False” values as expected. However, the NOT
operator can also operate on other data subtypes and IWS data types. The
chart to the right shows the result of the NOT operation on integer (or Real)
values.

Is Operator
The Is operator is used to compare one object variable to another to determine if they reference the
same object. In addition, the Nothing keyword can be used to determine whether a variable contains a
valid object reference..

$ Operator
The $ operator is a very special operator which has been added by InduSoft. The $ operator allows
VBScript to access IWS tags and built-in functions. IWS tags can be used in expressions similar to
VBScript variables. Remember that IWS variable types can be different that VBScript data subtypes.

When the $ operator is used, Intellisense (part of VBScript) will display all current IWS tags and built-in
functions in a scroll-down menu. The developer can choose from any of these, or add new tags by
typing a unique name. If a new tag name is entered, IWS will then prompt the developer for tag type
specifications.
Example: $Temp1 = 100 ‘ Sets IWS tag Temp1 to a value 100
 MsgBox $temp1 ‘ Prints the value of IWS tag Temp1

Expression NOT of
Expression

True False
False True

3 -4
2 -3
1 -2
0 -1
-1 0
-2 1
-3 2

VBScript Reference Manual InduSoft Web Studio

100 InduSoft, Ltd.

Addition Operator (+)
Description Sums two numbers.
Usage result = expression1 + expression2
Arguments result
 Any numeric or string variable.
 expression1
 Any valid numeric or string expression.
 expression2
 Any valid numeric or string expression.
Result Either numeric or string, depending on the arguments
Remarks Although you can also use the + operator to concatenate two character strings, you should use

the & operator for concatenation to eliminate ambiguity and provide self-documenting code.
 When you use the + operator, you may not be able to determine whether addition or string

concatenation will occur.

 The underlying subtype of the expressions determines the behavior of the + operator in the
following way:

 If Then
 Both expressions are numeric Add
 Both expressions are strings Concatenate
 One expression is numeric and the
 other is a string Add

If one or both expressions are Null expressions, result is Null. If both expressions are Empty,
result is an Integer subtype. However, if only one expression is Empty, the other expression is
returned unchanged as result.

See also Concatenation Operator (&), Concatenation Operator (+), Subtraction Operator (-)
Example: a = 5 :
 b = 6
 c = a + b ‘ Variable c is now 11

And Operator (And)
Description Performs a logical conjunction on two expressions to see if both are True
Usage result = expression1 And expression2
Arguments result

 Any variable..
 expression1

 Any expression.
 expression2

 Any expression.
Return If, and only if, both expressions evaluate to True, result is True. If either expression evaluates to

False, result is False.
Remarks The following table illustrates how result is determined:

If expression1 is And expression2 is Then result is
True True True
True False False
True Null Null
False True False
False False False
False Null False
Null True Null
Null False False
Null Null Null

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 101

The And operator also performs a bitwise comparison of identically positioned bits in two numeric
expressions and sets the corresponding bit in result according to the following table:

If bit in expression1 is And bit in expression2 is Then result is

0 0 0
0 1 0
1 0 0
1 1 1

Example: Dim pump_on
 Dim valve_closed
 If ((pump_on = True) And (valve_closed = True)) then pump_on = False

Example a = 5 ‘ a = 5 (bits 0000 0000 0000 0101)
 b = 4 ‘ b = 4 (bits 0000 0000 0000 0100)
 c = a And b ‘ c = 4 (bitwise AND operation)

Assignment Operator (=)
Description Used to assign a value to a variable or a property.
Usage variable = value
Arguments variable
 Any variable or writable property.
 value
 Any numeric or string literal, constant or expression.
Remarks The name on the left side of the equal sign can be a simple scalar variable or an element of an

array. Properties on the left side of the equal sign can only be those properties that are writeable
at runtime.

See also Comparison Operator, Set Statement
Example: a = 5
 b = 6
 c = a + b ‘ Variable c is now 11

VBScript Reference Manual InduSoft Web Studio

102 InduSoft, Ltd.

Comparison Operators (<, <=, >, >=, =, <>)
Description Used to compare expressions
Usage result = expression1 comparisonoperator expression2
 Conditional
Arguments result
 Any numeric variable.
 expression
 Any expression.
 comparisonoperator
 Any comparison operator.
Remarks The following table contains a list of the comparison operators and the conditions that determine

whether result is True, False, or Null:

Operator Description True if False if Null if
< Less than expression1 < expression1 >= expression1 or
 expression2 expression2 expression2 = Null

<= Less than or equal expression1 <= expression1 > expression1 or
 to expression2 expression2 expression2 = Null

> Greater than expression1 > expression1 <= expression1 or
 expression2 expression2 expression2 = Null

>= Greater than expression1 >= expression1 < expression1 or
 or equal to expression2 expression2 expression2 = Null

= Equal to expression1 = expression1 <> expression1 or
 expression2 expression2 expression2 = Null

<> Not equal to expression1 <> expression1 = expression1 or
 expression2 expression2 expression2 = Null

When comparing two expressions, you may not be able to easily determine whether the
expressions are being compared as numbers or as strings. The following table shows how
expressions are compared or what results from the comparison, depending on the underlying
subtype:

If Then
Both expressions are numeric Perform a numeric comparison.

Both expressions are strings Perform a string comparison.

One expression is numeric and the The numeric expression is less than the string other is a string
 expression.

One expression is Empty and the Perform a numeric comparison, using 0 as the other is
numeric Empty expression.

One expression is Empty and the Perform a string comparison, using a zero-length

other is a string string ("") as the Empty expression.

Both expressions are Empty The expressions are equal

Example: If a>b then c = c +1
 MyResult = a = b ‘ If a = b, then MyResult = True, otherwise False

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 103

Concatenation Operator (&)
Description Forces string concatenation of two expressions.
Usage result = expression1 & expression2
Arguments result

 Any variable..
 expression1

 Any expression.
 expression2

 Any expression.
Return Result will be converted to a string subtype if it is not already
Remarks Whenever an expression is not a string, it is converted to a String subtype. If both

expressions are Null, result is also Null. However, if only one expression is Null, that
expression is treated as a zero-length string ("") when concatenated with the other
expression. Any expression that is Empty is also treated as a zero-length string.

 Note: In addition to the & operator, you can also use the + operator for string
concatenation, although use of the & operator is the preferred method.

Example: Dim str1, str2, str3
 str1 = “AB”
 str2 = “CD”
 str3 = str1 & str2 ‘ str3 equals “ABCD”

Concatenation Operator (+)
Description Concatenates two strings.
Usage result = expression1 + expression2
Arguments result
 Any numeric or string variable.
 expression1
 Any valid numeric or string expression.
 expression2
 Any valid numeric or string expression.
Result Either numeric or string, depending on the arguments
Remarks Although you can also use the + operator to concatenate two character strings, you should use

the & operator for concatenation to eliminate ambiguity and provide self-documenting code.

 When you use the + operator, you may not be able to determine whether addition or string
concatenation will occur.

 The underlying subtype of the expressions determines the behavior of the + operator in the
following way:

 If Then
 Both expressions are numeric Add
 Both expressions are strings Concatenate
 One expression is numeric and the
 other is a string Add

If one or both expressions are Null expressions, result is Null. If both expressions are Empty,
result is an Integer subtype. However, if only one expression is Empty, the other expression is
returned unchanged as result.

See also Addition Operator (+),Concatenation Operator (&), Subtraction Operator (-)
Example: a = “ABC” :
 b = “DEF”
 c = a + b ‘ Variable c is now “ABCDEF”
 a = 1
 b = “1”
 c = a + b ‘ Variable c is now 2 (numeric value)

VBScript Reference Manual InduSoft Web Studio

104 InduSoft, Ltd.

Division Operator (/)
Description Divides two numbers and returns a floating-point result
Usage result = number1 / number2
Arguments result
 Any numeric variable.
 number1
 Any valid numeric expression.
 number2
 Any valid numeric expression.
Return A floating point number.
Remarks If one or both expressions are Null expressions, result is Null. Any expression that is Empty is

treated as 0.
See also Multiplication Operator(*), Integer Division Operator(\)
Example: Dim a, b
 a = 3
 b = A / 2 ‘ The result b is equal to 1.5

Eqv Operator (Eqv)
Description Performs a logical equivalence on two expressions, checking if both expressions evaluate to the

same value
Usage result = expression1 Eqv expression2
Arguments result

 Any numeric variable.
 expression1

 Any expression, must evaluate to True, False, or Null
 expression2
 Any expression, must evaluate to True, False, or Null
Return Returns True is both expressions evaluate to the same value (True or False)
Remarks If either expression is Null, result is also Null. When neither expression is Null, result is

determined according to the following table:

If expression1 is And expression2 is Then result is
True True True
True False False
False True False
False False True

The Eqv operator performs a bitwise comparison of identically positioned bits in two numeric
expressions and sets the corresponding bit in result according to the following table:

If bit in expression1 is And bit in expression2 is Then result is
0 0 1
0 1 0
1 0 0
1 1 1

Example: Dim cond1, cond2, cond3
 cond1 = False
 cond2 = False
 cond3 = cond1 Eqv cond2 ‘ cond3 is set to True

Example a = 5 ‘ Bitwise 5= 0000 0000 0000 0101
 b = 4 ‘ Bitwise 4 = 0000 0000 0000 0100
 MyResult = a Eqv b ‘ Result = -2 = 1111 1111 1111 1110

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 105

Exponentiation Operator (^)
Description Raises a number to the power of an exponent
Usage result = number ^ exponent
Arguments result
 Any numeric variable.
 number
 Any valid numeric expression
 exponent
 Any valid numeric expression.
Remarks number can be negative only if exponent is an integer value. When more than one exponentiation

is performed in a single expression, the ^ operator is evaluated as it is encountered from left to
right. If either number or exponent is a Null expression, result is also Null.

Example: Dim a
 a = 2
 a = a ^ 2 ‘ a now equal 4
 a = 5 ^ 5 ‘ a is now 3,125

Imp Operator (Imp)
Description Performs a logical implication on two expressions
Usage result = expression1 Imp expression2
Arguments result

 Any variable.
 expression1

 Any expression.
 expression2
 Any expression
Remarks The following table illustrates how result is determined:

If expression1 is And expression2 is Then result is
True True True
True False False
True Null Null
False True True
False False True
False Null True
Null True True
Null False Null
Null Null Null

The Imp operator performs a bitwise comparison of identically positioned bits in two numeric
expressions and sets the corresponding bit in result according to the following table:

If bit in expression1 is And bit in expression2 is Then result is
0 0 1
0 1 1
1 0 0
1 1 1

Example: Dim cond1, cond2, cond3
 cond1 = True
 cond2 = Null
 cond3 = cond1 Imp cond2 ‘ cond3 is set to Null

Example MyResult = 0 Imp 0 ‘ Returns 1
 MyResult = 1 Imp 0 ‘ Returns 0
 MyResult = 1 Imp 1 ‘ Returns 1

VBScript Reference Manual InduSoft Web Studio

106 InduSoft, Ltd.

Example a = 5 ‘ Bitwise 0000 0000 0000 0101
 b = 4 ‘ Bitwise 0000 0000 0000 0100
 c = a Imp b ‘ Bitwise 1111 1111 1111 1110 (-2) result

Integer Division Operator (\)
Description Divides two numbers and returns an integer result
Usage result = number1 \ number2
Arguments result
 Any numeric variable.
 number1
 Any valid numeric expression.
 number2
 Any valid numeric expression.
Return The integer part of the result when dividing two numbers
Remarks Before division is performed, numeric expressions are rounded to Byte, Integer, or Long subtype

expressions. If any expression is Null, result is also Null. Any expression that is Empty is treated
as 0.

See also Multiplication Operator (*) and Division Operator(/)
Example: Dim a, b
 a = 3
 b = A \ 2 ‘ The result b is equal to 1

Is Operator (Is)
Description Compares two object reference variables
Usage result = object1 Is object2
Arguments result
 Any numeric variable.
 number1
 Any object name
 number2
 Any object name.
Return Logical True if both objects refer to the same object, otherwise False
Remarks If object1 and object2 both refer to the same object, result is True, otherwise result is False.
See also Set Statement
Example: Set obj1 = CreateObject(“ADODB.Connection”)
 Set obje2 = obj1
 MyTest = obj1 Is obj2 ‘ Returns a true
 MyTest = obj1 Not Is obj2 ‘ Returns false
 MyTest = obj1 Is Nothing ‘ Checks to see if object is valid. Returns False

Modulus Division Operator (Mod)
Description Divides two numbers and returns only the remainder.
Usage result = number1 Mod number2
Arguments result
 Any numeric variable.
 number1
 Any valid numeric expression.
 number2
 Any valid numeric expression.
Remarks The modulus, or remainder, operator divides number1 by number2 (rounding floating-point

numbers to integers) and returns only the remainder as result. Bytes, Integers and Long
subtype are rounded to the smallest possible subtype before the Modulus division is performed. If
any expression is Null, result is also Null. Any expression that is Empty is treated as 0.

Example: A = 19 Mod 6.7 ‘ The result A equals 5

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 107

Multiplication Operator (*)
Description Multiplies two numbers
Usage result = number1 * number2
Arguments result
 Any numeric variable.
 number1
 Any valid numeric expression.
 number2
 Any valid numeric expression.
Remarks If one or both expressions are Null expressions, result is Null. If an expression is Empty, it is

treated as if it were 0.
See also Division Operator (/), Integer Division (\)
Example: Dim A, B, C
 A = 2 : B = 3
 C = A * B ‘ The result C is equal to 6

Not Operator (Not)
Description Performs a logical Not on an expression
Usage result = Not expression
Arguments result

 Any variable.
 expression

 Any valid expression
Returns A logical True or False
Remarks The following table illustrates how result is determined:

If expression is Then result is
True False
False True
 Null Null

In addition, the Not operator inverts the bit values of any variable and sets the corresponding bit
in result according to the following table:

Bit in expression Bit in result
0 0
1 1

See also AND Operator, OR Operator, XOR Operator
Example: Dim cond1, cond2, a
 cond1 = True
 cond2 = Not cond1 ‘ cond2 set to False
Example a = 5 ‘ a = 5 (bit 0000 0000 0000 0101)
 a = Not a ‘ a = -6 (bit 1111 1111 1111 1010)

VBScript Reference Manual InduSoft Web Studio

108 InduSoft, Ltd.

Or Operator (Or, |)
Description Performs a logical disjunction on two expressions.
Usage result = expression1 Or expression2
Arguments result

 Any variable.
 expression1

 Any valid expression.
 expression2

 Any valid expression.
Remarks If either or both expressions evaluate to True, result is True. The following table illustrates how

result is determined:

If expression1 is And expression2 is Then result is
True True True
True False True
True Null True
False True True
False False False
False Null Null
Null True True
Null False Null
Null Null Null

The Or operator also performs a bitwise comparison of identically positioned bits in two numeric
expressions and sets the corresponding bit in result according to the following table:

If bit in expression1 is And bit in expression2 is Then result is
0 0 0
0 1 1
1 0 1
1 1 1

See also AND Operator, NOR Operator, XOR Operator
Example: Dim alarm1, alarm2
 Dim alarm_light
 If ((alarm1 = True) Or (alarm2 = True)) then
 alarm_light = True
 Else
 alarm_light = False
 End If
Example a = 5 ‘ a = 5 (bitwise 0000 0000 0000 0101)
 b = 4 ‘ b = 4 (bitwise 0000 0000 0000 0100)
 MyResult = a Or b ‘ Result = 5

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 109

Subtraction Operator (-)
Description Finds the difference between two numbers or indicates the negative value of a numeric

expression.
Usage result = number1 - number2 (Syntax 1)
 result = - number (Syntax 2)
Arguments result
 Any numeric variable.
 number1
 Any valid numeric expression.
 number2
 Any valid numeric expression.
 number
 Any valid numeric value or numeric expression
Remarks In Syntax 1, the - operator is the arithmetic subtraction operator used to find the difference

between two numbers. In Syntax 2, the - operator is used as the unary negation operator to
indicate the negative value of an expression. If one or both expressions are Null expressions,
result is Null. If an expression is Empty, it is treated as if it were 0.

Example: MyResult = 5 - 4 ' MyResult is 1
 a = 5
 MyResult = -a ‘ MyResult is -5
 MyResult = -(5-4) ‘ MyResult is -1

Xor Operator (Xor)
Description Performs a logical exclusion on two expressions.
Usage result = expression1 Xor expression2
Arguments result

 Any variable.
 expression1

 Any valid expression.
 expression2

 Any valid expression.
Remarks If one, and only one, of the expressions evaluates to True, result is True. However, if either

expression is Null, result is also Null. When neither expression is Null, result is determined
according to the following table:
If expression1 is And expression2 is Then result is

True True False
True False True
False True True
False False False

The Xor operator also performs a bitwise comparison of identically positioned bits in two numeric
expressions and sets the corresponding bit in result according to the following table:

If bit in expression1 is And bit in expression2 is Then result is
0 0 0
0 1 1
1 0 1
1 1 0

See also And Operator, Not Operator, Or Operator
Example: Dim cond1, cond2, flag
 cond1 = True
 cond2 = False
 If (cond1 = True) Xor (cond2 = True) Then
 flag = True
 Else
 flag = False

VBScript Reference Manual InduSoft Web Studio

110 InduSoft, Ltd.

 End If
Example a = 5 ‘ Bitwise 0000 0000 0000 0101
 b = 4 ‘ Bitwise 0000 0000 0000 0100
 c = a Xor b ‘ Bitwise 0000 0000 0000 0001 result (=1)

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 111

Operator Precedence
When expressions contain operators from more than one category, arithmetic operators are evaluated
first, comparison operators are evaluated next, and logical operators are evaluated last. Comparison
operators all have equal precedence; that is, they are evaluated in the left-to-right order in which they
appear. Arithmetic and logical operators are evaluated in the following order of precedence:

Arithmetic Comparison Logical
Negation (-) Equality (=) Not
Exponentiation (^) Inequality (<>) And
Multiplication and division (*, /) Less than (<) Or
Integer division (\) Greater than (>) Xor
Modulus arithmetic (Mod) Less than or equal to (<=) Eqv
Addition and subtraction (+, -) Greater than or equal to (>=) Imp
String concatenation (&) Is &

Highest Priority Lowest Priority

When multiplication and division occur together in an expression, each operation is evaluated as it
occurs from left to right. Likewise, when addition and subtraction occur together in an expression, each
operation is evaluated in order of appearance from left to right.

The string concatenation operator (&) is not an arithmetic operator, but its precedence does fall in after
all arithmetic operators and before all comparison operators. The Is operator is an object reference
comparison operator. It does not compare objects or their values; it only checks to determine if two
object references refer to the same object.

Highest Priority

Lowest Priority

VBScript Reference Manual InduSoft Web Studio

112 InduSoft, Ltd.

VBScript Functions

Function Summary
Functions
Abs Escape LCase Second
Array Eval Left SetLocale
Asc Exp LeftB Sgn
AscB Filter Len Sin
AscW Fix LenB Space
Atn FormatCurrency LoadPicture Split
CBool FormatDateTime Log Sqr
CByte FormatNumber LTrim StrComp
CCur FormatPercent Mid String
CDate GetLocale MidB StrReverse
CDbl GetObject Minute Tan
Chr GetRef Month Time
ChrB Hex MonthName Timer
ChrW Hour MsgBox TimeSerial
CInt InputBox Now TimeValue
CLng InStr Oct Trim
Cos InstrB Replace TypeName
CreateObject InStrRev RGB UBound
CSng Int Right UCase
CStr IsArray RightB Unescape
Date IsDate Rnd VarType
DateAdd IsEmpty Round Weekday
DateDiff InNull RTrim WeekdayName
DatePart IsNumeric ScriptEngine Year
DateSerial IsObject ScriptEngineBuildVersion
DateValue Join ScriptEngineMajorVersion
Day LBound ScriptEngineMinorVersion

VBScript Array Functions

Function Description
Array Returns a variant containing an array
Filter Returns a zero-based array that contains a subset of a string array based on a filter criteria
IsArray Returns a Boolean value that indicates whether a specified variable is an array
Join Returns a string that consists of a number of substrings in an array
LBound Returns the smallest subscript for the indicated dimension of an array
Split Returns a zero-based, one-dimensional array that contains a specified number of substrings
UBound Returns the largest subscript for the indicated dimension of an array

Note: See VBScript Statements as well

VBScript Object Functions

Function Description
CreateObject Creates and returns a reference to an Automation object
GetObject Returns a reference to an Automation object from a file
IsObject Returns a Boolean value indicating whether an expression references a valid Automation

object.
Note: See VBScript Objects and Collections as well

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 113

VBScript Math Functions
Function Description
Abs Returns the absolute value of a specified number
Atn Returns the arctangent of a specified number
Cos Returns the cosine of a specified number (angle)
Exp Returns e raised to a power
Hex Returns the hexadecimal value of a specified number
Int Returns the integer part of a specified number
Fix Returns the integer part of a specified number
Log Returns the natural logarithm of a specified number
Oct Returns the octal value of a specified number
Randomize Initializes the random-number generator
Rnd Returns a random number less than 1 but greater or equal to 0
Sgn Returns an integer that indicates the sign of a specified number
Sin Returns the sine of a specified number (angle)
Sqr Returns the square root of a specified number
Tan Returns the tangent of a specified number (angle)

Note: See VBScript Derived Functions as well

VBScript String Functions

Function Description
Escape Encodes a string so it contains only ASCII characters
InStr Returns the position of the first occurrence of one string within another. The search begins at the

first character of the string
InStrB Returns the position of the first occurrence of one string within another. The search begins at the

first byte of the string
InStrRev Returns the position of the first occurrence of one string within another. The search begins at the

last character of the string
LCase Converts a specified string to lowercase
Left Returns a specified number of characters from the left side of a string
LeftB Returns a specified number of bytes from the left side of a string
Len Returns the number of characters in a string
LenB Returns the number of bytes in a string
LTrim Removes spaces on the left side of a string
Mid Returns a specified number of characters from a string
MidB Returns a specified number of bytes from a string
Replace Replaces a specified part of a string with another string a specified number of times
Right Returns a specified number of characters from the right side of a string
RightB Returns a specified number of bytes from the right side of a string
RTrim Removes spaces on the right side of a string
Space Returns a string that consists of a specified number of spaces
StrComp Compares two strings and returns a value that represents the result of the comparison
String Returns a string that contains a repeating character of a specified length
StrReverse Reverses a string
Trim Removes spaces on both the left and the right side of a string
UCase Converts a specified string to uppercase
UnEscape Decodes a string encoded with the Escape function

VBScript Reference Manual InduSoft Web Studio

114 InduSoft, Ltd.

VBScript Conversions Functions

VBScript Format Functions

Function Description
FormatCurrency Returns an expression formatted as a currency value
FormatDateTime Returns an expression formatted as a date or time
FormatNumber Returns an expression formatted as a number
FormatPercent Returns an expression formatted as a percentage

VBScript Time and Date Functions

Function Description
CDate Converts a valid date and time expression to the variant of subtype Date
Date Returns the current system date
DateAdd Returns a date to which a specified time interval has been added
DateDiff Returns the number of intervals between two dates
DatePart Returns the specified part of a given date
DateSerial Returns the date for a specified year, month, and day
DateValue Returns a date
Day Returns a number that represents the day of the month (between 1 and 31, inclusive)
FormatDateTime Returns an expression formatted as a date or time
Hour Returns a number that represents the hour of the day (between 0 and 23, inclusive)
IsDate Returns a Boolean value that indicates if the evaluated expression can be converted to a

date
Minute Returns a number that represents the minute of the hour (between 0 and 59, inclusive)
Month Returns a number that represents the month of the year (between 1 and 12, inclusive)
MonthName Returns the name of a specified month
Now Returns the current system date and time
Second Returns a number that represents the second of the minute (between 0 and 59, inclusive)
Time Returns the current system time
Timer Returns the number of seconds since 12:00 AM
TimeSerial Returns the time for a specific hour, minute, and second
TimeValue Returns a time
Weekday Returns a number that represents the day of the week (between 1 and 7, inclusive)
WeekdayName Returns the weekday name of a specified day of the week
Year Returns a number that represents the year

Function Description
Abs Returns the absolute value of a specified number
Asc Converts the first letter in a string to ANSI code
CBool Converts an expression to a variant of subtype Boolean
CByte Converts an expression to a variant of subtype Byte
CCur Converts an expression to a variant of subtype Currency
CDate Converts a valid date and time expression to the variant of subtype Date
CDbl Converts an expression to a variant of subtype Double
Chr Converts the specified ANSI code to a character
CInt Converts an expression to a variant of subtype Integer
CLng Converts an expression to a variant of subtype Long
CSng Converts an expression to a variant of subtype Single
CStr Converts an expression to a variant of subtype String
Fix Returns the integer part of a specified number
Hex Returns the hexadecimal value of a specified number
Int Returns the integer part of a specified number
Oct Returns the octal value of a specified number
Round Returns a rounded number
Sgn Returns the integer portion of a number

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 115

VBScript Expression Functions

Expressions Description
Eval Evaluates an expression and returns the result

Note: See VBScript Objects and Collections as well

VBScript I/O Functions

Input/Output Description
InputBox Displays a prompt in a dialog box, waits for the user to input text or click a button, and

returns the contents of the text box.
MsgBox Displays a message in a dialog box, waits for the user to click a button, and returns a

value indicating which button the user clicked.
LoadPicture Returns a picture object

VBScript Script Engine Functions

Script Engine ID Description
ScriptEngine Returns a string representing the scripting language in use
ScriptEngineBuildVersion Returns the build version number of the scripting engine in use
ScriptEngineMajorVersion Returns the major version number of the scripting engine in use
ScriptEngineMinorVersion Returns the minor version number of the scripting engine in use

VBScript Variant Functions

Variants Description
IsArray Returns a Boolean value indicating whether a variable is an array
IsDate Returns a Boolean value indicating whether an expression can be converted to a date
IsEmpty Returns a Boolean value indicating whether a variable has been initialized.
IsNull Returns a Boolean value that indicates whether an expression contains no valid data (Null).
IsNumeric Returns a Boolean value indicating whether an expression can be evaluated as a number
IsObject Returns a Boolean value indicating whether an expression references a valid Automation

object.
TypeName Returns a string that provides Variant subtype information about a variable
VarType Returns a value indicating the subtype of a variable

VBScript Miscellaneous Functions

Miscellaneous Description
RGB Returns a whole number representing an RGB color value
GetLocale Returns the current locale ID
SetLocale Sets the current locale ID

VBScript Reference Manual InduSoft Web Studio

116 InduSoft, Ltd.

VBScript Functions

Abs
Description Returns the absolute value of a number
Usage result = Abs(number)
Arguments number
 The number argument can be any valid numeric expression. If number contains Null, Null is

returned; if it is an uninitialized variable, zero is returned.
Returns The absolute value of a number is its unsigned magnitude. The data type returned is the same as

that of the number argument.
Remarks Abs(-1) and Abs(1) both return 1.
Example myNumber = Abs(-50.3) ‘ Returns 50.3

Array
Description Returns a Variant containing an subtype array
Usage varArray = Array (arglist)
Arguments arglist

The required arglist argument is a comma-delimited list of values that are assigned to the
elements of an array contained with the Variant. If no arguments are specified, an array of
zero length is created. All arrays are zero-based, meaning that the first element in the list will
be element 0 in the Array.

Returns Returns a Variant array
Remarks The notation used to refer to an element of an array consists of the variable name followed by

parentheses containing an index number indicating the desired element. A variable that is not
declared as an array can still contain an array. Although a Variant variable containing an array is
conceptually different from an array variable containing Variant elements, the array elements are
accessed in the same way.

See also Dim, Erase
Example Dim A
 A = Array (10, 20, 30)
 B = A(2) ‘ B is now 30

Asc
Description Finds the ANSI character code corresponding to the first letter in a string
Usage intCode = Asc(string)
Arguments string
 The string argument is any valid string expression.
Returns Returns an integer code representing the ANSI character code corresponding to the first letter in

a string
Remarks If the string expression contains no characters, a run-time error occurs. string is converted to a

String subtype if it contains numeric data.
See also AscB, AscW, Chr, ChrB, ChrW
Example Dim myNumber
 myNumber = Asc(“A”) ‘ Returns 65
 myNumber = Asc(“a”) ‘ Returns 97
 mynumber = Asc(“Apple”) ‘ Returns 65

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 117

AscB
Description Returns the ANSI character code for the first byte in a string of byte data
Usage intCode = AscB(string)
Arguments string
 The string argument is any valid string expression.
Return Returns an integer code representing the ANSI character code corresponding to the first byte in a

string containing byte data
Remarks The AscB function is used with byte data contained in a string. Instead of returning the character

code for the first character, AscB returns the first byte. Remember that Intel machines use little
endian (i.e. in a double word, the least significant byte is first, then the most significant). Motorola
architectures are big endian (most significant byte first). If the string contains no characters, a
run-time error occurs. For normal ANSI (8-bit) strings, this function will return the same result as
the Asc function. Only if the string is in UniCode (16-bit) format will it be different from the Asc
function. A runtime error will occur if string does not contain any characters.

See also Asc, AscW, Chr, ChrB, ChrW
Example inBuffer = “” ‘Null out the buffer string
 For k = 1 To 4 ‘Load a buffer string
 inBuffer = inBuffer & k ‘will have the characters 1, 2, 3, 4
 Next
 myStr = “” ‘null out buffer
 For k = 1 To LenB(inBuffer) Step 2 ‘Get buffer length, every char = 2 bytes
 myStr = myStr & Hex(AscB(MidB(inBuffer, k, 1)))
 Next ‘get the individual character, convert it to an
ASCII
 ‘value, then show the hex equivalent
 MsgBox myStr ‘Displays 31323334

AscW
Description Returns the UniCode character code for the first character in a string
Usage intCode = AscW(string)
Arguments String
 The string argument is any valid string expression. If the string contains no characters, a run-

time error occurs
Return Returns an integer code representing the UniCode character code corresponding to the first letter

in a string.
Remarks AscW is provided for 32-bit platforms that use Unicode characters. It returns a Unicode (16-bit)

character code, thereby avoiding the conversion from Unicode to ANSI. A runtime error will occur
if string does not contain any characters. string is converted to a String subtype if it contains
numeric data.

See also Asc, AscB, Chr, ChrB, ChrW
Example in_buffer = “Ö” ‘Unicode character Ö in buffer
 MsgBox AscW(in_buffer) ‘Displays 214 (decimal)

MsgBox Hex(AscW(in_buffer)) ‘Displays D6 (hexadecimal)

VBScript Reference Manual InduSoft Web Studio

118 InduSoft, Ltd.

Atn
Description Returns the arctangent of a number
Usage realRslt = Atn(number)
Arguments number
 The number argument can be any valid numeric expression.
Return Returns the arctangent of a number as Variant subtype Double. Result is in radians.
Remarks The Atn function takes the ratio of two sides of a right triangle (number) and returns the

corresponding angle in radians. The ratio is the length of the side opposite the angle divided by
the length of the side adjacent to the angle. The range of the result is -pi /2 to pi/2 radians. To
convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply
radians by 180/pi.

 Note: Atn is the inverse trigonometric function of Tan, which takes an angle as its argument and
returns the ratio of two sides of a right triangle. Atn is not to be confused with the cotangent,
which is the simple inverse of a tangent (1/tangent).

See also Cos, Sin, and Tan
Example Dim pi
 pi = 4 * Atn(1) ' Calculate the value of pi.

CBool
Description Returns an expression that has been converted to a Variant of subtype Boolean
Usage boolRslt = CBool(expression)
Arguments expression
 Any valid expression
Return Boolean value corresponding to the value of the expression
Remarks If the expression is zero, False is returned; otherwise True is returned. If the expression cannot

be interpreted as a numeric value, a run-time error occurs.
See also CByte, CCur, CDbl, CInt, CLng, CSng, CStr
Example Dim A, B, Check
 A = 5
 B= 5
 Check = CBool (A = B) ‘ Check contains True
 A= 0
 Check = CBool (A) ‘ Check contains False

CByte
Description Returns an expression that has been converted to a Variant of subtype Byte
Usage byteVal = CByte (expression)
Arguments expression
 The expression argument is any valid numeric expression
Return An expression converted to a Byte value
Remarks A runtime error occurs if expression can’t be evaluated to a numeric value. If expression lies

outside the acceptable range for the byte subtype (0-255), an Overflow error occurs. If expression
is a floating point number, it is rounded to the nearest integer and then converted to byte subtype.

 Use the CByte function to provide internationally aware conversions from any other data type to a
Byte subtype. For example, different decimal separators are properly recognized depending on
the locale setting of your system, as are different thousand separators.

See also CBool, CCur, CDbl, CInt, CLng, CSng, CStr
Example Dim myDouble, myByte
 myDouble = 123.45678
 myByte = CByte(myDouble) ‘ myByte contains 123

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 119

CCur
Description Returns an expression that has been converted to a Variant of subtype Currency
Usage curVal = CCur(expression)
Arguments expression
 The expression argument is any valid expression
Return An expression converted to a Currency value
Remarks CCur provides an internationally aware conversion from any data type to a Currency subtype.

The return value is based on the locale settings on the local PC. For example, different decimal
separators and thousands separators are properly recognized depending on the locale setting of
your system.

See also CBool, CByte, CDbl, CInt, CLng, CSng, CStr
Example Dim myDouble, myCurr
 myDouble = 543.214588 'myDouble is a Double.
 myCurr = CCur(myDouble * 2) 'Multiply by * 2 and convert
 MsgBox myCurr ‘Result 1086.4292 (based on local PC settings)

CDate
Description Returns an expression that has been converted to a Variant of subtype Date.
Usage dateVal = CDate(date)
Arguments The date argument is any valid date expression, of numeric or string type .
Remarks Use the IsDate function to determine if date can be converted to a date or time. CDate

recognizes date literals and time literals as well as some numbers that fall within the range of
acceptable dates. When converting a number to a date, the whole number portion is converted to
a date. Any fractional part of the number is converted to a time of day, starting at midnight.

 CDate recognizes date formats according to the locale setting of your system. The correct order
of day, month, and year may not be determined if it is provided in a format other than one of the
recognized date settings. In addition, a long date format is not recognized if it also contains the
day-of-the-week string.

If your PC is set to the American date format (mm/dd/yy), and you enter the British date format
(dd/mm/yy) in a text box, the CDate function will convert it to the American mm/dd/yy format.

 The following example uses the CDate function to convert a string to a date. In general, hard
coding dates and times as strings (as shown in this example) is not recommended. Use date and
time literals (such as #10/19/1962#, #4:45:23 PM#) instead.

See also IsDate, DateValue, TimeValue
Example myDate = "October 19, 1962" 'Define date.
 myShortDate = CDate(myDate) 'Convert to Date data type.
 myTime = "4:35:47 PM" 'Define time.
 myShortTime = CDate(myTime) 'Convert to Date data type
 myShortDate = CDate(#04/18/2006#) ‘myShortDate holds value 4/18/2006

VBScript Reference Manual InduSoft Web Studio

120 InduSoft, Ltd.

CDbl
Description Returns an expression that has been converted to a Variant of subtype Double.
Usage dblVal = CDbl(expression)
Arguments expression
 The expression argument is any valid expression
Return An expression converted to a double precision real value
Remarks CDbl provides an internationally aware conversion from any data type to a Double (double

precision real) subtype. The return value is based on the locale settings on the local PC. For
example, different decimal separators and thousands separators are properly recognized
depending on the locale setting of your system.

See Also CBool, CByte, CCur, CInt, CLng, CSng, CStr
Example Dim myCurr, myDouble
 myCurr = CCur(234.456784) 'myCurr is a Currency (234.4567).
 myDouble = CDbl(myCurr * 8.2 * 0.01) 'Convert result to a Double (19.2254576).

Chr
Description Returns the ANSI character corresponding to a character code
Usage strChar = Chr(charcode)
Arguments charcode
 The charcode argument is a numeric value that identifies the character
Return An ANSI character (string)
Remarks Numeric values from 0 to 31 are the same as standard, nonprintable ASCII codes. For example,

Chr(10) returns a linefeed character. The following example uses the Chr function to return the
character associated with the specified character code:

See Also Asc, AscB, AscW, ChrB, ChrW
Example Dim myChar
 myChar = Chr(65) ‘Returns A
 myChar = Chr(97) ‘Returns a
 mychar = Chr(37) ‘Returns %

ChrB
Description Returns the ANSI character corresponding to a character code contained in a byte data string.
Usage strChar = ChrB(bytecode)
Arguments bytecode
 The bytecode argument is a numeric value that indicates the character
Return This function is used instead of the Chr function when you want only the first byte of the character

returned. Numeric values from 0 to 31 are the same as standard, nonprintable ASCII codes. For
example, ChrB(10) returns a linefeed character.

Remarks The ChrB function is used with byte data contained in a string. Instead of returning a character,
which may be one or two bytes, ChrB always returns a single byte.

See Also Asc, AscB, AscW, Chr, ChrW
Example Dim myChar
 myChar = Chr(89) ‘Returns Y

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 121

ChrW
Description Returns the UniCode character corresponding to a character code
Usage strChar = ChrW(charcode)
Arguments charcode
 The charcode argument is a numeric value that indicates the character
Return A UniCode character
Remarks ChrW is used instead of the Chr or ChrB functions to return a 2-byte UniCode character. ChrW

is provided for 32-bit platforms that use Unicode characters.
See Also Asc, AscB, AscW, Chr, ChrB
Example Dim myChar
 myChar = ChrW(214) ‘Returns Ö

CInt
Description Returns an expression that has been converted to a Variant of subtype Integer.
Usage intVal = CInt(expression)
Arguments expression
 The expression argument is any valid expression
Return An integer value
Remarks CInt provides an internationally aware conversion from any other data type to an Integer

subtype. For example, different decimal separators are properly recognized depending on the
locale setting of your system, as are different thousand separators. If expression lies outside the
acceptable range for the Integer subtype, an error occurs.

 CInt differs from the Fix and Int functions, which truncate, rather than round, the fractional part of
a number. When the fractional part is exactly 0.5, the CInt function always rounds it to the
nearest even number. For example, 0.5 rounds to 0, and 1.5 rounds to 2.

See Also CBool, CByte, CCur, CDbl, CLng, CSng, CStr
Example Dim MyDouble, MyInt
 MyDouble = 2345.5678 ' MyDouble is a Double.
 MyInt = CInt(MyDouble) ' MyInt contains 2346.

CLng
Description Returns an expression that has been converted to a Variant of subtype Long.
Usage LngVal = CLng(expression)
Arguments expression
 The expression argument is any valid expression
Return A long integer value
Remarks CLng provides an internationally aware conversion from any other data type to a Long subtype.

For example, different decimal separators are properly recognized depending on the locale
setting of your system, as are different thousand separators. If expression lies outside the
acceptable range for the Long subtype, an error occurs.

 CLng differs from the Fix and Int functions, which truncate, rather than round, the fractional part
of a number. When the fractional part is exactly 0.5, the CLng function always rounds it to the
nearest even number. For example, 0.5 rounds to 0, and 1.5 rounds to 2.

See Also CBool, CByte, CCur, CDbl, CInt, CSng, CStr
Example Dim MyVal1, MyVal2, MyLong1, MyLong2
 MyVal1 = 25427.45: MyVal2 = 25427.55 ' MyVal1, MyVal2 are Doubles.
 MyLong1 = CLng(MyVal1) ' MyLong1 contains 25427.
 MyLong2 = CLng(MyVal2) ' MyLong2 contains 25428.

VBScript Reference Manual InduSoft Web Studio

122 InduSoft, Ltd.

Cos
Description Returns the cosine of an angle.
Usage realVal = Cos(number)
Arguments number
 The number argument can be any valid numeric expression that expresses an angle in radian
Return Returns the cosine of an angle as a Variant subtype Double. Result is in radians.
Remarks The Cos function takes an angle and returns the ratio of two sides of a right triangle. The ratio is

the length of the side adjacent to the angle divided by the length of the hypotenuse. The result
lies in the range -1 to 1. To convert degrees to radians, multiply degrees by pi /180. To convert
radians to degrees, multiply radians by 180/pi.

See also Atn, Sin, and Tan
Example Dim MyAngle, MySecant
 MyAngle = 1.3 ' Define angle in radians.
 MySecant = 1 / Cos(MyAngle) ' Calculate secant.
 Angle = (30 * 3.14159/180) ‘ Convert 30 degrees into radians
 AngleCos = Cos(Angle) ‘ Compute cosine of angle

CreateObject
Description Creates and returns a reference to an Automation object.
Usage Set objName = CreateObject(servername.typename [, location])
Arguments servername
 Required. The name of the application providing the object.
 typename
 Required. The type or class of the object to create.
 location
 Optional. The name of the network server where the object is to be created.
Return An object reference
Remarks The servername and typename together are often referred to as a ProgID, or Programmatic ID. A

ProgID may actually have multiple parts (e.g. servername.typename.version)To avoid confusion,
note that the parameter servername refers to a Microsoft COM server (automation server)
applications such as Microsoft Access, Excel, Word. Other COM servers such as ADO.NET can
be referenced. Automation servers provide at least one type of object. For example, a word-
processing application may provide an application object, a document object, and a toolbar object.
To create an Automation object, assign the object returned by CreateObject to an object
variable. This code starts the application that creates the object (in this case, a Microsoft Excel
spreadsheet).

 Dim ExcelSheet
 Set ExcelSheet = CreateObject("Excel.Sheet")

 Once an object is created, refer to it in VBScript code using the object variable you defined. As
shown in the following example, you can access properties and methods of the new object using
the object variable, ExcelSheet, and other Excel objects, including the Application object and the
ActiveSheet.Cells collection.

 ExcelSheet.Application.Visible = True ' Make Excel object. visible
 ExcelSheet.ActiveSheet.Cells(1,1).Value = "ABC" ‘ Place text in row 1, col 1
 ExcelSheet.SaveAs "C:\DOCS\TEST.XLS" ' Save the sheet.
 ExcelSheet.Application.Quit ‘ Close Excel
 Set ExcelSheet = Nothing ' Release the object variable.

 Creating an object on a remote server can only be accomplished when Internet security is turned
off. You can create an object on a remote networked computer by passing the name of the
computer to the servername argument of CreateObject. That name is the same as the machine
name portion of a share name. For a network share named "\\myserver\public", the servername is
"myserver". In addition, you can specify servername using DNS format or an IP address.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 123

Example The following code returns the version number of an instance of Excel running on a remote
network computer named "myserver". An error occurs if the specified remote server does not
exist or cannot be found.

Dim XLApp
Set XLApp = CreateObject("Excel.Application", "MyServer")
GetVersion = XLApp.Version

CSng
Description Returns an expression that has been converted to a Variant of subtype Single
Usage sngVal = CSng(expression)
Arguments expression
 The expression argument is any valid expression
Return A single-precision real value
Remarks CSng provides an internationally aware conversion from any other data type to a Single subtype.

For example, different decimal separators are properly recognized depending on the locale
setting of your system, as are different thousand separators. If expression lies outside the
acceptable range for the Single subtype, an error occurs

See Also CBool, CByte, CCur, CDbl, CInt, CLng, CStr
Example Dim MyDouble1, MyDouble2,
 Dim MySingle1, MySingle2 'MyDouble1, MyDouble2 are Doubles.
 MyDouble1 = 75.3421115
 MyDouble2 = 75.3421555
 MySingle1 = CSng(MyDouble1) 'MySingle1 contains 75.34211.
 MySingle2 = CSng(MyDouble2) 'MySingle2 contains 75.34216.

CStr
Description Returns an expression that has been converted to a Variant of subtype String
Usage strVal = CStr(expression)
Arguments expression
 The expression argument is any valid expression
Return A string value
Remarks You should use the CStr function instead of Str to provide internationally aware conversions from

any other data type to a String subtype. For example, different decimal separators are properly
recognized depending on the locale setting of your system.

 The data in expression determines what is returned according to the following table:
 If expression is CStr returns
 Boolean A String containing True or False
 Date A String containing a date in the short-date format of your

system
 Null A run-time error
 Empty A zero-length String (“”)
 Error A String containing the word Error followed by the error number
 Other numeric A String containing the number
See Also CBool, CByte, CCur, CDbl, CInt, CLng, CSng
Example Dim MyDouble, MyString
 MyDouble = 437.324 ' MyDouble is a Double.
 MyString = CStr(MyDouble) ' MyString contains the string "437.324".

VBScript Reference Manual InduSoft Web Studio

124 InduSoft, Ltd.

Date
Description Returns a Variant of subtype Date indicating the current system date.
Usage dateVal = Date
Arguments none
Return Returns a Variant subtype Date
Remarks The locale setting can be specified to use the dash “-“ or the forward slash “/” as a separator
See Also Now, Time
Example Dim Mydate
 MyDate = Date ‘ Mydate contains the current system date
 MsgBox Date

DateAdd
Description Returns a date to which a specified time interval has been added or subtracted
Usage dateVal = DateAdd(interval, number, date)
Arguments interval

Required. String expression that is the interval you want to add. .
 number
 Required. Numeric expression that is the number of interval you want to add. The numeric

expression can either be positive, for dates in the future, or negative, for dates in the past.
 date
 Required. Variant or Date literal representing the date to which interval is added
Settings The interval argument can have the following values:
 Setting Description
 yyyy Year
 q Quarter
 m Month
 y Day of year
 d Day
 w Weekday
 ww Week of Year
 h Hour
 n Minute
 s Second
Return A Date value
Remarks You can use the DateAdd function to add or subtract a specified time interval from a date. For

example, you can use DateAdd to calculate a date 30 days from today or a time 45 minutes from
now. To add days to date, you can use Day of Year ("y"), Day ("d"), or Weekday ("w").

 The DateAdd function won't return an invalid date. If the calculated date would precede the year
100, an error occurs. If number isn't a Long value, it is rounded to the nearest whole number
before being evaluated.

 DateAdd is internationally aware, meaning the return value is based on the locale setting on the
local machine. Included in the locale settings are the appropriate date and time separators, the
dates in the correct order of day, month and year.

See Also DateDiff, DatePart
Example The following example adds one month to January 31: In this case, DateAdd returns 28-Feb-95,

not 31-Feb-95. If date is 31-Jan-96, it returns 29-Feb-96 because 1996 is a leap year.
NewDate = DateAdd("m", 1, "31-Jan-95")

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 125

DateDiff
Description Returns the number of intervals between two dates
Usage intVal = DateDiff(interval, date1, date2 [,firstdayofweek[, firstweekofyear]])
Arguments interval
 Required. String expression that is the interval you want to use to calculate the differences

between date1 and date2. See Settings section for values.
 date1, date2
 Required. Date expressions. Two dates you want to use in the calculation.
 firstdayofweek
 Optional. Constant that specifies the day of the week. If not specified, Sunday is assumed.

See Settings section for values.
 firstweekofyear
 Optional. Constant that specifies the first week of the year. If not specified, the first week is

assumed to be the week in which January 1 occurs. See Settings section for values.
Settings The interval argument can have the following values:
 Setting Description
 yyyy Year
 q Quarter
 m Month
 y Day of year
 d Day
 w Weekday
 ww Week of Year
 h Hour
 n Minute
 s Second

 The firstdayofweek argument can have the following values:
 Constant Value Description

vbUseSystemDayofWeek 0 Use National Language Support (NLS) API setting
for different language and locale specific settings

 vbSunday 1 Sunday (default)
 vbMonday 2 Monday
 vbTuesday 3 Tuesday
 vbWednesday 4 Wednesday
 vbThursday 5 Thursday
 vbFriday 6 Friday
 vbSaturday 7 Saturday

 The firstweekofyear argument can have the following values:
 Constant Value Description

vbUseSystem 0 Use National Language Support (NLS) API setting
for different language and locale specific settings

 vbFirstJan1 1 Start with the week in which Jan 1 occurs (default)
 vbFirstFourDays 2 Start with the week that has at least 4 days in the

new year
 vbFirstFullWeek 3 Start with the first fill week of the new year

Remarks You can use the DateDiff function to determine how many specified time intervals exist between
two dates. For example, you might use DateDiff to calculate the number of days between two
dates, or the number of weeks between today and the end of the year.

 To calculate the number of days between date1 and date2, you can use either Day of year ("y")
or Day ("d"). When interval is Weekday ("w"), DateDiff returns the number of weeks between the
two dates. If date1 falls on a Monday, DateDiff counts the number of Mondays until date2. It
counts date2 but not date1. If interval is Week ("ww"), however, the DateDiff function returns the
number of calendar weeks between the two dates. It counts the number of Sundays between

VBScript Reference Manual InduSoft Web Studio

126 InduSoft, Ltd.

date1 and date2. DateDiff counts date2 if it falls on a Sunday; but it doesn't count date1, even if it
does fall on a Sunday.

 If date1 refers to a later point in time than date2, the DateDiff function returns a negative number.

 The firstdayofweek argument affects calculations that use the "w" and "ww" interval symbols.

 If date1 or date2 is a date literal, the specified year becomes a permanent part of that date.
However, if date1 or date2 is enclosed in quotation marks (" ") and you omit the year, the current
year is inserted in your code each time the date1 or date2 expression is evaluated. This makes it
possible to write code that can be used in different years.

 When comparing December 31 to January 1 of the immediately succeeding year, DateDiff for
Year ("yyyy") returns 1 even though only a day has elapsed.

See Also DateAdd, DatePart
Example The following example uses the DateDiff function to display the number of days between a given

date and today:
Function DiffADate(theDate)

 DiffADate = "Days from today: " & DateDiff("d", Now, theDate)
End Function

DatePart
Description Returns the specified part of a given date.
Usage DatePart(interval, date[, firstdayofweek[, firstweekofyear]])
Arguments interval
 Required. String expression that is the interval you want to return. See Settings section for

values.
 date
 Required. Date expression you want to evaluate.
 firstdayofweek
 Optional. Constant that specifies the day of the week. If not specified, Sunday is assumed.

See Settings section for values.
 firstweekofyear
 Optional. Constant that specifies the first week of the year. If not specified, the first week is

assumed to be the week in which January 1 occurs. See Settings section for values.
Settings The interval argument can have the following values:
 Setting Description
 yyyy Year
 q Quarter
 m Month
 y Day of year
 d Day
 w Weekday
 ww Week of Year
 h Hour
 n Minute
 s Second

 The firstdayofweek argument can have the following values:
 Constant Value Description

 vbUseSystemDayofWeek 0 Use National Language Support (NLS) API setting
 vbSunday 1 Sunday (default)
 vbMonday 2 Monday
 vbTuesday 3 Tuesday
 vbWednesday 4 Wednesday
 vbThursday 5 Thursday

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 127

 vbFriday 6 Friday
 vbSaturday 7 Saturday

 The firstweekofyear argument can have the following values:
 Constant Value Description
 vbUseSystem 0 Use National Language Support (NLS) API setting
 vbFirstJan1 1 Start with the week in which Jan 1 occurs (default)
 vbFirstFourDays 2 Start with the week that has at least 4 days in the

new year
 vbFirstFullWeek 3 Start with the first fill week of the new year
Remarks You can use the DatePart function to evaluate a date and return a specific interval of time. For

example, you might use DatePart to calculate the day of the week or the current hour. The
firstdayofweek argument affects calculations that use the "w" and "ww" interval symbols.

 If date is a date literal, the specified year becomes a permanent part of that date. However, if date
is enclosed in quotation marks (" "), and you omit the year, the current year is inserted in your
code each time the date expression is evaluated. This makes it possible to write code that can be
used in different years.

See Also DateAdd, DateDiff
Example This example takes a date and, using the DatePart function, displays the quarter of the year in

which it occurs.
Function GetQuarter(TheDate)
GetQuarter = DatePart("q", TheDate)
End Function

DateSerial
Description Returns a Variant of subtype Date for a specified year, month, and day
Usage dateVal = DateSerial(year, month, day)
Arguments year

 Any numeric value or expression that evaluates to a number between 100 and 9999
 month

 Any numeric value or expression that evaluates to a number between 1 and 12
 day

 Any numeric value or expression that evaluates to a number between 1 and 31
Return A date value
Remarks To specify a date, such as December 31, 1991, the range of numbers for each DateSerial

argument should be in the accepted range for the unit; that is, 1–31 for days and 1–12 for months.
However, you can also specify relative dates for each argument using any numeric expression
that represents some number of days, months, or years before or after a certain date. For the
year argument, values between 0 and 99, inclusive, are interpreted as the years 1900–1999. For
all other year arguments, use a complete four-digit year (for example, 1800).

 When any argument exceeds the accepted range for that argument, it increments to the next
larger unit as appropriate. For example, if you specify 35 days, it is evaluated as one month and
some number of days, depending on where in the year it is applied. The same is true for negative
values and the value 0, but instead of incrementing, the next larger unit is decremented. However,
if any single argument is outside the range -32,768 to 32,767, or if the date specified by the three
arguments, either directly or by expression, falls outside the acceptable range of dates, an error
occurs.

See Also Date, DateValue, Day, Month, Now, TimeSerial, TimeValue, Weekday, Year
Example The following example uses numeric expressions instead of absolute date numbers. Here the

DateSerial function returns a date that is the day before the first day (1 – 1) of two months before
August (8 – 2) of 10 years before 1990 (1990 – 10); in other words, May 31, 1980.

Dim MyDate1, MyDate2
MyDate1 = DateSerial(1970, 1, 1) ' Returns January 1, 1970.
MyDate2 = DateSerial(1990 - 10, 8 - 2, 1 - 1) ' Returns May 31, 1980.

VBScript Reference Manual InduSoft Web Studio

128 InduSoft, Ltd.

DateValue
Description Returns a Variant of subtype Date
Usage dateVal = DateValue(date)
Arguments date

Date is an expression representing a date, time or both, in the range January 1, 100 to
December 31, 9999.

Return A date value
Remarks Time information in date is not returned. However, if date includes invalid time information (such

as "89:98"), a runtime error occurs. DateValue is internationally aware and uses the system
locale setting on the local machine to recognize the order of a date with only numbers and a
separator. If date is a string that includes only numbers separated by valid date separators,
DateValue also recognizes unambiguous dates that contain month names, either in long or
abbreviated form. For example, in addition to recognizing 12/30/1991 and 12/30/91, DateValue
also recognizes December 30, 1991 and Dec 30, 1991. If the year part of date is omitted,
DateValue uses the current year from your computer's system date.

See Also Date, DateSerial, Day, Month, Now, TimeSerial, TimeValue, Weekday, Year
Example The following example uses the DateValue function to convert a string to a date. You can also

use date a date to a Variant variable, for example, MyDate = #9/11/63#.
Dim MyDate
MyDate = DateValue("September 11, 1963") ' Return a date 9/11/1963

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 129

Day
Description Returns a whole number between 1 and 31, inclusive, representing the day of the month
Usage intVal = Day(date)
Arguments date

 The date argument is any valid date expression.
Return An integer value representing the day of the month (1-31).
Remarks A runtime error occurs if date is not a valid expression. If date contains Null, Null is returned
See Also Date, DateSerial, DateValue, Month, Now, TimeSerial, TimeValue, Weekday, Year
Example Dim MyDay
 MyDay = Day (“October 19, 1962”) ‘ MyDay contains 19

Escape
Description Encodes a string so it contains only ASCII characters
Usage strChar = Escape(charString)
Arguments charString
 Required. String expression to be encoded.
Remarks The Escape function returns a string (in ASCII format) that contains the contents of charString.

All spaces, punctuation, accented characters, and other non-ASCII characters are replaced with
%xx encoding, where xx is equivalent to the hexadecimal number representing the character.
Unicode characters that have a value greater than 255 are stored using the %uxxxx format

See Also UnEscape
Example Dim cs

cs = Escape(“aÖ”) ‘Returns “a%D6”

Eval
Description Evaluates an expression and returns the result
Usage boolVal = Eval(expression)
Arguments expression

Required. String containing any legal VBScript expression
Returns A boolean value
Remarks In VBScript, x = y can be interpreted two ways. The first is as an assignment statement, where

the value of y is assigned to x. The second interpretation is as an expression that tests if x and y
have the same value. If they do, the result is True; if they are not, the result is False. The Eval
method always uses the second interpretation, whereas the Execute statement always uses the
first

See Also Execute
Example Sub GuessANumber
 Dim Guess, RndNum
 RndNum = Int((100) * Rnd(1) + 1)
 Guess = CInt(InputBox("Enter your guess:",,0))
 Do
 If Eval("Guess = RndNum") Then
 MsgBox "Congratulations! You guessed it!"
 Exit Sub
 Else
 Guess = CInt(InputBox("Sorry! Try again.",,0))
 End If
 Loop Until Guess = 0
 End Sub

VBScript Reference Manual InduSoft Web Studio

130 InduSoft, Ltd.

Exp
Description Returns e (the base of natural logarithms) raised to a power
Usage realVal = Exp(number)
Arguments number
 The number argument can be any valid numeric expression
Return Returns a Variant subtype Double
Remarks If the value of number exceeds 709.782712893, a runtime error occurs. The constant e is

approximately 2.718282. The Exp function complements the action of the Log function and is
sometimes referred to as the antilogarithm.

See also Log
Example Dim MyAngle, MyHSin
 MyAngle = 1.3 'Define angle in radians.
 MyHSin = (Exp(MyAngle) - Exp(-1 * MyAngle)) / 2 'Calculate hyperbolic sine. Result

1.69838

Filter
Description Returns a zero-based array containing a subset of a string array based on a specified filter criteria
Usage strArray = Filter(InputStrings, Value[, Include[, Compare]])
Arguments InputStrings
 Required. One-dimensional array of strings to be searched.
 Value
 Required. String to search for.
 Include
 Optional. Boolean value indicating whether to return substrings that include or exclude Value.

If Include is True, Filter returns the subset of the array that contains Value as a substring. If
Include is False, Filter returns the subset of the array that does not contain Value as a
substring. Default is True

 Compare
 Optional. Numeric value indicating the kind of string comparison to use. See Settings section

for values.
Settings The Compare argument can have the following values:
 Constant Value Description
 vbBinaryCompare 0 Perform a binary comparison.
 vbTextCompare 1 Perform a textual comparison
Return A string array
Remarks If no matches of Value are found within InputStrings, Filter returns an empty array. An error

occurs if InputString is Null or is not a one-dimensional array. The array returned by the Filter
function contains only enough elements to contain the number of matched items. You can use the
Ubound function to determine the size of the zero-based array returned.

Example The following example uses the Filter function to return the array containing the search criteria
"Mon":

 Dim MyIndex
 Dim MyArray (3)
 MyArray(0) = "Sunday"
 MyArray(1) = "Monday"
 MyArray(2) = "Tuesday"
 MyIndex = Filter(MyArray, "Mon") 'MyIndex(0) contains "Monday".
 MyIndex = Filter(MyArray, “n”) ‘MyIndex(0) contains “Sunday”
 ‘MyIndex(1) contains “Monday”
 MyIndex = Filter(MyArray, “n”, False) ‘MyIndex(0) contains “Tuesday”

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 131

Fix
Description Returns the integer portion of a number
Usage intVal = Fix(number)
Arguments number
 The number argument can be any valid numeric expression.
Return An integer value
Remarks If number contains Null, Null is returned. Fix is internationally aware, meaning the return value is

based on the Locale setting on the PC. The data type will be determined from the size of the
Integer part. Possible return data types are Integer, Long, Double. Both Int and Fix remove the
fractional part of number and return the resulting integer value.

 The difference between Int and Fix is that if number is negative, Int returns the first negative
integer less than or equal to number, whereas Fix returns the first negative integer greater than
or equal to number. For example, Int converts -8.4 to -9, and Fix converts -8.4 to -8. Fix(number)
is equivalent to: Sgn(number) * Int(Abs(number)).

See also Int, Round, CInt, CLng
Example MyNumber = Int(99.8) ' Returns 99.
 MyNumber = Fix(99.2) ' Returns 99.
 MyNumber = Int(-99.8) ' Returns -100.
 MyNumber = Fix(-99.8) ' Returns -99.
 MyNumber = Int(-99.2) ' Returns -100.
 MyNumber = Fix(-99.2) ' Returns -99.

VBScript Reference Manual InduSoft Web Studio

132 InduSoft, Ltd.

FormatCurrency
Description Formats an expression as a currency value using the currency symbol defined in the system

control panel.
Usage curValue = FormatCurrency(Expression[,NumDigitsAfterDecimal [,IncludeLeadingDigit
 [,UseParensForNegativeNumbers [,GroupDigits]]]])
Arguments Expression
 Required. Any valid expression to be formatted.
 NumDigitsAfterDecimal
 Optional. Numeric value indicating how many places to the right of the decimal are displayed.

Default value is -1, which indicates that the computer's regional settings are used.
 IncludeLeadingDigit
 Optional. Tristate constant that indicates whether or not a leading zero is displayed for

fractional values. See Settings section for values. Can use one of the following constants:
vbUseDefault 2 Uses settings from the Number tab in Control Panel
vbTrue -1
vbFalse 0

 UseParensForNegativeNumbers
 Optional. Tristate constant that indicates whether or not to place negative values within

parentheses. Can use one of the following constants:
vbUseDefault 2 Uses settings from the Number tab in Control Panel
vbTrue -1
vbFalse 0

 GroupDigits
 Optional. Tristate constant that indicates whether or not numbers are grouped using the

group delimiter specified in the computer's regional settings. Can use one of the following
constants:

vbUseDefault 2 Uses settings from the Number tab in Control Panel
vbTrue -1
vbFalse 0

Settings The IncludeLeadingDigit, UseParensForNegativeNumbers, and GroupDigits arguments have the
following settings:

 Constant Value Description
 TristateTrue -1 True
 TristateFalse 0 False
 TristateUseDefault -2 Use the setting from the computer’s regional settings
Return Returns Currency value
Remarks When one or more optional arguments are omitted, values for omitted arguments are provided by

the computer's regional settings. The position of the currency symbol relative to the currency
value is determined by the system's regional settings.

 All settings information comes from the Regional Settings Currency tab, except leading zero,
which comes from the Number tab.

See also FormatDateTime, FormatNumber, FormatPercent
Example Dim MyCurrency
 MsgBox FormatCurrency(1000,2) ' Displays $1,000.00
 MyCurrency = FormatCurrency(1000,2) ‘ MyCurrency contains “$1,000.00”

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 133

FormatDateTime
Description Returns an string formatted as a date or time
Usage dateVal = FormatDateTime(Date[, NamedFormat])
Arguments Date
 Required. Date expression to be formatted.
 NamedFormat
 Optional. Numeric value that indicates the date/time format used. If omitted, vbGeneralDate

is used.
Settings The NamedFormat argument has the following settings:
 Constant Value Description
 vbGeneralDate 0 Display a date and/or time. If there is a date part, display it

as a short date. If there is a time part, display it as a long
time. If present, both parts are displayed.

 vbLongDate 1 Display a date using the long date format specified in your
computer's regional settings.

 vbShortDate 2 Display a date using the short date format specified in your
computer's regional settings.

 vbLongTime 3 Display a time using the time format specified in your
computer's regional settings.

 vbShortTime 4 Display a time using the 24-hour format (hh:mm).
Return A string formatted as a date and/or time.
Remarks A runtime error occurs if date is not a valid expression. Null will be returned if date contains Null.

FormatDateTime will use the locale settings to determine the format of the date display.
See Also FormatCurrency, FormatNumber, FormatPercent
Example Function GetCurrentDate
 Dim GetCurrentDate
 GetCurrentDate = FormatDateTime(Date, 1) ' Formats Date into long date.
 Msgbox FormatDateTime(Now, vbShortDate)
 End Function

VBScript Reference Manual InduSoft Web Studio

134 InduSoft, Ltd.

FormatNumber
Description Returns an expression formatted as a number.
Usage realVal = FormatNumber(Expression [,NumDigitsAfterDecimal [,IncludeLeadingDigit
 [,UseParensForNegativeNumbers [,GroupDigits]]]])
Arguments Expression
 Required. Expression to be formatted.
 NumDigitsAfterDecimal
 Optional. Numeric value indicating how many places to the right of the decimal are displayed.

Default value is -1, which indicates that the computer's regional settings are used.
 IncludeLeadingDigit
 Optional. Tristate constant that indicates whether or not a leading zero is displayed for

fractional values. See Settings section for values.
 UseParensForNegativeNumbers
 Optional. Tristate constant that indicates whether or not to place negative values within

parentheses. See Settings section for values.
 GroupDigits
 Optional. Tristate constant that indicates whether or not numbers are grouped using the

group delimiter specified in the control panel. See Settings section for values.
Settings The IncludeLeadingDigit, UseParensForNegativeNumbers, and GroupDigits arguments have the

following settings:
 Constant Value Description
 TristateTrue -1 True
 TristateFalse 0 False
 TristateUseDefault -2 Use the setting from the computer's regional settings.
Return A real number either Single or Double subVariant type
Remarks When one or more of the optional arguments are omitted, the values for omitted arguments are

provided by the computer's regional settings. All settings information comes from the Regional
Settings Number tab (locale setting).

See Also FormatCurrency, FormatDateTime, FormatPercent
Example Function FormatNumberDemo
 Dim MyAngle, MySecant, MyNumber
 MyAngle = 1.3 ' Define angle in radians.
 MySecant = 1 / Cos(MyAngle) ' Calculate secant.
 FormatNumberDemo = FormatNumber(MySecant,4) ' Format MySecant to four decimal

places.
 End Function

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 135

FormatPercent
Description Returns an expression formatted as a percentage (multiplied by 100) with a trailing % character
Usage realvar = FormatPercent(Expression[,NumDigitsAfterDecimal [,IncludeLeadingDigit
 [,UseParensForNegativeNumbers [,GroupDigits]]]])
Arguments Expression
 Required. Expression to be formatted.
 NumDigitsAfterDecimal
 Optional. Numeric value indicating how many places to the right of the decimal are displayed.

Default value is -1, which indicates that the computer's regional settings are used.
 IncludeLeadingDigit
 Optional. Tristate constant that indicates whether or not a leading zero is displayed for

fractional values. See Settings section for values.
 UseParensForNegativeNumbers
 Optional. Tristate constant that indicates whether or not to place negative values within

parentheses. See Settings section for values.
 GroupDigits
 Optional. Tristate constant that indicates whether or not numbers are grouped using the

group delimiter specified in the control panel. See Settings section for values.
Settings The IncludeLeadingDigit, UseParensForNegativeNumbers, and GroupDigits arguments have the

following settings:
 Constant Value Description
 TristateTrue -1 True
 TristateFalse 0 False
 TristateUseDefault -2 Use the setting from the computer's regional settings.
Return A real number either Single or Double subVariant type
Remarks When one or more of the optional arguments are omitted, the values for omitted arguments are

provided by the computer's regional settings. All settings information comes from the Regional
Settings Number tab.

See Also FormatCurrency, FormatDateTime, FormatNumber
Example Dim MyPercent
 MyPercent = FormatPercent(2/32) ' MyPercent contains 6.25%.

GetLocale
Description Returns the current locale ID value
Usage intVal = GetLocale()
Arguments None.
Return An integer value that determines locale
Remarks A locale is a set of user preference information related to the user's language, country/region, and

cultural conventions. The locale determines such things as keyboard layout, alphabetic sort order,
as well as date, time, number, and currency formats. Refer to the Locale ID chart.

See Also SetLocale
Example MyLocale = GetLocale '.

VBScript Reference Manual InduSoft Web Studio

136 InduSoft, Ltd.

GetObject
Description Returns a reference to an Automation object from a file.
Usage objName = GetObject([pathname] [, class])
Arguments pathname
 Optional; String. Full path and name of the file containing the object to retrieve. If pathname is

omitted, class is required.
 class
 Optional; String. Class of the object. The class argument uses the syntax appname.objectype

and has these parts:
 appname
 Required; String. Name of the application providing the object.
 objectype
 Required; String. Type or class of object to create.
Remarks If an object has registered itself as a single-instance object, only one instance of the object is

created, no matter how many times CreateObject is executed. With a single-instance object,
GetObject always returns the same instance when called with the zero-length string ("") syntax,
and it causes an error if the pathname argument is omitted.

 Use the GetObject function when there is a current instance of the object or if you want to create
the object with a file already loaded. If there is no current instance, and you don't want the object
started with a file loaded, use the CreateObject function.

 Use the GetObject function to access an Automation object from a file and assign the object to
an object variable. Use the Set statement to assign the object returned by GetObject to the
object variable. For example

 Dim CADObject
 Set CADObject = GetObject("C:\CAD\SCHEMA.CAD")

 When this code is executed, the application associated with the specified pathname is started
and the object in the specified file is activated. If pathname is a zero-length string (""), GetObject
returns a new object instance of the specified type. If the pathname argument is omitted,
GetObject returns a currently active object of the specified type. If no object of the specified type
exists, an error occurs.

 Some applications allow you to activate part of a file. Add an exclamation point (!) to the end of
the file name and follow it with a string that identifies the part of the file you want to activate. For
information on how to create this string, see the documentation for the application that created
the object.

 For example, in a drawing application you might have multiple layers to a drawing stored in a file.
You could use the following code to activate a layer within a drawing called SCHEMA.CAD:

 Set LayerObject = GetObject("C:\CAD\SCHEMA.CAD!Layer3")

 If you don't specify the object's class, Automation determines the application to start and the
object to activate, based on the file name you provide. Some files, however, may support more
than one class of object. For example, a drawing might support three different types of objects: an
Application object, a Drawing object, and a Toolbar object, all of which are part of the same file.
To specify which object in a file you want to activate, use the optional class argument. For
example:

 Dim MyObject
 Set MyObject = GetObject("C:\DRAWINGS\SAMPLE.DRW", "FIGMENT.DRAWING")

 In the preceding example, FIGMENT is the name of a drawing application and DRAWING is one
of the object types it supports. Once an object is activated, you reference it in code using the
object variable you defined. In the preceding example, you access properties and methods of the
new object using the object variable MyObject. For example:

MyObject.Line 9, 90
MyObject.InsertText 9, 100, "Hello, world."
MyObject.SaveAs "C:\DRAWINGS\SAMPLE.DRW"

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 137

See Also CreateObject
Example See Remarks

GetRef
Description Returns a reference to a DHTML procedure that can be bound to an event
Usage Set object.eventname = GetRef(procname)
Arguments object
 The name of a DHTML object to which a DHTML event is associated
 event
 Required. Name of the event to which the function is to be bound.
 procname
 Required. String containing the name of the Sub or Function procedure being associated

with the event.
Return A reference to a DHTML procedure
Remarks The GetRef function allows you to connect a VBScript procedure (Function or Sub) to any

available event on your DHTML (Dynamic HTML) pages. The DHTML object model provides
information about what events are available for its various objects. In other scripting and
programming languages, the functionality provided by GetRef is referred to as a function pointer,
that is, it points to the address of a procedure to be executed when the specified event occurs.

Note: This function has limited applicability when used with IWS.
Example: Function GetRefTest()
 Dim Splash
 Splash = "GetRefTest Version 1.0" & vbCrLf
 Splash = Splash & Chr(169) & " YourCompany"
 End Function
 Set Window.Onload = GetRef("GetRefTest")

Hex
Description Returns a string representing the hexadecimal value of a number.
Usage strVal = Hex(number)
Arguments number
 The number argument is any valid expression.
Return A String Variant.
Remarks Returns up to 8 characters. If number is not already a whole number, it is rounded to the nearest

whole number before being evaluated. Null will be returned if number is Null.
 If number is Hex returns
 Null Null
 Empty Zero (0)
 Any other number Up to eight hexadecimal characters
See Also Oct
Example Dim MyHex
 MyHex = Hex(5) ' Returns 5.
 MyHex = Hex(10) ' Returns A.
 MyHex = Hex(459) ' Returns 1CB.

VBScript Reference Manual InduSoft Web Studio

138 InduSoft, Ltd.

Hour
Description Returns a whole number between 0 and 23, inclusive, representing the hour of the day.
Usage intVal = Hour(time)
Arguments time
 The time argument is any expression that can represent a time.
Return An integer value between 0 and 23
Remarks A runtime error occurs if time is not a valid time expression. If time contains Null, Null is returned.
See Also Date, Day, Minute, Month, Now, Second, Weekday, Year
Example Dim MyTime, MyHour
 MyTime = Now
 MyHour = Hour(MyTime) ‘Contains the number representing the current hour.

InputBox
Description Displays a dialog box with a custom prompt, waits for the user to input text or click a button, and

returns the contents of the text box.
Usage strRet = InputBox(prompt[, title][, default][, xpos][, ypos][, helpfile, context])
Arguments prompt
 String expression displayed as the message in the dialog box. The maximum length of

prompt is approximately 1024 characters, depending on the width of the characters used. If
prompt consists of more than one line, you can separate the lines using a carriage return
character (Chr(13)), a linefeed character (Chr(10)), or carriage return–linefeed character
combination (Chr(13) & Chr(10)) between each line.

 title
 String expression displayed in the title bar of the dialog box. If you omit title, the application

name is placed in the title bar.
 default
 String expression displayed in the text box as the default response if no other input is

provided. If you omit default, the text box is displayed empty.
 xpos
 Numeric expression that specifies, in twips, the horizontal distance of the left edge of the

dialog box from the left edge of the screen. If xpos is omitted, the dialog box is horizontally
centered.

 ypos
 Numeric expression that specifies, in twips, the vertical distance of the upper edge of the

dialog box from the top of the screen. If ypos is omitted, the dialog box is vertically positioned
approximately one-third of the way down the screen.

 helpfile
 String expression that identifies the Help file to use to provide context-sensitive Help for the

dialog box. If helpfile is provided, context must also be provided.
 context
 Numeric expression that identifies the Help context number assigned by the Help author to

the appropriate Help topic. If context is provided, helpfile must also be provided.
Remarks When both helpfile and context are supplied, a Help button is automatically added to the dialog

box. If the user clicks OK or presses ENTER, the InputBox function returns whatever is in the
text box. If the user clicks Cancel, the function returns a zero-length string ("").

See Also MsgBox
Example Dim myInput
 myInput = InputBox("Enter your name")
 MsgBox ("You entered: " & myInput)

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 139

InStr
Description Returns an integer indicating the position of the first occurrence of one string within another.
Usage intVal = InStr([start,]string1, string2[, compare])
Arguments start
 Optional. Is any valid non-negative numeric expression that indicates the starting position for

each search. Non-integer values are rounded. If omitted, search begins at the first character
position. The start argument is required if compare is specified.

 string1
 Required. String expression being searched.
 string2
 Required. String expression searched for.
 compare
 Optional. Numeric value indicating the kind of comparison to use when evaluating substrings.

See Settings section for values. If omitted, a binary comparison is performed.
Settings The compare argument can have the following values:

Constant Value Description
vbBinaryCompare 0 Perform a binary comparison. (default)
vbTextCompare 1 Perform a textual comparison

Return An integer value indicating the character position.
 The InStr function returns the following values:

If InStr returns
string1 is zero-length 0
string1 is Null Null
string2 is zero-length start
string2 is Null Null
string2 is not found 0
string2 is found within string1 Position at which match is found
start > Len(string2) 0

Remarks The InStrB function is used with byte data contained in a string. Instead of returning the character
position of the first occurrence of one string within another, InStrB returns the byte position. If
start contains Null, a runtime error occurs. If start is larger than the length of string2
(start>Len(string2)), 0 will be returned.

See Also InStrB, InStrRev
Example The following examples use InStr to search a string:
 Dim SearchString, SearchChar, MyPos
 SearchString ="XXpXXpXXPXXP" ' String to search in.
 SearchChar = "P" ' Search for "P".
 MyPos = Instr(4, SearchString, SearchChar, 1) ‘Comparison starting at position 4. Returns 6.
 MyPos = Instr(1, SearchString, SearchChar, 0) ‘Comparison starting at position 1. Returns 9.
 MyPos = Instr(,SearchString, SearchChar) ‘Comparison is binary (default). Returns 9.
 MyPos = Instr(1, SearchString, "W") 'Binary compare. Returns 0 ("W" is not found).

VBScript Reference Manual InduSoft Web Studio

140 InduSoft, Ltd.

InStrB
Description Returns an integer indicating the byte position of the first occurrence of one string within a string

containing byte data.
Usage intVal = InStrB([start,]string1, string2[, compare])
Arguments start
 Optional. Is any valid non-negative numeric expression that indicates the starting position for

each search. Non-integer values are rounded. If omitted, search begins at the first character
position. The start argument is required if compare is specified.

 string1
 Required. String expression being searched.
 string2
 Required. String expression searched for.
 compare
 Optional. Numeric value indicating the kind of comparison to use when evaluating substrings.

See Settings section for values. If omitted, a binary comparison is performed.
Settings The compare argument can have the following values:

Constant Value Description
vbBinaryCompare 0 Perform a binary comparison. (default)
vbTextCompare 1 Perform a textual comparison

Return An integer value indicating the byte position.
 The InStr function returns the following values:

If InStr returns
string1 is zero-length 0
string1 is Null Null
string2 is zero-length start
string2 is Null Null
string2 is not found 0
string2 is found within string1 Position at which match is found
start > Len(string2) 0

Remarks The InStrB function is used with byte data contained in a string. Instead of returning the character
position of the first occurrence of one string within another, InStrB returns the byte position. If
start contains Null, a runtime error occurs. If start is larger than the length of string2
(start>Len(string2)), 0 will be returned.

See Also InStr, InStrRev

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 141

InStrRev
Description Returns the position of an occurrence of one string within another, from the end of string
Usage intVal = InStrRev(string1, string2[, start[, compare]])
Arguments string1
 Required. String expression being searched.
 string2
 Required. String expression searched for.
 start
 Optional. Numeric expression that sets the starting position for each search. If omitted, -1 is

used, which means that the search begins at the last character position. If start contains Null,
an error occurs.

 compare
 Optional. Numeric value indicating the kind of comparison to use when evaluating substrings.

If omitted, a binary comparison is performed. See Settings section for values.
Settings The compare argument can have the following values:

Constant Value Description
vbBinaryCompare 0 Perform a binary comparison.
vbTextCompare 1 Perform a textual comparison

Return An integer value indicating the position
 InStrRev returns the following values:

If InStr returns
string1 is zero-length 0
string1 is Null Null
string2 is zero-length start
string2 is Null Null
string2 is not found 0
string2 is found within string1 Position at which match is found
start > Len(string2) 0

Remarks Note: The syntax for the InStrRev function is not the same as the syntax for the InStr function.
Note that with UniCode characters, the second byte is usually non-zero (e.g. Asian characters). If
start is Null, a runtime error will occur. If start > Len(string2), 0 will be returned.

See Also InStr, InStrB
Example The following examples use the InStrRev function to search a string:

Dim SearchString, SearchChar, MyPos
SearchString ="XXpXXpXXPXXP" 'String to search in.
SearchChar = "P" 'Search for "P".
MyPos = InstrRev(SearchString, SearchChar, 10, 0) ‘Binary comparison. Returns 9.
MyPos = InstrRev(SearchString, SearchChar, -1, 1) ‘Textual comparison. Returns 12
MyPos = InstrRev(SearchString, SearchChar, 8) 'Comparison is binary. Returns 0.

VBScript Reference Manual InduSoft Web Studio

142 InduSoft, Ltd.

Int
Description Returns the integer portion of a number
Usage intVal = Int(number)
Arguments number

The number argument can be any valid numeric expression.
Return An integer value
Remarks If number contains Null, Null is returned. Int is internationally aware, meaning the return value is

based on the Locale setting on the PC. The data type will be determined from the size of the
Integer part. Possible return data types are Integer, Long, Double.

 Both Int and Fix remove the fractional part of number and return the resulting integer value.
 The difference between Int and Fix is that if number is negative, Int returns the first negative

integer less than or equal to number, whereas Fix returns the first negative integer greater than
or equal to number. For example, Int converts -8.4 to -9, and Fix converts -8.4 to -8. Fix(number)
is equivalent to: Sgn(number) * Int(Abs(number)).

See also Fix, Round, CInt, CLng
Example MyNumber = Int(99.8) ' Returns 99.
 MyNumber = Fix(99.2) ' Returns 99.
 MyNumber = Int(-99.8) ' Returns -100.
 MyNumber = Fix(-99.8) ' Returns -99.
 MyNumber = Int(-99.2) ' Returns -100.

IsArray
Description Returns a Variant subtype Boolean value indicating whether a variable is an array
Usage result = IsArray(varname)
Arguments varname
 The varname argument can be any variable subtype
Returns IsArray returns True if the variable is an array; otherwise it returns False.
See also IsDate, IsEmpty, IsNull, IsNumeric, IsObject, and VarType
Example Dim MyVariable
 Dim MyArray(2)
 MyArray(0) = “Sunday”
 MyArray(1) = “Monday”
 MyArray(2) = “Tuesday”
 MyVariable = IsArray (MyArray) ‘ MyVariable contains True

IsDate
Description Returns a Boolean value indicating whether an expression can be converted to a valid date.
Usage boolVal = IsDate(expression)
Arguments expression
 The expression argument can be any date expression or string expression recognizable as a

date or time.
Remarks IsDate returns True if the expression is a date or can be converted to a valid date; otherwise, it

returns False. In Microsoft Windows, the range of valid dates is January 1, 100 A.D. through
December 31, 9999 A.D.; the ranges vary among operating systems.

See Also CDate, IsArray, IsEmpty, IsNull, IsNumeric, IsObject, VarType
Example The following example uses the IsDate function to determine whether an expression can be

converted to a date:
 Dim MyDate, YourDate, NoDate, MyCheck
 MyDate = "October 19, 1962"
 YourDate = #10/19/62#
 NoDate = "Hello"
 MyCheck = IsDate(MyDate) ' Returns True.
 MyCheck = IsDate(YourDate) ' Returns True.
 MyCheck = IsDate(NoDate) ' Returns False.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 143

IsEmpty
Description Returns a Boolean value indicating whether a variable has been initialized.
Usage boolVal = IsEmpty(expression)
Arguments expression
 The expression argument can be any valid expression. However, because IsEmpty is used

to determine if individual variables are initialized, the expression argument is most often a
single variable name.

Return A Boolean value
Remarks IsEmpty returns True if the variable is uninitialized, or is explicitly set to Empty; otherwise, it

returns False. False is always returned if expression contains more than one variable. If two or
more variables are concatenated in expression and one of them is set to Empty, the IsEmpty
function will return False since the expression is not empty.

See Also IsArray, IsDate, IsNull, IsNumeric, IsObject, VarType
Example The following examples uses the IsEmpty function to determine whether a variable has been

initialized:
Dim MyVar, MyCheck
MyCheck = IsEmpty(MyVar) ' Returns True.
MyVar = Null ' Assign Null.
MyCheck = IsEmpty(MyVar) ' Returns False.
MyVar = Empty ' Assign Empty.
MyCheck = IsEmpty(MyVar) ' Returns True.

IsNull
Description Returns a Boolean value that indicates whether an expression contains no valid data (Null).
Usage boolVal = IsNull(expression)
Arguments expression
 The expression argument can be any valid expression.
Return A Boolean value
Remarks IsNull returns True if expression evaluates to Null, that is, it contains no valid data; otherwise,

IsNull returns False. The Null value indicates that the variable contains no valid data. Null is not
the same as Empty, which indicates that a variable has not yet been initialized. It is also not the
same as a zero-length string (""), which is sometimes referred to as a null string.

 You should always use the IsNull function when checking for Null values since using the normal
operators will return False even if one variable is Null. For example, expressions that you might
expect to evaluate to True under some circumstances, such as If Var = Null and If Var <> Null,
are always False. This is because any expression containing a Null is itself Null, and therefore,
False.

See Also IsArray, IsDate, IsEmpty, IsNumeric, IsObject, VarType
Example The following example uses the IsNull function to determine whether a variable contains a Null:

Dim MyVar, MyCheck
MyCheck = IsNull(MyVar) ' Returns False.
MyVar = Null ' Assign Null.
MyCheck = IsNull(MyVar) ' Returns True.
MyVar = Empty ' Assign Empty.
MyCheck = IsNull(MyVar) ' Returns False.

VBScript Reference Manual InduSoft Web Studio

144 InduSoft, Ltd.

IsNumeric
Description Returns a Boolean value indicating whether an expression can be evaluated as a number.
Usage boolVal = IsNumeric(expression)
Arguments expression
 The expression argument can be any valid expression.
Return A Boolean value
Remarks IsNumeric returns True if the entire expression is recognized as a number; otherwise, it returns

False. IsNumeric returns False if expression is a date expression, since it is not considered a
numeric expression.

See Also IsArray, IsDate, IsEmpty, IsNull, IsObject, VarType
Example The following example uses the IsNumeric function to determine whether a variable can be

evaluated as a number:
Dim MyVar, MyCheck
MyVar = 53 ' Assign a value.
MyCheck = IsNumeric(MyVar) ' Returns True.
MyVar = "459.95" ' Assign a value.
MyCheck = IsNumeric(MyVar) ' Returns True.
MyVar = "45 Help" ' Assign a value.
MyCheck = IsNumeric(MyVar) ' Returns False.

IsObject
Function Returns a Boolean value indicating whether an expression references a valid Automation object.
Usage boolVal = IsObject(expression)
Arguments expression
 The expression argument can be any expression.
Remarks IsObject returns True if expression is a variable of Object subtype or a user-defined object;

otherwise, it returns False.
See Also IsArray, IsDate, IsEmpty, IsNull, IsNumeric, VarType
Example The following example uses the IsObject function to determine if an identifier represents an

object variable:
 Dim MyInt, MyCheck, MyObject
 Set MyObject = Me
 MyCheck = IsObject(MyObject) ' Returns True.

MyCheck = IsObject(MyInt) ' Returns False.

Join
Description Returns a string created by joining a number of substrings contained in an array
Usage strVal = Join(list[, delimiter])
Arguments list
 Required. One-dimensional array containing substrings to be joined.
 delimiter
 Optional. String character used to separate the substrings in the returned string. If omitted,

the space character (" ") is used.
Return A String
Remarks If delimiter is a zero-length string, all items in the list are concatenated with no delimiters. This

function is not to be confused with the SQL Join function
See Also Split
Example The following example uses the Join function to join the substrings of MyArray:

Dim MyString
Dim MyArray(3)
MyArray(0) = "Mr."
MyArray(1) = "John "
MyArray(2) = "Doe "
MyArray(3) = "III"

 MyString = Join(MyArray) ' MyString contains "Mr. John Doe III".

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 145

LBound
Description Returns the smallest possible subscript for the indicated dimension of an array.
Usage intVal = LBound(arrayname[, dimension])
Arguments arrayname
 Name of the array variable; follows standard variable naming conventions.
 dimension
 Whole number (integer) indicating which dimension's lower bound is returned. Use 1 for the

first dimension, 2 for the second, and so on. If dimension is omitted, 1 is assumed.
Return An Integer representing the smallest subscript for an array, which in VBScript is always 0 since

VBScript arrays are zero-based. Return value will be a Variant subtype Long..
Remarks The LBound function is used with the UBound function to determine the size of an array. Use

the UBound function to find the upper limit of an array dimension. The lower bound for any
dimension is always 0 in VBScript. LBound will raise a runtime error if the array has not been
initialized.

See also Dim, ReDim, UBound
Example Dim MyArray(3)
 MsgBox LBound(MyArray) ‘ Displays 0

LCase
Function Converts all alpha characters in a string to lowercase.
Usage strVal = LCase(string)
Arguments string
 Any valid string expression..
Remarks If string contains Null, Null is returned. Only uppercase letters are converted to lowercase; all

lowercase letters and non-letter characters remain unchanged.
Return A String.
See Also UCase
Example The following example uses the LCase function to convert uppercase letters to lowercase:

Dim MyString
Dim LCaseString
MyString = "VBSCript"
LCaseString = LCase(MyString) ' LCaseString contains "vbscript".

Left
Description Returns a specified number of characters from the left side of a string
Usage strVal = Left(string, length)
Arguments string
 String expression from which the leftmost characters are returned.
 length
 Numeric expression indicating how many characters to return.
Return A String.
Remarks If string contains Null, Null is returned. If length = 0, a zero-length string("") is returned. If length is

greater than or equal to the number of characters in string, the entire string is returned. To
determine the number of characters in string, use the Len function.

See Also LeftB, Len, LenB, LTrim, Mid, MidB, Right, RTrim, Trim
Example Dim myStr, extStr

myStr = “UpAndDown”
extStr = Left(myStr, 2) ‘Returns “Up”

VBScript Reference Manual InduSoft Web Studio

146 InduSoft, Ltd.

LeftB
Description Returns a specified number of bytes from the left side of a string
Usage strVal = Left(string, length)
Arguments string
 String expression from which the leftmost bytes are returned.
 length
 Numeric expression indicating how many bytes to return.
Return A String.
Remarks The LeftB function is used with byte data contained in a string instead of character data. If string

contains Null, Null is returned. If length = 0, a zero-length string("") is returned. If length is greater
than or equal to the number of characters in string, the entire string is returned. To determine the
number of characters in string, use the Len function.

See Also Left, Len, LenB, LTrim, Mid, MidB, Right, RTrim, Trim
Example The following example uses the Left function to return the first three characters of MyString

Len
Description Returns the number of characters in a string.
Usage intVal = Len(string)
Arguments string
 Any valid string expression.
Return An Integer
Remarks If string contains Null, Null is returned. The Len function is used with character data contained in

a string.
See Also Left, LeftB, LenB, LTrim, Mid, MidB, Right, RTrim, Trim
Example Dim MyString

MyString = Len("VBSCRIPT") ' MyString contains 8.

LenB
Description Returns the number of bytes used to represent a string.
Usage LenB(string)
Arguments string
 Any valid string expression containing byte data.
Return An Integer.
Remarks If string contains Null, Null is returned. The LenB function is used with byte data contained in a

string. Instead of returning the number of characters in a string, LenB returns the number of bytes
used to represent that string.

See Also Left, LeftB, Len, LTrim, Mid, MidB, Right, RTrim, Trim

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 147

LoadPicture
Description Returns a picture object.
Usage objPict = LoadPicture(picturename)
Arguments picturename
 The picturename argument is a string expression that indicates the name of the picture file to

be loaded.
Return An object reference to a picture file
Remarks Graphics formats recognized by LoadPicture include bitmap (.bmp) files, icon (.ico) files, run-

length encoded (.rle) files, metafile (.wmf) files, enhanced metafiles (.emf), GIF (.gif) files, and
JPEG (.jpg) files. Once the picture object is loaded, it can be manipulated by other controls (e.g.
ActiveX controls). A runtime error occurs if picturename does not exist or is not a valid picture file.
Use LoadPicture(“”) to clear a particular picture. This function is available on 32-bit platforms
only.

Example objPic = LoadPicture (“c:\mypictures\picture1.jpg”)

Log
Description Returns the natural logarithm of a number.
Usage realVal = Log(number)
Arguments number
 The number argument can be any valid numeric expression greater than 0.
Return A Real.
Remarks The natural logarithm is the logarithm to the base e. The constant e is approximately 2.718282.

You can calculate base-n logarithms for any number x by dividing the natural logarithm of x by the
natural logarithm of n as follows: Logn(x) = Log(x) / Log(n)

See also Exp
Example Function Log10(X) ‘ Calculate base-10 logarithm
 Log10 = Log(X) / Log(10)
 End Function

LTrim
Description Returns a copy of a string without leading spaces (LTrim), trailing spaces (RTrim), or both

leading and trailing spaces (Trim).
Usage strVal = LTrim(string)
Arguments string
 Required. Any valid string expression.
Return A String.
Remarks A space “ “ is Chr(32). If string contains Null, Null is returned.
See Also Left, LeftB, Len. LenB, Mid, MidB, Right, RTrim, Trim
Example The following example uses the LTrim, RTrim, and Trim functions to trim leading spaces, trailing

spaces, and both leading and trailing spaces, respectively
Dim MyVar
MyVar = LTrim(" vbscript ") ' MyVar contains "vbscript ".
MyVar = RTrim(" vbscript ") ' MyVar contains " vbscript".
MyVar = Trim(" vbscript ") ' MyVar contains "vbscript".

VBScript Reference Manual InduSoft Web Studio

148 InduSoft, Ltd.

Mid
Description Returns a specified number of characters from any position in a string
Usage strVal = Mid(string, start[, length])
Arguments string
 Any valid string expression from which characters are returned.
 start
 Is the starting position in the character string for extracting the characters.
 length
 Optional. Number of characters to return.
Return A String.
Remarks If string contains Null, Null is returned. If start is greater than the number of characters in the

string, Mid returns a zero-length string (""). If length is omitted or if there are fewer than length
characters in the text (including the character at start), all characters from the start position to the
end of the string are returned. To determine the number of characters in string, use the Len
function.

See Also Left, LeftB, Len. LenB, LTrim, MidB, Right, RTrim, Trim
Example The following example uses the Mid function to return six characters, beginning with the fourth

character, in a string:
 Dim MyVar
 MyVar = Mid("VBScript is fun!", 3, 6) ' MyVar contains "Script".

MidB
Description Returns a specified number of bytes from any position in a string containing byte data.
Usage strVal = Mid(string, start[, length])
Arguments string
 Any valid string expression containing byte data from which characters are returned.
 start
 Is the starting position in the character string for extracting the bytes.
 length
 Optional. Number of bytes to be returned.
Return A String.
Remarks If string contains Null, Null is returned. If start is greater than the number of bytes in the string,

MidB returns a zero-length string (""). If length is omitted or if there are fewer than length bytes in
the text (including the character at start), all bytes from the start position to the end of the string
are returned. To determine the number of bytes in string, use the LenB function.

See Also Left, LeftB, Len. LenB, LTrim, Mid, Right, RTrim, Trim

Minute
Description Returns a whole number between 0 and 59, inclusive, representing the minute of the hour.
Usage invVal = Minute(time)
Arguments time
 The time argument is any expression that can represent a time.
Return An Integer value
Remarks A runtime error occurs if time is not a valid time expression. If time contains Null, Null is returned.
See Also Date, Day, Hour, Month, Now, Second, Weekday, Year
Example Dim MyVar
 MyVar = Minute(Now) ‘ Returns the value of the current minute

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 149

Month
Description Returns a whole number between 1 and 12, inclusive, representing the month of the year
Usage intVal = Month(date)
Arguments date
 The date argument is any valid expression that can represent a date.
Return An integer value
Remarks A runtime error occurs if time is not a valid time expression. If time contains Null, Null is returned.
See Also Date, Day, Hour, Minute, Now, Second, Weekday, Year
Example Dim MyVar
 MyVar = Month(Now) ‘MyVar contains the number = the current month.

MonthName
Description Returns a string indicating the specified month.
Usage strVal = MonthName(month[, abbreviate])
Arguments month
 Required. A number between 1 and 12 for each month of the year, beginning in January. For

example, January is 1, February is 2, and so on.
 abbreviate
 Optional. Boolean value that indicates if the month name is to be abbreviated. If omitted, the

default is False, which means that the month name is not abbreviated (it is spelled out).
Return A String.
Remarks A runtime error if month is outside the valid range (1-12). MonthName is internationally aware,

meaning that the returned string is localized by the language specified as part of your locale
setting.

See Also WeekDayName
Example Dim MyVar
 MyVar = MonthName(10, True) ' MyVar contains "Oct".

VBScript Reference Manual InduSoft Web Studio

150 InduSoft, Ltd.

MsgBox
Description Displays a message in a dialog box, waits for the user to click a button, and returns a value

indicating which button the user clicked.
Usage intRet = MsgBox(prompt[, buttons][, title][, helpfile, context])
 MsgBox(prompt[, buttons][, title][, helpfile, context])
Arguments prompt
 String expression displayed as the message in the dialog box. The maximum length of

prompt is approximately 1024 characters, depending on the width of the characters used. If
prompt consists of more than one line, you can separate the lines using a carriage return
character (Chr(13)), a linefeed character (Chr(10)), or carriage return–linefeed character
combination (Chr(13) & Chr(10)) between each line.

 buttons
 Numeric expression that is the sum of values specifying the number and type of buttons to

display, the icon style to use, the identity of the default button, and the modality of the
message box. See Settings section for values. If omitted, the default value for buttons is 0.
See examples below for using multiple buttons.

 title
 String expression displayed in the title bar of the dialog box. If you omit title, the application

name is placed in the title bar.
 helpfile
 String expression that identifies the Help file to use to provide context-sensitive Help for the

dialog box. If helpfile is provided, context must also be provided. Not available on 16-bit
platforms.

 context
 Numeric expression that identifies the Help context number assigned by the Help author to

the appropriate Help topic. If context is provided, helpfile must also be provided. Not available
on 16-bit platforms.

Settings The buttons argument settings are:
Constant Value Description
vbOKOnly 0 Display OK button only.
vbOKCancel 1 Display OK and Cancel buttons.
vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons.
vbYesNoCancel 3 Display Yes, No, and Cancel buttons.
vbYesNo 4 Display Yes and No buttons.
vbRetryCancel 5 Display Retry and Cancel buttons.
vbCritical 16 Display Critical Message icon.
vbQuestion 32 Display Warning Query icon.
vbExclamation 48 Display Warning Message icon.
vbInformation 64 Display Information Message icon.
vbDefaultButton1 0 First button is default.
vbDefaultButton2 256 Second button is default.
vbDefaultButton3 512 Third button is default.
vbDefaultButton4 768 Fourth button is default.
vbApplicationModal 0 Application modal; the user must respond to the

message box before continuing work in the current
application.

vbSystemModal 4096 System modal; all applications are suspended until the
user responds to the message box.

vbMsgBoxRight 524288 Right align text
vbMsgBoxRtlReading 1048576 On Hebrew and Arabic systems, specifies that text

should appear from right to left.
vbMsgBoxSetForeground 65536 Makes the message box in the foreground window

The first group of values (0–5) describes the number and type of buttons displayed in the dialog
box; the second group (16, 32, 48, 64) describes the icon style; the third group (0, 256, 512, 768)
determines which button is the default; and the fourth group (0, 4096) determines the modality of

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 151

the message box. When adding numbers to create a final value for the argument buttons, use
only one number from each group.

Return Value The MsgBox function has the following return values:
Constant Value Button
vbOK 1 OK
vbCancel 2 Cancel
vbAbort 3 Abort
vbRetry 4 Retry
vbIgnore 5 Ignore
vbYes 6 Yes
vbNo 7 No

Remarks When both helpfile and context are provided, the user can press F1 to view the Help topic
corresponding to the context.

 If the dialog box displays a Cancel button, pressing the ESC key has the same effect as clicking

Cancel. If the dialog box contains a Help button, context-sensitive Help is provided for the dialog
box. However, no value is returned until one of the other buttons is clicked.

 When the MsgBox function is used with Microsoft Internet Explorer, the title of any dialog

presented always contains "VBScript:" to differentiate it from standard system dialogs.
See Also InputBox
Example Dim MyVar
 MyVar = MsgBox ("Hello World!", 65, "MsgBox Example")
 ' MyVar contains either 1 or 2, depending on which button is clicked.
 myResult = MsgBox(“Is this OK?”, vbYesNo Or vbQuestion Or vbApplicationModal, “Delete File”)

Now
Description Returns the current date and time according to the setting of your computer's system date and

time.
Usage dateVal = Now()
Arguments None
Remarks The following example uses the Now function to return the current date and time:
See Also Date, Day, Hour, Month, Minute, Second, Weekday, Year
Example(s) Dim MyVar
 MyVar = Now ' MyVar contains the current date and time.

Oct
Description Returns a string representing the octal value of a number
Usage strVal = Oct(number)
Arguments number
 The number argument is any valid expression.
Return A String value
Remarks Returns up to 11 characters. If number is not already a whole number, it is rounded to the nearest

whole number before being evaluated. You can represent octal numbers directly by preceding
numbers in the proper range with &O. For example, &O10 is the octal notation for decimal 8.

 If number is Hex returns
 Null Null
 Empty Zero (0)
 Any other number Up to 11 octal characters
See Also Hex
Example Dim MyOct MyOct = Oct(4) 'Returns 4.
 MyOct = Oct(8) 'Returns 10.
 MyOct = Oct(459) 'Returns 713.

VBScript Reference Manual InduSoft Web Studio

152 InduSoft, Ltd.

Replace
Description Returns a string in which a specified substring has been replaced with another substring a

specified number of times.
Usage strVal = Replace(expression, find, replacewith[, start[, count[, compare]]])
Arguments expression
 Required. String expression containing substring to replace.
 find
 Required. Substring being searched for.
 replacewith
 Required. Replacement substring.
 start
 Optional. Position within expression where substring search is to begin. If omitted, 1 is

assumed. Must be used in conjunction with count.
 count
 Optional. Number of substring substitutions to perform. If omitted, the default value is -1,

which means make all possible substitutions. Must be used in conjunction with start.
 compare
 Optional. Numeric value indicating the kind of comparison to use when evaluating substrings.

See Settings section for values. If omitted, the default value is 0, which means perform a
binary comparison.

Settings The compare argument can have the following values:
Constant Value Description
vbBinaryCompare 0 Perform a binary comparison.
vbTextCompare 1 Perform a textual comparison

Return A String. Replace returns the following values:
If Replace returns
expression is zero-length Zero-length string ("").
expression is Null An error.
find is zero-length Copy of expression.
replacewith is zero-length Copy of expression with all occurrences of find removed.
start > Len(expression) Zero-length string.
count is 0 Copy of expression.

Remarks The return value of the Replace function is a string, with substitutions made, that begins at the
position specified by start and concludes at the end of the expression string. It is not a copy of the
original string from start to finish

See Also Left, LeftB, Len, LenB, LTrim, Mid, MidB, Right, RTrim, Trim
Example Dim MyString

Rem A binary comparison starting at the beginning of the string.
MyString = Replace("XXpXXPXXp", "p", "Y") ' Returns "XXYXXPXXY".

Rem A textual comparison starting at position 3.
MyString = Replace("XXpXXPXXp", "p", "Y", 3, -1, 1) ' Returns "YXXYXXY".

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 153

RGB
Description Returns a whole number representing an RGB color value
Usage intVal = RGB(red, green, blue)
Arguments red
 Required. Number in the range 0-255 representing the red component of the color.
 green
 Required. Number in the range 0-255 representing the green component of the color.
 blue
 Required. Number in the range 0-255 representing the blue component of the color.
Remarks Application methods and properties that accept a color specification expect that specification to

be a number representing an RGB color value. An RGB color value specifies the relative intensity
of red, green, and blue to cause a specific color to be displayed. The low-order byte contains the
value for red, the middle byte contains the value for green, and the high-order byte contains the
value for blue. A runtime error occurs if any of the arguments cannot be evaluated to a numeric
value.

 For applications that require the byte order to be reversed, the following function will provide the
same information with the bytes reversed:

 Function RevRGB(red, green, blue)
 RevRGB= CLng(blue + (green * 256) + (red * 65536))
 End Function
Example MyColor = RGB(130, 155, 204)

Right
Description Returns length number of characters from the right side of a string
Usage strVal = Right(string, length)
Arguments string
 String expression from which the characters are extracted from.
 length
 Numeric expression indicating how many characters to return (extract).
Remarks If string contains Null, Null is returned. If length is 0, a zero-length string("") is returned. If length

is greater than or equal to the number of characters in string, the entire string is returned. To
determine the number of characters in the string, use the Len function.

See Also Left, LeftB, Len, LenB, Mid, MidB, RightB
Example The following example uses the Right function to return a specified number of characters from

the right side of a string:
 Dim AnyString, MyStr
 AnyString = "Hello World" 'Define string
 MyStr = Right(AnyString, 1) 'Returns "d"

MyStr = Right(AnyString, 6) 'Returns " World"
MyStr = Right(AnyString, 20) 'Returns "Hello World"

RightB
Description Returns length number of bytes from the right side of a string
Usage strVal = Right(string, length)
Arguments string
 String expression from which the bytes are extracted from.
 length
 Numeric expression indicating how many bytes to return (extract).
Remarks If string contains Null, Null is returned. If length is 0, a zero-length string("") is returned. If length

is greater than or equal to the number of bytes in the string, the entire string is returned. To
determine the number of bytes in the string, use the LenB function.

See Also Left, LeftB, Len, LenB, Mid, MidB, Right

VBScript Reference Manual InduSoft Web Studio

154 InduSoft, Ltd.

Rnd
Description Returns a random number less than 1 but greater than or equal to 0.
Usage realVal = Rnd[(number)]
Arguments number
 Optional. The number argument can be any valid numeric expression.
Result A Real value.
Return Values A random number less than 1 but greater than 0.
 If number is Rnd generates
 Less than zero The same number every time, using number as the seed
 Greater than zero The next random number in the sequence
 Equal to zero The most recently generated number
 Not supplied The next random number in the sequence
Remarks The Rnd function returns a value less than 1 but greater than or equal to 0. The value of number

determines how Rnd generates a random number: For any given initial seed, the same number
sequence is generated because each successive call to the Rnd function uses the previous
number as a seed for the next number in the sequence. Before calling Rnd, use the Randomize
statement without an argument to initialize the random-number generator with a seed based on
the system timer.

 To repeat sequences of random numbers, call Rnd with a negative argument immediately before
using Randomize with a numeric argument. Using Randomize with the same value for number
does not repeat the previous sequence.

 To produce random integers in a given range, use this formula:
 Int((upperbound - lowerbound + 1) * Rnd + lowerbound)
 Here, upperbound is the highest number in the range, and lowerbound is the lowest number in

the range.
See also Randomize
Example Const UpperBound = 10
 Const LowerBound = 1
 Dim counter
 For counter = 1 to 10 ‘ Produces 10 numbers between 1-20
 value = Int((UpperBound-LowerBound+1)*Rnd + LowerBound)
 MsgBox “Random Number is = “ & value
 Next

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 155

Round
Description Returns a number rounded to a specified number of decimal places
Usage Round(expression[, numdecimalplaces])
Arguments expression
 Required. Numeric expression being rounded.
 numdecimalplaces
 Optional. Number indicating how many places to the right of the decimal are included in the

rounding. If omitted, integers are returned by the Round function.
Return A Variant subtype Double. A number rounded to a specified number of decimal places.
Remarks The Round function performs round to even, which is different from round to larger. The return

value is the number closest to the value of expression, with the appropriate number of decimal
places. If expression is exactly halfway between two possible rounded values, the function
returns the possible rounded value whose rightmost digit is an even number. (In a round to larger
function, a number that is halfway between two possible rounded values is always rounded to the
larger number.)

See also Int and Fix
Example Rem Using the Round function to round a number to two decimal places:
 Dim MyVar, pi
 pi = 3.14159
 MyVar = Round(pi, 2) ' MyVar contains 3.14.

 Rem How rounding to even works:
 Dim var1, var2, var3, var4, var5
 var1 = Round(1.5) 'var1 contains 2
 var2 = Round(2.5) 'var2 contains 2
 var3 = Round(3.5) 'var3 contains 4
 var4 = Round(0.985, 2) 'var4 contains 0.98
 var5 = Round(0.995, 2) 'var5 contains 1.00

RTrim
Description Returns a copy of a string without leading spaces (LTrim), trailing spaces (RTrim), or both

leading and trailing spaces (Trim).
Usage strVal = RTrim(string)
Arguments string
 Required. Any valid string expression.
Remarks If string contains Null, Null is returned.
See Also Left, LeftB, LTrim, Mid, MidB, Right, RightB, Trim
Example The following example uses the LTrim, RTrim, and Trim functions to trim leading spaces, trailing

spaces, and both leading and trailing spaces, respectively
Dim MyVar
MyVar = LTrim(" vbscript ") ' MyVar contains "vbscript ".
MyVar = RTrim(" vbscript ") ' MyVar contains " vbscript".
MyVar = Trim(" vbscript ") ' MyVar contains "vbscript".

VBScript Reference Manual InduSoft Web Studio

156 InduSoft, Ltd.

ScriptEngine
Description Returns a string representing the scripting language in use
Usage ScriptEngine
Arguments none
Return Value A String. The ScriptEngine function can return the following strings:
 VBScript Indicates that Microsoft Visual Basic Scripting Edition is the current scripting

engine
Remarks Other 3rd party ActiveX scripting engines can also be returned if they are installed.
See Also ScriptEngineBuildVersion, ScriptEngineMajorVersion, ScriptEngineMinorVersion
Example The following example uses the ScriptEngine function to return a string describing the scripting

language in use:

Function GetScriptEngineInfo
 Dim s
 s = "" ' Build string with necessary info.
 s = ScriptEngine & " Version "
 s = s & ScriptEngineMajorVersion & "."
 s = s & ScriptEngineMinorVersion & "."
 s = s & ScriptEngineBuildVersion
 GetScriptEngineInfo = s ' Return the results.
End Function

ScriptEngineBuildVersion
Description Returns the build version number of the scripting engine in use.
Usage ScriptEngineBuildVersion
Arguments none
Remarks The return value corresponds directly to the version information contained in the DLL for the

scripting language in use.
See Also ScriptEngine, ScriptEngineMajorVersion, ScriptEngineMinorVersion
Example The following example uses the ScriptEngineBuildVersion function to return the build version

number of the scripting engine::

Function GetScriptEngineInfo
 Dim s
 s = "" ' Build string with necessary info.
 s = ScriptEngine & " Version "
 s = s & ScriptEngineMajorVersion & "."
 s = s & ScriptEngineMinorVersion & "."
 s = s & ScriptEngineBuildVersion
 GetScriptEngineInfo = s ' Return the results.
End Function

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 157

ScriptEngineMajorVersion
Description Returns the major version number of the scripting engine in use.
Usage ScriptEngineMajorVersion
Arguments none
Remarks The return value corresponds directly to the version information contained in the DLL for the

scripting language in use.
See Also ScriptEngine, ScriptEngineBuildVersion, ScriptEngineMinorVersion
Example The following example uses the ScriptEngineMajorVersion function to return the build version

number of the scripting engine::

Function GetScriptEngineInfo
 Dim s
 s = "" ' Build string with necessary info.
 s = ScriptEngine & " Version "
 s = s & ScriptEngineMajorVersion & "."
 s = s & ScriptEngineMinorVersion & "."
 s = s & ScriptEngineBuildVersion
 GetScriptEngineInfo = s ' Return the results.
End Function

ScriptEngineMinorVersion
Description Returns the minor version number of the scripting engine in use.
Usage ScriptEngineMinorVersion
Arguments none
Remarks The return value corresponds directly to the version information contained in the DLL for the

scripting language in use.
See Also ScriptEngine, ScriptEngineBuildVersion, ScriptEngineMajorVersion
Example The following example uses the ScriptEngineMinorVersion function to return the build version

number of the scripting engine::

Function GetScriptEngineInfo
 Dim s
 s = "" ' Build string with necessary info.
 s = ScriptEngine & " Version "
 s = s & ScriptEngineMajorVersion & "."
 s = s & ScriptEngineMinorVersion & "."
 s = s & ScriptEngineBuildVersion
 GetScriptEngineInfo = s ' Return the results.
End Function

Second
Description Returns a whole number between 0 and 59, inclusive, representing the second of the minute.
Usage dateVal = Second(time)
Arguments time
 The time argument is any valid expression that can represent a time.
Remarks A runtime error will occur if time is not a valid time expression. If time contains Null, Null is

returned.
See Also Date, Day, Hour, Minute, Month, Now, Weekday, Year
Example Dim MyVar
 MyVar = Second(Now) ‘ Returns the value of the current second

VBScript Reference Manual InduSoft Web Studio

158 InduSoft, Ltd.

SetLocale
Description Sets the current locale ID value
Usage SetLocale(lcid)
Arguments lcid
 The lcid cab be any valid 32-bit value or short string that uniquely identifies a geographical

locale. Recognized values can be found in the Locale ID chart. If lcid is zero, the locale is set
to match the current system setting.

Remarks A locale is a set of user preference information related to the user's language, country/region, and
cultural conventions. The locale determines such things as keyboard layout, alphabetic sort order,
as well as date, time, number, and currency formats. This function can be used in conjunction
with the IWS run-time translation tool to automatically switch the language displayed

See Also GetLocale
Example SetLocale (”en=gb”)

Sgn
Description Returns the integer indicating the sign of a number
Usage intVal = Sgn(number)
Arguments number
 The number argument can be any valid numeric expression.
Return An Integer.
Remarks The sign of the number argument determines the return value of the Sgn function.
 If number is Sgn returns
 Greater than zero 1
 Equal to zero 0
 Less than zero -1
See also Abs
Example Dim MyVar1, MyVar2, MyVar3, MySign
 MyVar1 = 12
 MyVar2 = -2.4
 MyVar3 = 0
 MySign = Sgn(MyVar1) ' Returns 1.
 MySign = Sgn(MyVar2) ' Returns -1.
 MySign = Sgn(MyVar3) ' Returns 0.

Sin
Function Returns the sine of an angle.
Usage dblVal = Sin(number)
Arguments number
 The number argument can be any valid numeric expression that expresses an angle in radian

 s.
Return Returns a Variant subtype Double specifying the sine of an angle in radians
Remarks The Sin function takes an angle and returns the ratio of two sides of a right triangle. The ratio is

the length of the side opposite the angle divided by the length of the hypotenuse. The result lies
in the range -1 to 1. To convert degrees to radians, multiply degrees by pi /180. To convert
radians to degrees, multiply radians by 180/pi. Pi = 3.14159

See Also Atn, Cos, Tan
Example Dim MyAngle, MyCosecant
 MyAngle = 1.3 ' Define angle in radians.
 MyCosecant = 1 / Sin(MyAngle) ' Calculate cosecant.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 159

Space
Description Returns a string consisting of the specified number of spaces (“ “).
Usage strVal = Space(number)
Arguments number
 The number argument is the number of spaces you want in the string.
Return A String.
Remarks None
See Also String
Example The following example uses the Space function to return a string consisting of a specified number

of spaces
Dim MyString
MyString = Space(10) ' Returns a string with 10 spaces.
MyString = "Hello" & Space(10) & "World" ' Insert 10 spaces between two strings.

Split
Description Returns a zero-based, one-dimensional array extracted from the supplied string expression.
Usage strVal = Split(expression[, delimiter[, count[, compare]]])
Arguments expression
 Required. String expression containing substrings and delimiters.
 delimiter
 Optional. String character used to identify substring limits.
 count
 Optional. Number of substrings to be returned; -1 indicates that all substrings are returned.
 compare
 Optional. Numeric value indicating the kind of comparison to use when evaluating substrings.

See Settings section for values.
Settings The compare argument can have the following values:

Constant Value Description
vbBinaryCompare 0 Perform a binary comparison.
vbTextCompare 1 Perform a textual comparison

Return A zero-based, one-dimensional array string.
Remarks If expression is a zero-length string, Split returns an empty array, that is, an array with no

elements and no data. If delimiter is omitted, the space character (" ") is assumed to be the
delimiter. If delimiter is a zero-length string, a single-element array containing the entire
expression string is returned. The result of the Split function cannot be assigned to a variable of
Variant subtype Array, otherwise a runtime error will occur.

See Also Join
Example The following example uses the Split function to return an array from a string. The function

performs a textual comparison of the delimiter, and returns all of the substrings
Dim MyString, MyArray, Msg
MyString = "VBScriptXisXfun!"
MyArray = Split(MyString, "x", -1, 1)
' MyArray(0) contains "VBScript".
' MyArray(1) contains "is".
' MyArray(2) contains "fun!".
Msg = MyArray(0) & " " & MyArray(1)
Msg = Msg & " " & MyArray(2)

 MsgBox Msg

VBScript Reference Manual InduSoft Web Studio

160 InduSoft, Ltd.

Sqr
Function Returns the square root of a number.
Usage val = Sqr(number)
Arguments number
 The number argument can be any valid numeric expression greater than or equal to 0.
Return Returns the square root of a number.
Example Dim MySqr
 MySqr = Sqr(4) ' Returns 2.
 MySqr = Sqr(23) ' Returns 4.79583152331272.
 MySqr = Sqr(0) ' Returns 0.
 MySqr = Sqr(-4) ' Generates a run-time error.

StrComp
Description Performs a string comparison and returns the result.
Usage intVal = StrComp(string1, string2[, compare])
Arguments string1
 Required. Any valid string expression.
 string2
 Required. Any valid string expression.
 compare
 Optional. Numeric value indicating the comparison method to use when evaluating strings. If

omitted, a binary comparison is performed. See Settings section for values.
Settings The compare argument can have the following values:

Constant Value Description
vbBinaryCompare 0 Perform a binary comparison.
vbTextCompare 1 Perform a textual comparison

Return An Integer. The StrComp function has the following return values:
If StrComp returns
string1 is less than string2 -1
string1 is equal to string2 0
string1 is greater than string2 1
string1 or string2 is Null Null

Remarks Null is returned if string1 or string2 is Null.
See Also String
Example The following example uses the StrComp function to return the results of a string comparison. If

the third argument is 1, a textual comparison is performed; if the third argument is 0 or omitted, a
binary comparison is performed.
Dim MyStr1, MyStr2, MyComp
MyStr1 = "ABCD": MyStr2 = "abcd" ' Define variables.
MyComp = StrComp(MyStr1, MyStr2, 1) ' Returns 0.
MyComp = StrComp(MyStr1, MyStr2, 0) ' Returns -1.
MyComp = StrComp(MyStr2, MyStr1) ' Returns 1.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 161

String
Description Returns a character string with a substring repeated a specific number of times.
Usage strVal = String(number, character)
Arguments number
 Length of the returned string.
 character
 Character code specifying the character or string expression whose first character is used to

build the return string.
Return A String.
Remarks If number contains Null, Null is returned. If character contains Null, Null is returned. If you

specify a number for character greater than 255, String converts the number to a valid character
code using the formula: character Mod 256.

See Also Space, StrComp
Example The following example uses the String function to return repeating character strings of the length

specified:
Dim MyString
MyString = String(5, "*") ' Returns "*****".
MyString = String(5, 42) ' Returns "*****".
MyString = String(10, "ABC") ' Returns "AAAAAAAAAA".

StrReverse
Description Returns a string in which the character order of a specified string is reversed.
Usage StrReverse(string1)
Arguments string1
 The string1 argument is the string whose characters are to be reversed.
Return A String.
Remarks If string1 is a zero-length string (""), a zero-length string is returned. If string1 is Null, a runtime

error occurs
Example The following example uses the StrReverse function to return a string in reverse order:

Dim MyStr
MyStr = StrReverse("VBScript") ' MyStr contains "tpircSBV".

Tan
Description Returns the tangent of an angle in radians.
Usage dblVal = Tan(number)
Arguments number
 The number argument can be any valid numeric expression that expresses an angle in

radians
Return A Variant of subtype Double. Specifies the tangent of an angle in radians
Remarks Tan takes an angle and returns the ratio of two sides of a right triangle. The ratio is the length of

the side opposite the angle divided by the length of the side adjacent to the angle.

 To convert degrees to radians, multiply degrees by pi /180. To convert radians to degrees,
multiply radians by 180/pi.

See also Atn, Cos, Sin
Example Dim MyAngle, MyCotangent, MyValue
 MyAngle = 1.3 ' Define angle in radians.
 MyCotangent = 1 / Tan(MyAngle) ' Calculate cotangent.
 MyValue = Tan(10.4) ‘ Returns 1.475667914
 MyValue = Tan(0) ‘ Returns 0

VBScript Reference Manual InduSoft Web Studio

162 InduSoft, Ltd.

Time
Description Returns a Variant of subtype Date indicating the current system time
Usage dateVal = Time()
Arguments None
Remarks None
See Also Date, Now
Example Dim MyTIme
 MyTime = Time ‘ Return current system time

Timer
Description Returns a Variant of subtype Single indicating the number of seconds that have elapsed since

12:00AM (midnight)
Usage realVal = Timer()
Arguments none
Remarks The timer is reset every 24 hours.
Example Function TimeIt(N)
 Dim StartTime, EndTime
 StartTime = Timer
 For I = 1 To N
 Next
 EndTime = Timer
 TimeIt = EndTime - StartTime
 End Function

TimeSerial
Description Returns a Variant of subtype Date containing the time for a specific hour, minute, and second.
Usage dateVal = TimeSerial(hour, minute, second)
Arguments hour
 Number or valid expression that evaluated to a number between 0 (12:00 A.M.) and 23

(11:00 P.M.).
minute

 Number or valid expression that evaluated to a number between 0 and 59.
second

 Number or valid expression that evaluated to a number between 0 and 59.
Remarks To specify a time, such as 11:59:59, the range of numbers for each TimeSerial argument should

be in the accepted range for the unit; that is, 0–23 for hours and 0–59 for minutes and seconds.
However, you can also specify relative times for each argument using any numeric expression
that represents some number of hours, minutes, or seconds before or after a certain time.

 When any argument exceeds the accepted range for that argument, it increments to the next
larger unit as appropriate. For example, if you specify 75 minutes, it is evaluated as one hour and
15 minutes. However, if any single argument is outside the range -32,768 to 32,767, or if the time
specified by the three arguments, either directly or by expression, causes the date to fall outside
the acceptable range of dates, an error occurs.

See Also Date, DateSerial, DateValue, Day, Month, Now, TimeValue, Weekday, Year
Example The following example uses expressions instead of absolute time numbers. The TimeSerial

function returns a time for 15 minutes before (-15) six hours before noon (12 - 6), or 5:45:00 A.M.
Dim MyTime1
MyTime1 = TimeSerial(12 - 6, -15, 0) ' Returns 5:45:00 AM.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 163

TimeValue
Description Returns a Variant of subtype Date containing the time
Usage dateVal = TimeValue(time)
Arguments time
 Time argument is an expression in the range of 0:00:00 to 23:59:59
Remarks Date information in time is not returned. The time argument is usually a string expression

representing a time from 0:00:00 (12:00:00 A.M.) to 23:59:59 (11:59:59 P.M.), inclusive. However,
time can also be any expression that represents a time in that range. If time contains Null, Null is
returned.

 You can enter valid times using a 12-hour or 24-hour clock. For example, "2:24PM" and "14:24"
are both valid time arguments. If the time argument contains date information, TimeValue doesn't
return the date information. However, if time includes invalid date information, an error occurs.

See Also Date, DateSerial, DateValue, Day, Month, Now, TimeValue, Weekday, Year
Example The following example uses the TimeValue function to convert a string to a time. You can also

use date literals to directly assign a time to a Variant (for example, MyTime = #4:35:17 PM#).
 Dim MyTime
 MyTime = TimeValue("4:35:17 PM") ' MyTime contains 4:35:17 PM.

Trim
Description Returns a copy of a string without leading spaces (LTrim), trailing spaces (RTrim), or both

leading and trailing spaces (Trim).
Usage strVal = Trim(string)
Arguments string
 Required. Any valid string expression.
Return A String.
Remarks If string contains Null, Null is returned.
See Also Left, LeftB, Ltrim, Mid, MidB, Right, RightB, RTrim
Example The following example uses the LTrim, RTrim, and Trim functions to trim leading spaces, trailing

spaces, and both leading and trailing spaces, respectively
Dim MyVar
MyVar = LTrim(" vbscript ") ' MyVar contains "vbscript ".
MyVar = RTrim(" vbscript ") ' MyVar contains " vbscript".
MyVar = Trim(" vbscript ") ' MyVar contains "vbscript".

VBScript Reference Manual InduSoft Web Studio

164 InduSoft, Ltd.

TypeName
Description Returns a string that provides Variant subtype information about a variable.
Usage TypeName(varname)
Arguments varname
 The required varname argument can be any variable.
Return A String. The TypeName function has the following return values:

Value Description
Byte Byte value
Integer Integer value
Long Long integer value
Single Single-precision floating-point value
Double Double-precision floating-point value
Currency Currency value
Decimal Decimal value
Date Date or time value
String Character string value
Boolean Boolean value; True or False
Empty Uninitialized
Null No valid data
<object type> Actual type name of an object
Object Generic object
Unknown Unknown object type
Nothing Object variable that doesn't yet refer to an object instance
Error Error

See Also IsArray, IsDate, IsEmpty, IsNull, IsNumeric, IsObject, VarType
Example The following example uses the TypeName function to return information about a variable:

Dim ArrayVar(4), MyType
NullVar = Null ' Assign Null value.
MyType = TypeName("VBScript") ' Returns "String".
MyType = TypeName(4) ' Returns "Integer".
MyType = TypeName(37.50) ' Returns "Double".
MyType = TypeName(NullVar) ' Returns "Null".

 MyType = TypeName(ArrayVar) ' Returns "Variant()".

UBound
Description Returns the largest available subscript for the indicated dimension of an array.
Usage IntVal = UBound(arrayname[, dimension])
Arguments arrayname
 Name of the array variable; follows standard variable naming conventions.
 dimension

Optional whole (integer) number indicating which dimension's upper bound is returned. Use 1
for the first dimension, 2 for the second, and so on. If dimension is omitted, 1 is assumed.

Returns Returns the largest available subscript for the indicated dimension of an array. If the array is
empty, -1 is returned. If the array has not been initialized, a runtime error will occur.

Remarks The UBound function is used with the LBound function to determine the size of an array. Use
the LBound function to find the lower limit of an array dimension. The lower bound for any
dimension is always 0.

See also Dim, LBound, ReDim
Example Dim A(100,3,4)
 Dim B(3)
 myVal = UBound(A,1) ‘ Return value = 100
 myVal = UBound(A,2) ‘ Return value = 3
 myVal = UBound(A,3) ‘ Return value = 4
 myVal = UBound(B) ‘ Return value = 3

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 165

UCase
Description Converts all alpha characters in a string to uppercase and returns the result.
Usage strVal = UCase(string)
Arguments string
 Any valid string expression.
Return A String.
Remarks If string contains Null, Null is returned. Only lowercase letters are converted to uppercase; all

uppercase letters and non-letter characters remain unchanged.
See Also LCase
Example The following example uses the UCase function to return an uppercase version of a string

Dim MyWord, MyString, LeftString
MyWord = UCase("Hello World") ' Returns "HELLO WORLD".

UnEscape
Description Decodes a string encoded with the Escape function.
Usage strVal = UnEscape(charstring)
Arguments charstring
 Required. Any valid string expression.
Return A String in UniCode format.
Remarks The Unescape function returns a string (in Unicode format) that contains the contents of

charString. ASCII character set equivalents replace all characters encoded with the %xx
hexadecimal form. Characters encoded in %uxxxx format (Unicode characters) are replaced with
the Unicode character with hexadecimal encoding xxxx.

See Also Escape

VBScript Reference Manual InduSoft Web Studio

166 InduSoft, Ltd.

VarType
Description Returns a value indicating the subtype of a variable.
Usage VarType(varname)
Arguments varname
 The required varname argument can be any variable.
Return An Integer. The VarType function returns the following values

Constant Value Description
vbEmpty 0 Empty (uninitialized)
vbNull 1 Null (no valid data)
vbInteger 2 Integer
vbLong 3 Long integer
vbSingle 4 Single-precision floating-point number
vbDouble 5 Double-precision floating-point number
vbCurrency 6 Currency
vbDate 7 Date
vbString 8 String
vbObject 9 Automation object
vbError 10 Error
vbBoolean 11 Boolean
vbVariant 12 Variant (used only with arrays of Variants)
vbDataObject 13 A data-access object
vbByte 17 Byte
vbArray 8192 Array

Remarks These constants are specified by VBScript. As a result, the names can be used anywhere in your
code in place of the actual values.

 The VarType function never returns the value for Array by itself. It is always added to some other
value to indicate an array of a particular type. The value for Variant is only returned when it has
been added to the value for Array to indicate that the argument to the VarType function is an
array. For example, the value returned for an array of integers is calculated as 2 + 8192, or 8194.
If an object has a default property, VarType (object) returns the type of its default property.

See Also IsArray, IsDate, IsEmpty, IsNull, IsNumeric, IsObject, TypeName
Example The following example uses the VarType function to determine the subtype of a variable.

Dim MyCheck
MyCheck = VarType(300) ' Returns 2.
MyCheck = VarType(#10/19/62#) ' Returns 7.
MyCheck = VarType("VBScript") ' Returns 8.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 167

Weekday
Description Returns a whole number representing the day of the week
Usage intVal = Weekday(date, [firstdayofweek])
Arguments date
 Any valid expression that can represent a date.
 firstdayofweek
 A constant that specifies the first day of the week. If omitted, vbSunday is assumed.
Settings The firstdayofweek argument can have the following values:
 Constant Value Description

 vbUseSystemDayofWeek 0 Use National Language Support (NLS) API setting
 vbSunday 1 Sunday (default)
 vbMonday 2 Monday
 vbTuesday 3 Tuesday
 vbWednesday 4 Wednesday
 vbThursday 5 Thursday
 vbFriday 6 Friday
 vbSaturday 7 Saturday

Return Value The weekday function can return any of these values:
 Constant Value Description

 vbSunday 1 Sunday
 vbMonday 2 Monday
 vbTuesday 3 Tuesday
 vbWednesday 4 Wednesday
 vbThursday 5 Thursday
 vbFriday 6 Friday
 vbSaturday 7 Saturday

Remarks If date contains Null, Null is returned.
See Also Date, Day, Month, Now, Year.
Example Dim MyDate, MyWeekDay
 MyDate = #October 19, 1962# ' Assign a date.
 MyWeekDay = Weekday(MyDate)
 Rem MyWeekDay contains 6 because MyDate represents a Friday.

VBScript Reference Manual InduSoft Web Studio

168 InduSoft, Ltd.

WeekdayName
Description Returns a Variant of subtype String indicating the specified day of the week.
Usage strDayName = WeekdayName(weekday, [abbreviate], [firstdayofweek])
Arguments weekday
 Required. The numeric designation for the day of the week. Numeric value of each day

depends on setting of the firstdayofweek setting. Value is between 1 and 7.
 abbreviate
 Optional. Boolean value that indicates if the weekday name is to be abbreviated. If omitted,

the default is False, which means that the weekday name is not abbreviated (is spelled out).
 firstdayofweek
 Optional. Numeric value indicating the first day of the week. See Settings section for values
Settings The firstdayofweek argument can have the following values:
 Constant Value Description

 vbUseSystemDayofWeek 0 Use National Language Support (NLS) API setting
 vbSunday 1 Sunday (default)
 vbMonday 2 Monday
 vbTuesday 3 Tuesday
 vbWednesday 4 Wednesday
 vbThursday 5 Thursday
 vbFriday 6 Friday
 vbSaturday 7 Saturday

Return A Variant of subtype String indicating the specified day of the week.
Remarks A runtime error occurs if weekday is outside the valid range of 1-7. WeekdayName is

internationally aware, which means that the returned strings are localized into the language that is
specified in the system’s locale settings.

See Also MonthName
Example Dim MyDate
 MyDate = WeekDayName(6, True) ' MyDate contains Fri.

Year
Description Returns a whole number representing the year
Usage Year(date)
Arguments date
 The date argument is any valid expression that can represent a date.
Remarks If date contains Null, Null is returned. A runtime error occurs if date is not a valid date expression.
See Also Date, Day, Month, Now, Weekday
Example(s) Dim MyDate, MyYear
 MyDate = #October 19, 1962# ' Assign a date.
 MyYear = Year(MyDate) ' MyYear contains 1962.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 169

VBScript Derived Functions
The following non-intrinsic math functions can be derived from the intrinsic math functions:

Function Derived equivalents
Secant Sec(X) = 1 / Cos(X)
Cosecant Cosec(X) = 1 / Sin(X)
Cotangent Cotan(X) = 1 / Tan(X)
Inverse Sine Arcsin(X) = Atn(X / Sqr(-X * X + 1))
Inverse Cosine Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1)
Inverse Secant Arcsec(X) = Atn(X / Sqr(X * X - 1)) + Sgn((X) -1) * (2 * Atn(1))
Inverse Cosecant Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1))
Inverse Cotangent Arccotan(X) = Atn(X) + 2 * Atn(1)
Hyperbolic Sine HSin(X) = (Exp(X) - Exp(-X)) / 2
Hyperbolic Cosine HCos(X) = (Exp(X) + Exp(-X)) / 2
Hyperbolic Tangent HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X))
Hyperbolic Secant HSec(X) = 2 / (Exp(X) + Exp(-X))
Hyperbolic Cosecant HCosec(X) = 2 / (Exp(X) - Exp(-X))
Hyperbolic Cotangent HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))
Inverse Hyperbolic Sine HArcsin(X) = Log(X + Sqr(X * X + 1))
Inverse Hyperbolic Cosine HArccos(X) = Log(X + Sqr(X * X - 1))
Inverse Hyperbolic Tangent HArctan(X) = Log((1 + X) / (1 - X)) / 2
Inverse Hyperbolic Secant HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)
Inverse Hyperbolic Cosecant HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) +1) / X)
Inverse Hyperbolic Cotangent HArccotan(X) = Log((X + 1) / (X - 1)) / 2
Logarithm to base N LogN(X) = Log(X) / Log(N)

VBScript Reference Manual InduSoft Web Studio

170 InduSoft, Ltd.

VBScript Statements

VBScript Statements
Call ExecuteGlobal Private Select Case
Class Exit Property Get Set
Const For Each…Next Property Let Stop
Dim For…Next Property Set Sub
Do…Loop Function Public While…Wend
Erase If…Then…Else Randomize With
End On Error ReDim
Execute Option Explicit Rem

VBScript Declaration Statements

Function Description
Class Declares the name of a class, as well as a definition of the variables, properties, and methods

that comprise the class
Const Declares constants for use in place of literal values
Dim Declares variables and allocates storage space
Function Declares the name, arguments, and code that form the body of a Function procedure
Option
Explicit

Forces explicit declaration of all variables in a script.

Private Declares private variables and allocates storage space. Declares, in a Class block, a private
variable.

Property Get Declares, in a Class block, the name, arguments, and code that form the body of a Property
procedure that gets (returns) the value of a property

Property Let Declares, in a Class block, the name, arguments, and code that form the body of a Property
procedure that assigns (sets) the value of a property

Property Set Sets a reference to an object
Public Declares public variables and allocates storage space. Declares, in a Class block, a public

variable
ReDim Declare dynamic array variables, and allocates or reallocates storage space at the procedural

level
Sub Declares the name, arguments, and code that form the body of a Sub procedure.

VBScript Array Statements

Function Description
Dim Declares variables and allocates storage space
Erase Reinitializes the elements of fixed-size arrays and deallocates dynamic-array storage space.
ReDim Declare dynamic array variables, and allocates or reallocates storage space at the procedural level

VBScript Procedure Statements

Function Description
Call Transfers control to a Sub or Function procedure
End Function End of a Function
End Sub End of a Sub
Exit Function Exit a Function, generally as a result of a condition
Exit Property Forces an exit from inside a Property Set function
Exit Sub Exit a Subroutine, generally as a result of a condition
Function Declares the name, arguments, and code that form the body of a Function procedure
Sub Declares the name, arguments, and code that form the body of a Sub procedure

(Subroutine).

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 171

VBScript Assignment Statements

VBScript Comment Statements

Comments Description
Rem or ‘ Includes explanatory remarks in a program

VBScript Error Handling Functions

Error Handling Description
On Error Enables or disables error-handling

Function Description
Set Assigns an object reference to a variable or property, or associates a procedure reference with an

event.

VBScript Reference Manual InduSoft Web Studio

172 InduSoft, Ltd.

Call
Description Transfers control to a Sub or Function procedure
Usage Call name [argumentlist]
Arguments Call
 Optional keyword. If specified, you must enclose argumentlist in parentheses.
 For example: Call MyProc(0)
 name
 Required. Name of the procedure to call.
 argumentlist
 Optional. Comma-delimited list of variables, arrays, or expressions to pass to the procedure.
Remarks You are not required to use the Call keyword when calling a procedure. However, if you use the

Call keyword to call a procedure that requires arguments, argumentlist must be enclosed in
parentheses. If you omit the Call keyword, you also must omit the parentheses around
argumentlist. If you use either Call syntax to call

Example Function MyFunction(text)
 MsgBox text
End Function

 Call MyFunction("Hello World")
 MyFunction “Hello World”

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 173

Class
Description Declares the name of a class, as well as a definition of the variables, properties, and methods

that comprise the class
Usage Class classname
 statements
 End Class
Arguments classname
 Required. Name of the Class; follows standard variable naming conventions.
 statements
 Required. One or more statements that define the variables, properties, and methods of the

Class.
Remarks Within a Class block, members are declared as either Private or Public using the appropriate

declaration statements. Anything declared as Private is visible only within the Class block.
Anything declared as Public is visible within the Class block, as well as by code outside the
Class block. Anything not explicitly declared as either Private or Public is Public by default.
Procedures (either Sub or Function) declared Public within the class block become methods of
the class. Public variables serve as properties of the class, as do properties explicitly declared
using Property Get, Property Let, and Property Set. Default properties and methods for the
class are specified in their declarations using the Default keyword. See the individual declaration
statement topics for information on how this keyword is used. You must instantiate an object to
use it, using the Set command; i.e. Set objname = New classname

See Also Property Get, Property Let, Property Set
Example Class SignOn
 Private MyName, MyLevel ‘Variable declaration
 Public Property Let UsrName(strName) ‘Set the property value for user name
 MyName = strName
 End Property
 Public Property Let UsrLevel(strLevel) ‘Set the property value for user level
 MyLevel = strLevel
 End Property
 Public Property Get UsrName ‘Return the property value
 UsrName = MyName
 End Property
 Public Property Get UsrLevel ‘Return the property value
 UsrLevel = MyLevel
 End Property

Public Sub LogOnMsg ‘LogOnMsg is a method. No parameters passed
MsgBox MakeMsg(MyLevel)

EndSub
Private Function MakeMsg(strLevel)
 Select Case StrLevel
 Case “User”
 MakeMsg = “Hello “ & MyName & vbCrLf & “Logged on as “ & MyLevel
 Case “Supervisor”
 MakeMsg = “Welcome “ & MyName & vbCrLf & “Your level is “ & MyLevel
 End Select
End Function

 End Class
 Dim LogOn
 Set LogOn = New SignOn ‘Instantiate the object
 With LogOn
 .UsrName = “Joe” ‘Set the name property
 .UsrLevel = “Supervisor” ‘Set the level property
 .LogOnMsg ‘Invoke logon method
 End With
 Set LogOn = Nothing

VBScript Reference Manual InduSoft Web Studio

174 InduSoft, Ltd.

Const
Description Declares constants for use in place of literal values
Usage [Public | Private] Const constname = expression
Arguments Public
 Optional. Keyword used at script level to declare constants that are available to all

procedures in all scripts. Not allowed in procedures.
 Private

Optional. Keyword used at script level to declare constants that are available only within the
script where the declaration is made. Not allowed in procedures.

 constname
Required. Name of the constant; follows standard variable naming conventions.

 expression
Required. Literal or other constant, or any combination that includes all arithmetic or logical
operators except Is.

Remarks Constants are public by default. Within procedures, constants are always private; their visibility
can't be changed. Within a script, the default visibility of a script-level constant can be changed
using the Private keyword.

 To combine several constant declarations on the same line, separate each constant assignment
with a comma. When constant declarations are combined in this way, the Public or Private
keyword, if used, applies to all of them.

 You can't use variables, user-defined functions, or intrinsic VBScript functions (such as Chr) in
constant declarations. By definition, they can't be constants. You also can't create a constant
from any expression that involves an operator, that is, only simple constants are allowed.
Constants declared in a Sub or Function procedure are local to that procedure. A constant
declared outside a procedure is defined throughout the script in which it is declared. You can use
constants anywhere you can use an expression.

Example Const MyVar = 459 'Constants are Public by default.
 Private Const MyString = "HELP" 'Declare Private constant.
 Const MyStr = "Hello", MyNumber = 3.4567 ‘Declare multiple constants on same line.

Dim
Description Declares variables and allocates storage space
Usage Dim varname[([subscripts])][, varname[([subscripts])]] . . .
Arguments varname

Name of the variable, following standard variable naming conventions
 subscripts

Dimensions of an array variable, up to 60 multiple dimensions may be declared. The
subscripts argument uses the following syntax: Upper[,upper]…
The lower bound of an array is always zero.

Remarks Variables declared with the Dim statement at the script level are available to all procedures within
the script. Variables declared within a procedure are available only within the procedure.
A Dim statement with empty parentheses declares a dynamic array, which can be
defined later within a procedure using the ReDim statement.

Returns N/A
Example Dim counter ‘ Declare a variable

Dim counter1, counter2 ‘ Declares two variables
Dim item(9) ‘ Declares an array with 10 elements

 Dim item() ‘ Declares a dynamic array

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 175

Do…Loop
Description Repeats a block of statements while a condition is True or until a condition becomes True.
Usage Do [{While | Until} condition]
 [statements]
 [Exit Do]
 [statements]
 Loop ' or use this syntax

 Do
 [statements]
 [Exit Do]
 [statements]
 Loop [{While | Until} condition]
Arguments condition
 Numeric or string expression that is True or False. If condition is Null, condition is treated as

False.
statements
 One or more statements that are repeated while or until condition is True.

Remarks The Exit Do can only be used within a Do...Loop control structure to provide an alternate way to
exit a Do...Loop. Any number of Exit Do statements may be placed anywhere in the Do...Loop.
Often used with the evaluation of some condition (for example, If...Then), Exit Do transfers
control to the statement immediately following the Loop.

 When used within nested Do...Loop statements, Exit Do transfers control to the loop that is
nested one level above the loop where it occurs.

Example Do Until DefResp = vbNo
 MyNum = Int (6 * Rnd + 1) ' Generate a random integer between 1 and 6.
 DefResp = MsgBox (MyNum & " Do you want another number?", vbYesNo)
 Loop

 Dim Check, Counter
 Check = True: Counter = 0 'Initialize variables.
 Do 'Outer loop.
 Do While Counter < 20 'Inner loop
 Counter = Counter + 1 'Increment Counter.
 If Counter = 10 Then 'If condition is True...
 Check = False 'Set value of flag to False.
 Exit Do 'Exit inner loop.
 End If
 Loop
 Loop Until Check = False 'Exit outer loop immediately

VBScript Reference Manual InduSoft Web Studio

176 InduSoft, Ltd.

Erase
Description Reinitializes the elements of fixed-size arrays and deallocates storage space used if it is a

dynamic-array.
Usage Erase array
Arguments array
 The array argument is the name of the array variable to be reinitialized or erased
Return N/A
Remarks It is important to know whether an array is fixed-size (ordinary) or dynamic because Erase

behaves differently depending on the type of array. Erase recovers no memory for fixed-size
arrays. Erase sets the elements of a fixed array as follows:

 Type of array Effect of Erase on fixed-array elements
 Fixed numeric array Sets each element to zero
 Fixed string array Sets each element to zero length (“”)
 Array of objects Sets each element to the special value Nothing

 Erase frees the memory used by dynamic arrays. Before your program can refer to the dynamic
array again, it must re-declare the array variable's dimensions using a ReDim statement.

See also Dim, ReDim
Example Dim NumArray(9) ‘ Declare a fixed-size array
 Dim DynamicArray() ‘ Declare a dynamic array
 ReDim DynamicArray(9) ‘ Allocate storage space
 Erase NumArray ‘ Each element is reinitialized
 Erase DynamicArray ‘ Free memory that was used by array

End
Description Ends a procedure or a block of code
Usage End [Class | Function | If | Property | Select | Sub | Type | With]
Arguments None
Return N/A
Remarks Must be used with a procedure statement of a block of code. Provides the normal termination to

the procedure or block of code. Must choose the appropriate form of the statement to match the
procedure statement or block of code.

See Also Exit
Example If a = b Then
 b = b +2
 End If

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 177

Execute
Description Executes one or more specified statements in the local namespace.
Usage Execute statement
Arguments The required statement argument is a string expression containing one or more statements for

execution. Include multiple statements in the statement argument, using colons or embedded line
breaks to separate them.

Remarks In VBScript, x = y can be interpreted two ways. The first is as an assignment statement, where
the value of y is assigned to x. The second interpretation is as an expression that tests if x and y
have the same value. If they do, result is True; if they are not, result is False. The Execute
statement always uses the first interpretation, whereas the Eval method always uses the second.

The context in which the Execute statement is invoked determines what objects and variables
are available to the code being run. In-scope objects and variables are available to code running
in an Execute statement. However, it is important to understand that if you execute code that
creates a procedure, that procedure does not inherit the scope of the procedure in which it
occurred.

Like any procedure, the new procedure's scope is global, and it inherits everything in the global
scope. Unlike any other procedure, its context is not global scope, so it can only be executed in
the context of the procedure where the Execute statement occurred. However, if the same
Execute statement is invoked outside of a procedure (i.e., in global scope), not only does it
inherit everything in global scope, but it can also be called from anywhere, since its context is
global. The following example illustrates this behavior:

Example Sub Proc1 'Declare procedure.
 Dim X 'Declare X in local scope.
 X = "Local" 'Assign local X a value.
 Execute "Sub Proc2: MsgBox X: End Sub" ‘Create a subroutine. Proc2 is local in scope

MsgBox Eval("X") 'Print local X.
Proc2 'Invoke Proc2 in Proc1's scope.

End Sub

 Rem Main Program
 Dim X, s 'Declare X in global scope.
 X = "Global" 'Assign global X a value.
 Proc2 ‘Error - Proc2 is unavailable outside Proc1.
 Proc1 'Invokes Proc1.
 s = “ Main Program”
 Execute (“X = X & s”) ‘Concatenates strings
 Execute "Sub Proc2: MsgBox X: End Sub"
 Proc2 'Succeeds as Proc2 is now available globally.

 The result when executing the above code is:
 Local From MsgBox Eval(“X”) in Proc1
 Global From Proc2 statement in Proc1
 Global Main Program From Proc2 statement in Main program

 The following example shows how the Execute statement can be rewritten so you don't have to

enclose the entire procedure in the quotation marks:
 S = "Sub Proc2" & vbCrLf
 S = S & " Print X" & vbCrLf
 S = S & "End Sub"
 Execute S

VBScript Reference Manual InduSoft Web Studio

178 InduSoft, Ltd.

ExecuteGlobal
Description Executes one or more specified statements in the global namespace.
Usage Execute statement
Arguments The required statement argument is a string expression containing one or more statements for

execution. Include multiple statements in the statement argument, using colons or embedded line
breaks to separate them.

Remarks In VBScript, x = y can be interpreted two ways. The first is as an assignment statement, where
the value of y is assigned to x. The second interpretation is as an expression that tests if x and y
have the same value. If they do, result is True; if they are not, result is False. The Execute
statement always uses the first interpretation, whereas the Eval method always uses the second.

The context in which the Execute statement is invoked determines what objects and variables
are available to the code being run. In-scope objects and variables are available to code running
in an Execute statement. However, it is important to understand that if you execute code that
creates a procedure, that procedure does not inherit the scope of the procedure in which it
occurred.

Like any procedure, the new procedure's scope is global, and it inherits everything in the global
scope. Unlike any other procedure, its context is not global scope, so it can only be executed in
the context of the procedure where the Execute statement occurred. However, if the same
Execute statement is invoked outside of a procedure (i.e., in global scope), not only does it
inherit everything in global scope, but it can also be called from anywhere, since its context is
global. The following example illustrates this behavior:

The difference between Execute and ExecuteGlobal is that Execute operates in the local
namespace while ExecuteGlobal operates in the Global namespace. The ExecuteGlobal
statement will have limited applicability since IWS does not support a global namespace
for variables.

Example Sub Proc1 'Declare procedure.
 Dim X 'Declare X in local scope.
 X = "Local" 'Assign local X a value.
 Execute "Sub Proc2: MsgBox X: End Sub" ‘Create a subroutine. Proc2 is local in scope

MsgBox Eval("X") 'Print local X.
Proc2 'Invoke Proc2 in Proc1's scope.

End Sub

 Rem Main Program
 Dim X, s 'Declare X in global scope.
 X = "Global" 'Assign global X a value.
 Proc2 ‘Error - Proc2 is unavailable outside Proc1.
 Proc1 'Invokes Proc1.
 s = “ Main Program”
 Execute (“X = X & s”) ‘Concatenates strings
 Execute "Sub Proc2: MsgBox X: End Sub"
 Proc2 'Succeeds as Proc2 is now available globally.

 The result when executing the above code is:
 Local From MsgBox Eval(“X”) in Proc1
 Global From Proc2 statement in Proc1
 Global Main Program From Proc2 statement in Main program

 The following example shows how the Execute statement can be rewritten so you don't have to

enclose the entire procedure in the quotation marks:
 S = "Sub Proc2" & vbCrLf
 S = S & " Print X" & vbCrLf
 S = S & "End Sub"
 Execute S

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 179

Exit
Description Allows premature exiting of a block of code
Usage Exit [Do | For | Function | Property | Sub]
Arguments None
Return N/A
Remarks Must be used with a procedure statement of a block of code. Provides early termination. Must

choose the appropriate form of the statement to match the procedure statement or block of code.
See Also End
Example Do 'Outer loop.
 Do While Counter < 20 'Inner loop
 Counter = Counter + 1 'Increment Counter.
 If Counter = 10 Then 'If condition is True...
 Check = False 'Set value of flag to False.
 Exit Do 'Exit inner loop.
 End If
 Loop
 Loop Until Check = False 'Exit outer loop immediately

For Each…Next
Description Repeats a group of statements for each element in an array or a collection.
Usage For Each element In group
 [statements]
 [Exit For]
 [statements]
 Next [element]
Arguments element
 Variable used to iterate through the elements of the collection or array. For collections,

element can only be a Variant variable, a generic Object variable, or any specific Automation
object variable. For arrays, element can only be a Variant variable.

group
 Name of an object collection or array.

statements
 One or more statements that are executed on each item in group.

Return N/A
Remarks The For Each block is entered if there is at least one element in the array or the collection. Once

the loop has been entered, all the statements in the loop are executed for the first element in
group. As long as there are more elements in group, the statements in the loop continue to
execute for each element. When there are no more elements in group, the loop is exited and
execution continues with the statement following the Next statement.

 The Exit For can only be used within a For Each...Next or For...Next control structure to provide
an alternate way to exit. Any number of Exit For statements may be placed anywhere in the loop.
The Exit For is often used with the evaluation of some condition (for example, If...Then), and
transfers control to the statement immediately following Next.

 You can nest For Each...Next loops by placing one For Each...Next loop within another.
However, each loop element must be unique. If you omit element in a Next statement, execution
continues as if you had included it. If a Next statement is encountered before it's corresponding
For statement, an error occurs.

Example Function ShowFileList (folderspec)
 Dim fso, f, f1, fc, s
 Set fso = CreateObject("Scripting.FileSystemObject")
 Set f = fso.GetFolder(folderspec)
 Set fc = f.Files
 For Each f1 in fc

VBScript Reference Manual InduSoft Web Studio

180 InduSoft, Ltd.

 s = s & f1.name & vbCrLf
 Next
 MsgBox “Files in “ & folderspec & “ = “ & s
 End

For…Next
Description Repeats a group of statements a specified number of times.
Usage For counter = start To end [Step step]
 [statements]
 [Exit For]
 [statements]
 Next
Arguments counter
 Numeric variable used as a loop counter. The variable can't be an array element or an

element of a user-defined type.
start

 Initial value of counter.
end

 Final value of counter.
step

 Amount counter is changed each time through the loop. If not specified, step defaults to one.
statements

 One or more statements between For and Next that are executed the specified number of
times.

Remarks The step argument can be either positive or negative. The value of the step argument determines
loop processing as follows:

 Value Loop executes if
 Positive or 0 counter <= end
 Negative counter >= end

 Once the loop starts and all statements in the loop have executed, step is added to counter. At
this point, either the statements in the loop execute again (based on the same test that caused
the loop to execute initially), or the loop is exited and execution continues with the statement
following the Next statement

 Exit For can only be used within a For Each...Next or For...Next control structure to provide an
alternate way to exit. Any number of Exit For statements may be placed anywhere in the loop.
Exit For is often used with the evaluation of some condition (for example, If...Then), and
transfers control to the statement immediately following Next.

 You can nest For...Next loops by placing one For...Next loop within another. Give each loop a
unique variable name as its counter.

 Note that changing the value of the counter while inside a loop can make debugging the code
difficult

Example(s) For j = 1 to 10
 For j= 1 to 10
 For l = 1 to 10
 …..
 Next
 Next

Next

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 181

Function
Description Declares the name, arguments, and code that form the body of a Function procedure
Usage [Public [Default] | Private] Function name [(arglist)]
 [statements]
 [name = expression]
 [Exit Function]
 [statements]
 [name = expression]
 End Function

Arguments Public
 Indicates that the Function procedure is accessible to all other procedures in all scripts.
 Default
 Used only with the Public keyword in a Class block to indicate that the Function procedure

is the default method for the class. An error occurs if more than one Default procedure is
specified in a class.

 Private
 Indicates that the Function procedure is accessible only to other procedures in the script

where it is declared or if the function is a member of a class, and that the Function
procedure is accessible only to other procedures in that class.

 name
 Name of the Function; follows standard variable naming conventions.
 arglist
 List of variables representing arguments that are passed to the Function procedure when it

is called. Commas separate multiple variables.
 The arglist argument has the following syntax and parts:
 [ByVal | ByRef] varname[()]
 ByVal
 Indicates that the argument is passed by value.
 ByRef
 Indicates that the argument is passed by reference.
 varname
 Name of the variable representing the argument; follows standard variable

naming conventions.
 statements
 Any group of statements to be executed within the body of the Function procedure.
 expression
Return Value of the Function.
Remarks If not explicitly specified using either Public or Private, Function procedures are public by

default, that is, they are visible to all other procedures in your script. The value of local variables
in a Function is not preserved between calls to the procedure.

 You cannot define a Function procedure inside any other procedure (e.g. Sub or Property Get).

 The Exit Function statement causes an immediate exit from a Function procedure. Program
execution continues with the statement that follows the statement that called the Function
procedure. Any number of Exit Function statements can appear anywhere in a Function
procedure.

 Like a Sub procedure, a Function procedure is a separate procedure that can take arguments,
perform a series of statements, and change the values of its arguments. However, unlike a Sub
procedure, you can use a Function procedure on the right side of an expression in the same way
you use any intrinsic function, such as Sqr, Cos, or Chr, when you want to use the value
returned by the function.

 You call a Function procedure using the function name, followed by the argument list in
parentheses, in an expression. See the Call statement for specific information on how to call
Function procedures.

VBScript Reference Manual InduSoft Web Studio

182 InduSoft, Ltd.

 To return a value from a function, assign the value to the function name. Any number of such
assignments can appear anywhere within the procedure. If no value is assigned to name, the
procedure returns a default value: a numeric function returns 0 and a string function returns a
zero-length string (""). A function that returns an object reference returns Nothing if no object
reference is assigned to name (using Set) within the Function.

 Variables used in Function procedures fall into two categories: those that are explicitly declared
within the procedure and those that are not. Variables that are explicitly declared in a procedure
(using Dim or the equivalent) are always local to the procedure. Variables that are used but not
explicitly declared in a procedure are also local unless they are explicitly declared at some higher
level outside the procedure.

 Caution: Function procedures can be recursive, that is, they can call themselves to perform a
given task. However, recursion can lead to stack overflow.

 Caution: A procedure can use a variable that is not explicitly declared in the procedure, but a
naming conflict can occur if anything you have defined at the script level has the same name. If
your procedure refers to an undeclared variable that has the same name as another procedure,
constant, or variable, it is assumed that your procedure is referring to that script-level name. To
avoid this kind of conflict, use an Option Explicit statement to force explicit declaration of
variables.

 Caution: VBScript may rearrange arithmetic expressions to increase internal efficiency. Avoid
using a Function procedure in an arithmetic expression when the function changes the value of
variables in the same expression.

See Also Sub
Example The following example shows how to assign a return value to a function named BinarySearch. In

this case, False is assigned to the name to indicate that some value was not found.
 Function BinarySearch(. . .)
 . . .
 ' Value not found. Return a value of False.
 If lower > upper Then
 BinarySearch = False
 Exit Function
 End If
 . . .
 End Function

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 183

If …Then…Else
Description Conditionally executes a group of statements, depending on the value of an expression.
Usage If condition Then statements [Else elsestatements]

 (Or, you can use the block form syntax)

 If condition Then
 statements]
 [ElseIf condition-n Then
 [elseifstatements]] . . .
 [Else
 [elsestatements]]
 End If
Arguments condition
 One or more of the following two types of expressions:

1) A numeric or string expression that evaluates to True or False. If condition is Null,
condition is treated as False.

2) An expression of the form TypeOf objectname Is objecttype. The objectname is any
object reference and objecttype is any valid object type. The expression is True if
objectname is of the object type specified by objecttype; otherwise it is False.

 statements
 One or more statements separated by colons; executed if condition is True.
 condition-n
 Same as condition.
 elseifstatements
 One or more statements executed if the associated condition-n is True.
 elsestatements
 One or more statements executed if no previous condition or condition-n expression is

True.
Remarks You can use the single-line form (first syntax) for short, simple tests. However, the block form

(second syntax) provides more structure and flexibility than the single-line form and is usually
easier to read, maintain, and debug. With the single-line syntax, it is possible to have
multiple statements executed as the result of an If...Then decision, but they must
all be on the same line and separated by colons, as in the following statement:

 If A > 10 Then A= A+ 1 : B = B + A : C = C + B

 When executing a block If (second syntax), condition is tested. If condition is True, the
statements following Then are executed. If condition is False, each ElseIf (if any) is evaluated in
turn. When a True condition is found, the statements following the associated Then are executed.
If none of the ElseIf statements are True (or there are no ElseIf clauses), the statements
following Else are executed. After executing the statements following Then or Else, execution
continues with the statement following End If.

 The Else and ElseIf clauses are both optional. You can have as many ElseIf statements as you
want in a block If, but none can appear after the Else clause. Block If statements can be nested;
that is, contained within one another.

 What follows the Then keyword is examined to determine whether or not a statement is a block If.
If anything other than a comment appears after Then on the same line, the statement is treated
as a single-line If statement.

 A block If statement must be the first statement on a line. The block If must end with an End If
statement.

Example If A > 10 then A = A + 1
 If C = 10 then D = 5 Else E = 4

VBScript Reference Manual InduSoft Web Studio

184 InduSoft, Ltd.

On Error
Description Enables or disables error handling.
Usage On Error Resume Next
 On Error GoTo 0
Arguments none
Remarks If you don't use an On Error Resume Next statement anywhere in your code, any run-time error

that occurs can cause an error message to be displayed and code execution stopped. However,
the host running the code determines the exact behavior. The host can sometimes opt to handle
such errors differently. In some cases, the script debugger may be invoked at the point of the
error. In still other cases, there may be no apparent indication that any error occurred because
the host does not to notify the user. Again, this is purely a function of how the host handles any
errors that occur.

 Within any particular procedure, an error is not necessarily fatal as long as error-handling is
enabled somewhere along the call stack. If local error-handling is not enabled in a procedure and
an error occurs, control is passed back through the call stack until a procedure with error-handling
enabled is found and the error is handled at that point. If no procedure in the call stack is found to
have error-handling enabled, an error message is displayed at that point and execution stops or
the host handles the error as appropriate.

 On Error Resume Next causes execution to continue with the statement immediately following
the statement that caused the run-time error, or with the statement immediately following the
most recent call out of the procedure containing the On Error Resume Next statement. This
allows execution to continue despite a run-time error. You can then build the error-handling
routine inline within the procedure.

 An On Error Resume Next statement becomes inactive when another procedure is called, so
you should execute an On Error Resume Next statement in each called routine if you want inline
error handling within that routine. When a procedure is exited, the error-handling capability
reverts to whatever error-handling was in place before entering the exited procedure.

 Use On Error GoTo 0 to disable error handling if you have previously enabled it using On Error
Resume Next.

See Also Err object, Exit
Example The following example illustrates use of the On Error Resume Next statement.
 On Error Resume Next
 Err.Raise 6 ' Raise an overflow error.
 MsgBox "Error # " & CStr(Err.Number) & " " & Err.Description
 Err.Clear ' Clear the error.

Option Explicit
Description Forces explicit declaration of all variables in a script.
Usage Option Explicit
Arguments none
Remarks If used, the Option Explicit statement must appear in a script before any other statements. A

compile-time error occurs whenever a variable is encountered that has not been previously
declared.

 When you use the Option Explicit statement, you must explicitly declare all variables using the
Dim, Private, Public, or ReDim statements. If you attempt to use an undeclared variable name,
an error occurs.

 Use Option Explicit to avoid incorrectly typing the name of an existing variable or to avoid
confusion in code where the scope of the variable is not clear.

Example The following example illustrates use of the Option Explicit statement.
 Option Explicit ' Force explicit variable declaration.
 Dim MyVar ' Declare variable.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 185

 MyInt = 10 ' Undeclared variable generates error.
 MyVar = 10 ' Declared variable does not generate error.

Private
Description Declares private variables and allocates storage space. Declares, in a Class block, a private

variable.
Usage Private varname[([subscripts])][, varname[([subscripts])]] . . .
Arguments varname
 Name of the variable, following standard variable naming conventions
 subscripts

Dimensions of an array variable, up to 60 multiple dimensions may be declared. The
subscripts argument uses the following syntax: Upper[,upper]…

 The lower bound of an array is always zero.
Returns N/A
Remarks Private statement variables are available only to the script in which they are declared. A variable

that refers to an object must be assigned an existing object using the Set statement before it can
be used. Until it is assigned an object, the declared object variable is initialized as Empty.

You can also use the Private statement with empty parentheses to declare a dynamic array. After
declaring a dynamic array, use the ReDim statement within a procedure to define the number of
dimensions and elements in the array. If you try to re-declare a dimension for an array variable
whose size was explicitly specified in a Private, Public, or Dim statement, an error occurs.

When you use the Private statement in a procedure, you generally put the Private statement at
the beginning of the procedure.

Example Private MyNumber ‘ Private Variant variable
 Private MyArray(9) ‘ Private Array variable
 Private MyNumber, MyVar ‘ Multiple Private declarations

Property Get
Description Declares, in a Class block, the name, arguments, and code that form the body of a Property

procedure that gets (returns) the value of a property.
Usage [Public [Default] | Private] Property Get name [(arglist)]
 [statements]
 [[Set] name = expression]
 [Exit Property]
 [statements]
 [[Set] name = expression]
 End Property
Arguments Public
 Indicates that the Property Get procedure is accessible to all other procedures in all scripts.
 Default
 Used only with the Public keyword to indicate that the property defined in the Property Get

procedure is the default property for the class.
 Private
 Indicates that the Property Get procedure is accessible only to other procedures in the

Class block where it's declared.
 name
 Name of the Property Get procedure; follows standard variable naming conventions, except

that the name can be the same as a Property Let or Property Set procedure in the same
Class block.

 arglist
 List of variables representing arguments that are passed to the Property Get procedure

when it is called. Commas separate multiple arguments. The name of each argument in a

VBScript Reference Manual InduSoft Web Studio

186 InduSoft, Ltd.

Property Get procedure must be the same as the corresponding argument in a Property Let
procedure (if one exists).

 statements
 Any group of statements to be executed within the body of the Property Get procedure.
 Set
 Keyword used when assigning an object as the return value of a Property Get procedure.
 expression
Return Value of the Property Get procedure.
Remarks If not explicitly specified using either Public or Private, Property Get procedures are public by

default, that is, they are visible to all other procedures in your script. The value of local variables
in a Property Get procedure is not preserved between calls to the procedure.

 You can't define a Property Get procedure inside any other procedure (e.g. Function or
Property Let).

 The Exit Property statement causes an immediate exit from a Property Get procedure. Program
execution continues with the statement that follows the statement that called the Property Get
procedure. Any number of Exit Property statements can appear anywhere in a Property Get
procedure.

 Like a Sub and Property Let procedure, a Property Get procedure is a separate procedure that
can take arguments, perform a series of statements, and change the value of its arguments.
However, unlike a Sub and Property Let, you can use a Property Get procedure on the right
side of an expression in the same way you use a Function or property name when you want to
return the value of a property.

See Also Property Let, Property Set
Example Class myExample
 Private myName
 Public Property Let cName (strName) ‘Sets the value
 myName = strName
 End Property
 Public Property Get cName() ‘Returns the value
 cName = myName
 End Property
 End Class

Property Let
Description Declares, in a Class block, the name, arguments, and code that form the body of a Property

procedure that assigns (sets) the value of a property.
Usage [Public | Private] Property Let name ([arglist,] value)
 [statements]
 [Exit Property]
 [statements]
 End Property
Arguments Public
 Indicates that the Property Let procedure is accessible to all other procedures in all scripts.
 Private
 Indicates that the Property Let procedure is accessible only to other procedures in the Class

block where it's declared.
 name
 Name of the Property Let procedure; follows standard variable naming conventions, except

that the name can be the same as a Property Get or Property Set procedure in the same
Class block.

 arglist
 List of variables representing arguments that are passed to the Property Let procedure when

it is called. Commas separate multiple arguments. The name of each argument in a Property
Let procedure must be the same as the corresponding argument in a Property Get

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 187

procedure. In addition, the Property Let procedure will always have one more argument than
its corresponding Property Get procedure. That argument is the value being assigned to the
property.

 value
 Variable to contain the value to be assigned to the property. When the procedure is called,

this argument appears on the right side of the calling expression.
 statements
 Any group of statements to be executed within the body of the Property Let procedure
Remarks If not explicitly specified using either Public or Private, Property Let procedures are public by

default, that is, they are visible to all other procedures in your script. The value of local variables
in a Property Let procedure is not preserved between calls to the procedure.

 You can't define a Property Let procedure inside any other procedure (e.g. Function or
Property Get).

 The Exit Property statement causes an immediate exit from a Property Let procedure. Program
execution continues with the statement that follows the statement that called the Property Let
procedure. Any number of Exit Property statements can appear anywhere in a Property Let
procedure.

 Like a Function and Property Get procedure, a Property Let procedure is a separate procedure
that can take arguments, perform a series of statements, and change the value of its arguments.
However, unlike a Function and Property Get procedure, both of which return a value, you can
only use a Property Let procedure on the left side of a property assignment expression

 Note: Every Property Let statement must define at least one argument for the procedure it
defines. That argument (or the last argument if there is more than one) contains the actual value
to be assigned to the property when the procedure defined by the Property Let statement is
invoked. That argument is referred to as value in the preceding syntax.

See Also Property Get, Property Set
Example Class myExample
 Private myName
 Public Property Let cName (strName) ‘Sets the value
 myName = strName
 End Property
 Public Property Get cName() ‘Returns the value
 cName = myName
 End Property
 End Class

Property Set
Description Declares, in a Class block, the name, arguments, and code that form the body of a Property

procedure that sets a reference to an object.
Usage [Public | Private] Property Set name([arglist,] reference)
 [statements]
 [Exit Property]
 [statements]
 End Property
Arguments Public
 Indicates that the Property Set procedure is accessible to all other procedures in all scripts.
 Private
 Indicates that the Property Set procedure is accessible only to other procedures in the Class

block where it's declared.
 name
 Name of the Property Set procedure; follows standard variable naming conventions, except

that the name can be the same as a Property Get or Property Let procedure in the same
Class block.

VBScript Reference Manual InduSoft Web Studio

188 InduSoft, Ltd.

 arglist
 List of variables representing arguments that are passed to the Property Set procedure

when it is called. Commas separate multiple arguments. In addition, the Property Set
procedure will always have one more argument than its corresponding Property Get
procedure. That argument is the object being assigned to the property.

 reference
 Variable containing the object reference used on the right side of the object reference

assignment.
 statements
 Any group of statements to be executed within the body of the Property Set procedure.
Remarks Property Set is very similar to Property Let except that the Property Set procedure is used

exclusively for object-based properties.

 If not explicitly specified using either Public or Private, Property Set procedures are public by
default, that is, they are visible to all other procedures in your script. The value of local variables
in a Property Set procedure is not preserved between calls to the procedure.

 You can't define a Property Set procedure inside any other procedure (e.g. Function or
Property Let).

 The Exit Property statement causes an immediate exit from a Property Set procedure. Program
execution continues with the statement that follows the statement that called the Property Set
procedure. Any number of Exit Property statements can appear anywhere in a Property Set
procedure.

 Like a Function and Property Get procedure, a Property Set procedure is a separate procedure
that can take arguments, perform a series of statements, and change the value of its arguments.
However, unlike a Function and Property Get procedure, both of which return a value, you can
only use a Property Set procedure on the left side of an object reference assignment (Set
statement).

 Note: Every Property Set statement must define at least one argument for the procedure it
defines. That argument (or the last argument if there is more than one) contains the actual object
reference for the property when the procedure defined by the Property Set statement is invoked.
That argument is referred to as reference in the preceding syntax.

See Also Property Get, Property Let
Example Class FileHelper
 Private myFSO ‘Define a variable to be used for an object
 Public Property Set FSO(objFso) ‘Set Property
 Set myFSO = objFso ‘Defines the object
 End Property
 End Class

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 189

Public
Description Declares public variables and allocates storage space. Declares, in a Class block, a public

variable.
Usage Public varname[([subscripts])][, varname[([subscripts])]] . . .
Arguments varname
 Name of the variable, following standard variable naming conventions
 subscripts
 Dimensions of an array variable, up to 60 multiple dimensions may be declared. The

subscripts argument uses the following syntax: Upper[,upper]…
 The lower bound of an array is always zero.
Returns N/A
Remarks Public statement variables are available to all procedures in all scripts. Note: This is subject to

InduSoft restrictions contained in IWS. A variable that refers to an object must be assigned an
existing object using the Set statement before it can be used. Until it is assigned an object, the
declared object variable is initialized as Empty.

 You can also use the Public statement with empty parentheses to declare a dynamic array. After
declaring a dynamic array, use the ReDim statement within a procedure to define the number of
dimensions and elements in the array. If you try to re-declare a dimension for an array variable
whose size was explicitly specified in a Private, Public, or Dim statement, an error occurs.

See Also Private
Example Public MyNumber ‘Public Variant variable
 Public MyArray(9), MyVar ‘Multiple Public declarations

Randomize
Description Initializes the random number generator.
Usage Randomize(number)
Arguments number
 The number argument can be any valid numeric expression
Returns N/A
Remarks Randomize uses number to initialize the Rnd function's random-number generator, giving it a

new seed value. If you omit number, the value returned by the system timer is used as the new
seed value. If Randomize is not used, the Rnd function (with no arguments) uses the same
number as a seed the first time it is called, and thereafter uses the last generated number as a
seed value.

 To repeat sequences of random numbers, call Rnd with a negative argument immediately before
using Randomize with a numeric argument. Using Randomize with the same value for number
does not repeat the previous sequence

See Also Rnd
Example Dim MyValue, Response
 Randomize ‘Initialize random number generator
 Do Until Response = vbNo
 MyValue = Int((6*Rnd) +1) ‘Generate random value between 1 and 6
 MsgBox MyValue ‘Print it
 Response = MsgBox (“roll again? “. vbYesNo)
 Loop

VBScript Reference Manual InduSoft Web Studio

190 InduSoft, Ltd.

ReDim
Description Declare dynamic array variables, and allocates or reallocates storage space at the procedural

level
Usage ReDim [Preserve] varname(subscripts) [, varname(subscripts)]
Arguments Preserve

Optional. Preserves the data in an existing array when you change the size of the single
dimension or the last dimension (only). If an array is contracted, data in the last elements will
still be lost. There is a high overhead associated with using the Preserve functionality and
should only be used when necessary.

 varname
Required, Name of the array variable, following standard variable naming conventions. Can
be any Variant subtype.

 Subscripts
 Dimensions of an array variable, up to 60 multiple dimensions may be declared. The

subscripts argument uses the following syntax: Upper[,upper]… The lower bound of an array
is always zero in VBScript since arrays are zero-based.

Returns Returns a Variant containing an Array
Remarks The ReDim statement is used to size or resize a dynamic array that has already been formally

declared using a Private, Public, or Dim statement with empty parentheses (without dimension
subscripts). You can use the ReDim statement repeatedly to change the number of elements and
dimensions in an array. If you use the Preserve keyword, you can resize only the last array
dimension, and you can't change the number of dimensions at all. For example, if your array has
only one dimension, you can resize that dimension because it is the last and only dimension.
However, if your array has two or more dimensions, you can change the size of only the last
dimension and still preserve the contents of the array. Note that if you make an array smaller than
it was originally, data in the eliminated elements is lost.

 A dynamic array must be declared without dimension subscripts.
See also Dim, Set
Example(s) Dim X() ‘ Declare a dynamic array
 ReDim X(10,10,10) ‘ Declares dynamic array variables
 ReDim Preserve X(10,10,15) ‘ Change the size of the last dimension, preserving data

Rem (or) ‘
Description Includes explanatory remarks in a program
Usage Rem comment
 or
 ‘ comment
Arguments comment
 The comment argument is the text of any comment you want to include. After the Rem

keyword, a space is required before comment.
Returns N/A
Remarks You can use an apostrophe (') instead of the Rem keyword. If the Rem keyword follows other

statements on a line, it must be separated from the statements by a colon. However, when you
use an apostrophe, the colon is not required after other statements.

Example myStr1 = “control” : Rem This is a comment after a statement, separated by a colon
 myStr2 = “valve” ‘ This is also a comment but here, no colon is needed
 Rem This is a comment line. No colon is needed

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 191

Select Case
Description Executes one of several groups of statements, depending on the value of an expression
Usage Select Case testexpression
 [Case expressionlist-n
 [statements-n]] . . .
 [Case Else
 [elsestatements-n]]
 End Select
Arguments testexpression
 Any numeric or string expression.
 expressionlist-n
 Required if Case appears. A comma delimited list of one or more expressions.
 statements-n
 One or more statements executed if testexpression matches any part of expressionlist-.
 elsestatements-n
 One or more statements executed if testexpression doesn't match any of the Case clauses.
Remarks If testexpression matches any Case expressionlist expression, the statements following that

Case clause are executed up to the next Case clause, or for the last clause, up to End Select.
Control then passes to the statement following End Select. If testexpression matches an
expressionlist expression in more than one Case clause, only the statements following the first
match are executed.

 The Case Else clause is used to indicate the elsestatements to be executed if no match is found
between the testexpression and an expressionlist in any of the other Case selections. Although
not required, it is a good idea to have a Case Else statement in your Select Case block to handle
unforeseen testexpression values. If no Case expressionlist matches testexpression and there is
no Case Else statement, execution continues at the statement following End Select.

 Select Case statements can be nested. Each nested Select Case statement must have a
matching End Select statement.

 Example Dim Color, MyVar
 Sub ChangeBackground (Color)
 MyVar = lcase (Color)
 Select Case MyVar
 Case "red" document.bgColor = "red"
 Case "green" document.bgColor = "green"
 Case "blue" document.bgColor = "blue"
 Case Else MsgBox "pick another color"
 End Select
 End Sub

VBScript Reference Manual InduSoft Web Studio

192 InduSoft, Ltd.

Set
Description Assigns an object reference to a variable or property, or associates a procedure reference with an

event.
Usage Set objectvar = {objectexpression | New classname | Nothing}
 or
 Set object.eventname = GetRef(procname)
Arguments objectvar

 Required. Name of the variable or property; follows standard variable naming conventions.
objectexpression

 Optional expression consisting of the name of an object, another declared variable of the
same object type, or a function or method that returns an object of the same object type.

 New
 Keyword used to create a new instance of a class. If objectvar contained a reference to an

object, that reference is released when the new one is assigned. The New keyword can only
be used to create an instance of a class.

 classname
 Optional. Name of the class being created. A class and its members are defined using the

Class statement.
 Nothing
 Optional. Discontinues association of objectvar with any specific object or class. Assigning

objectvar to Nothing releases all the system and memory resources associated with the
previously referenced object when no other variable refers to it.

 object
 Required. Name of the object with which event is associated.

 event
 Required. Name of the event to which the function is to be bound.

 procname
 Required. String containing the name of the Sub or Function being associated with the event.

Remarks To be valid, objectvar must be an object type consistent with the object being assigned to it. The
Dim, Private, Public, or ReDim statements only declare a variable that refers to an object. No
actual object is referred to until you use the Set statement to assign a specific object.

 Generally, when you use Set to assign an object reference to a variable, no copy of the object is
created for that variable. Instead, a reference to the object is created. More than one object
variable can refer to the same object. Because these variables are references to (rather than
copies of) the object, any change in the object is reflected in all variables that refer to it. Using the
New keyword allows you to concurrently create an instance of a class and assign it to an object
reference variable. The variable to which the instance of the class is being assigned must already
have been declared with the Dim (or equivalent) statement.

 Refer to the GetRef function for information on using Set to associate a procedure with an event.
See Also GetRef
Example Set fso = CreateObject("Scripting.FileSystemObject")
 Set d = fso.GetDrive(fso.GetDriveName(drvPath))
 Set db = CreateObject(ADODB.Connection’)

Stop
Description Suspends execution
Usage Stop
Arguments None
Remarks You can place Stop statements anywhere in procedures to suspend execution. Using the Stop

statement is similar to setting a breakpoint in the code. The Stop statement suspends execution,
but it does not close any files or clear any variables. The Stop statement has no effect unless the
script is being debugged. This function does not work in IWS.

See Also Debug object
Example For i = 1 to 5

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 193

 Debug.Write “loop index is “ & i
 ‘Wait for user to resume
 Stop
 Next

Sub
Description Declares the name, arguments, and code that form the body of a Sub procedure.
Usage [Public [Default] | Private] Sub name [(arglist)]
 [statements]
 [Exit Sub]
 [statements]
 End Sub
Arguments Public
 Indicates that the Sub procedure is accessible to all other procedures in all scripts.
 Default
 Used only with the Public keyword in a Class block to indicate that the Sub procedure is the

default method for the class. An error occurs if more than one Default procedure is specified
in a class.

 Private
 Indicates that the Sub procedure is accessible only to other procedures in the script where it

is declared.
 name
 Name of the Sub; follows standard variable naming conventions.
 arglist
 List of variables representing arguments that are passed to the Sub procedure when it is

called. Commas separate multiple variables.
 The arglist argument has the following syntax and parts:
 [ByVal | ByRef] varname[()]
 ByVal
 Indicates that the argument is passed by value.
 ByRef
 Indicates that the argument is passed by reference.
 varname
 Name of the variable representing the argument; follows standard variable

naming conventions.
 statements
 Any group of statements to be executed within the body of the Sub procedure.
Remarks If not explicitly specified using either Public or Private, Sub procedures are public by default,

that is, they are visible to all other procedures in your script. The value of local variables in a Sub
procedure is not preserved between calls to the procedure.

 You can't define a Sub procedure inside any other procedure (e.g. Function or Property Get).

 The Exit Sub statement causes an immediate exit from a Sub procedure. Program execution
continues with the statement that follows the statement that called the Sub procedure. Any
number of Exit Sub statements can appear anywhere in a Sub procedure.

 Like a Function procedure, a Sub procedure is a separate procedure that can take arguments,
perform a series of statements, and change the value of its arguments. However, unlike a
Function procedure, which returns a value, a Sub procedure can't be used in an expression.

 You call a Sub procedure using the procedure name followed by the argument list. See the Call
statement for specific information on how to call Sub procedures.

 Variables used in Sub procedures fall into two categories: those that are explicitly declared within
the procedure and those that are not. Variables that are explicitly declared in a procedure (using
Dim or the equivalent) are always local to the procedure. Variables that are used but not explicitly

VBScript Reference Manual InduSoft Web Studio

194 InduSoft, Ltd.

declared in a procedure are also local, unless they are explicitly declared at some higher level
outside the procedure.

 Caution: Sub procedures can be recursive, that is, they can call themselves to perform a given
task. However, recursion can lead to stack overflow.

 Caution: A procedure can use a variable that is not explicitly declared in the procedure, but a
naming conflict can occur if anything you have defined at the script level has the same name. If
your procedure refers to an undeclared variable that has the same name as another procedure,
constant or variable, it is assumed that your procedure is referring to that script-level name. To
avoid this kind of conflict, use an Option Explicit statement to force explicit declaration of
variables.

See Also Function
Example(s) Sum sqrit(b)
 b = b * b
 End Sub

While…Wend
Description Executes a series of statements as long as a given condition is True.
Usage While condition
 [statements]
 Wend
Arguments condition
 Numeric or string expression that evaluates to True or False. If condition is Null, condition is

treated as False.
 statements
 One or more statements executed while condition is True.
Remarks If condition is True, all statements in statements are executed until the Wend statement is

encountered. Control then returns to the While statement and condition is again checked. If
condition is still True, the process is repeated. If it is not True, execution resumes with the
statement following the Wend statement. While...Wend loops can be nested to any level. Each
Wend matches the most recent While.

 Note that the Do...Loop statement provides a more structured and flexible way to perform looping.
Example Dim Counter
 Counter = 0 ' Initialize variable.
 While Counter < 20 ' Test value of Counter.
 Counter = Counter + 1 ' Increment Counter.
 Alert Counter
 Wend ' End While loop when Counter > 19

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 195

With
Description Executes a series of statements on a single object
Usage With object
 statements
 End With
Arguments object

 Required. Name of an object or a function that returns an object.
 statements

 Required. One or more statements to be executed on object.
Remarks The With statement allows you to perform a series of statements on a specified object without re-

qualifying the name of the object. For example, to change a number of different properties on a
single object, place the property assignment statements within the With control structure,
referring to the object once instead of referring to it with each property assignment. The following
example illustrates use of the With statement to assign values to several properties of the same
object.

 While property manipulation is an important aspect of With functionality, it is not the only use.
Any legal code can be used within a With block.

 You can nest With statements by placing one With block within another. However, because
members of outer With blocks are masked within the inner With blocks, you must provide a fully
qualified object reference in an inner With block to any member of an object in an outer With
block.

 Note: Once a With block is entered, object can't be changed. As a result, you can't use a single
With statement to affect a number of different objects.

 Important: Do not jump into or out of With blocks. If statements in a With block are executed,
but either the With or End With statement is not executed, you may get errors or unpredictable
behavior.

Example With MyLabel
 .Height = 2000
 .Width = 2000
 .Caption = "This is MyLabel"
 End With

VBScript Reference Manual InduSoft Web Studio

196 InduSoft, Ltd.

VBScript Objects and Collections

Objects and collections
Class Object Matches Collection
Debug Object RegExp Object
Err Object SubMatches Collection
Match Object

These Objects and Collections are “built-in” to VBScript and do not rely on any runtime libraries or
ActiveX components.

Class
Description Declares the name of a class, as well as a definition of the variables, properties, and methods

that comprise the class
Usage Class classname
 statements
 End Class
Arguments classname
 Required. Name of the Class; follows standard variable naming conventions.
 statements
 Required. One or more statements that define the variables, properties, and methods of the

Class.
Remarks Within a Class block, members are declared as either Private or Public using the appropriate

declaration statements. Anything declared as Private is visible only within the Class block.
Anything declared as Public is visible within the Class block, as well as by code outside the
Class block. Anything not explicitly declared as either Private or Public is Public by default.
Procedures (either Sub or Function) declared Public within the class block become methods of
the class. Public variables serve as properties of the class, as do properties explicitly declared
using Property Get, Property Let, and Property Set. Default properties and methods for the
class are specified in their declarations using the Default keyword. See the individual declaration
statement topics for information on how this keyword is used. You must instantiate an object to
use it, using the Set command; i.e. Set objname = New classname.

 The Class block also supports two special subroutines; Class_Initialize() and

Class_Terminate(). Code in the Class_Initialize() subroutine executes one time when the Class
is instantiated by the statement Set objName = New classname. Code in the Class_Terminate()
subroutine executes once when the Class is terminated by the Set objName = Nothing statement
or when the Class goes out of scope. The Class_Initialize() and Class_Terminate() subroutines
can be Private or Public, but it is recommended to make these Private so that these subroutines
may not be called by another code segment.

See Also Property Get, Property Let, Property Set
Example Class SignOn
 Private MyName, MyLevel ‘Variable declaration
 Private Sub Class_Initialize()
 ‘Rem Code here executes when Set objName = Class classname statement is executed
 End Sub
 Private Sub Class_Terminate()
 ‘Rem Code here executes when Set objName = Nothing statement is executed or
 ‘code goes out of scope.
 End Sub
 Public Property Let UsrName(strName) ‘Set the property value for user name
 MyName = strName

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 197

 End Property
 Public Property Let UsrLevel(strLevel) ‘Set the property value for user level
 MyLevel = strLevel
 End Property
 Public Property Get UsrName ‘Return the property value
 UsrName = MyName
 End Property
 Public Property Get UsrLevel ‘Return the property value
 UsrLevel = MyLevel
 End Property

Public Sub LogOnMsg ‘LogOnMsg is a method. No parameters passed
MsgBox MakeMsg(MyLevel)

EndSub
Private Function MakeMsg(strLevel)
 Select Case StrLevel
 Case “User”
 MakeMsg = “Hello “ & MyName & vbCrLf & “Logged on as “ & MyLevel
 Case “Supervisor”
 MakeMsg = “Welcome “ & MyName & vbCrLf & “Your level is “ & MyLevel
 End Select
End Function

 End Class

 Rem the program starts here
 Dim LogOn
 Set LogOn = New SignOn ‘Instantiate the object
 With LogOn
 .UsrName = “Joe” ‘Set the name property
 .UsrLevel = “Supervisor” ‘Set the level property
 .LogOnMsg ‘Invoke logon method
 End With
 Set LogOn = Nothing

VBScript Reference Manual InduSoft Web Studio

198 InduSoft, Ltd.

Debug
NOTE: the Debug object is not currently compatible with IWS. The Debug object is
documented for consistency purposes only.
Function The Debug object is an intrinsic global object that can send an output to a script debugger, such

as the Microsoft Script Debugger.
Remarks The Debug object cannot be created directly, but it is always available for use.
 The Write and WriteLine methods of the Debug object display strings in the Immediate window

of the Microsoft Script Debugger at run time. If the script is not being debugged, the methods
have no effect.2

Method Write
Description Sends strings to the script debugger
Usage Debug.Write ([str1 [,str2 [, …[, strN]]]]
Arguments str1...strN
 Optional. Strings to send to the script debugger
Remarks The Write method sends strings to the Immediate window of the Microsoft Script Debugger at run

time. If the script is not being debugged, the Write method has no effect.

 The Write method is almost identical to the WriteLine method. The only difference is that the
WriteLine method sends a newline character after the strings are sent.

Example Dim counter
 Counter = 30
 Debug.Write “The value of counter is “ & counter

Method WriteLine
Description Sends strings to the script debugger, followed by the newline character
Usage Debug.WriteLine ([str1 [,str2 [, …[, strN]]]]
Arguments str1...strN
 Optional. Strings to send to the script debugger
Remarks The WriteLine method sends strings to the Immediate window of the Microsoft Script Debugger

at run time. If the script is not being debugged, the WriteLine method has no effect.

 The WriteLine method is almost identical to the Write method. The only difference is that the
Write method does not send a newline character after the strings are sent.

Example Dim counter
 Counter = 30
 Debug.Write “The value of counter is “ & counter

Err
Function Contains information about the last run-time error. Accepts the Raise and Clear methods for

generating and clearing run-time errors.
Usage val = Err.Property
 Err.Method
Arguments Varies with properties and methods used (see below)
Remarks The Err object is an intrinsic object with global scope — there is no need to create an instance of

it in your code. The properties of the Err object are set by the generator of an error — VBScript,
an Automation object, or the VBScript programmer.

 The default property of the Err object is Number. Err.Number contains an integer and can be
used by an Automation object to return an SCODE.

 When a run-time error occurs, the properties of the Err object are filled with information that
uniquely identifies the error and information that can be used to handle it. To generate a run-time
error in your code, use the Raise method.

2 See http://msdn.microsoft.com for additional information on the Microsoft Script Debugger

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 199

 The Err object's properties are reset to zero or zero-length strings ("") after an On Error
Resume Next statement. The Clear method can be used to explicitly reset Err.

 For more information, see Microsoft Web site.3

Property Description
 Function: Returns or sets a descriptive string associated with an error.
 Usage: Err.Description [= stringexpression]
 Arguments stringexpression
 A string expression containing a description of the error.
 Remarks: The Description property consists of a short description of the error. Use this

property to alert the user to an error that you can't or don't want to handle. When
generating a user-defined error, assign a short description of your error to this
property. If Description isn't filled in, and the value of Number corresponds to a
VBScript run-time error, the descriptive string associated with the error is
returned

 Example: On Error Resume Next
 Error.Raise 39 ‘This is a non-defined VBScript error
 Err.Description =”Pump OverFlow” ‘Define the error message
 MsgBox “Error type is “ & Err.Description
Property HelpContext
 Function: Sets or returns a context ID for a topic in a Help File.
 Usage: Err.HelpContext [= contextID]

 Arguments contextID
 Optional. A valid identifier for a Help topic within the Help file.

 Remarks: If a Help file is specified in HelpFile, the HelpContext property is used to
automatically display the Help topic identified. If both HelpFile and HelpContext
are empty, the value of the Number property is checked. If it corresponds to a
VBScript run-time error value, then the VBScript Help context ID for the error is
used. If the Number property doesn't correspond to a VBScript error, the
contents screen for the VBScript Help file is displayed.

 Example: On Error Resume Next
 Const usercontextID = 10
 Error.Raise 48 ‘Error Loading DLL
 Err.HelpFile = “myDLL.hlp” ‘The help file
 Err.HelpContext = usercontextID ‘Specify the user context ID
 If Err.Number <> 0 Then
 MsgBox “Press F1 for help ” & “Error:” & Error.Description &_
 Err.Helpfile & Err.HelpContext
 End If

3 http://www.microsoft.com/technet/scriptcenter/resources/scriptshop/shop1205.mspx
 http://www.microsoft.com/technet/scriptcenter/resources/scriptshop/shop0106.mspx

VBScript Reference Manual InduSoft Web Studio

200 InduSoft, Ltd.

Property HelpFile
 Function: Sets or returns a fully qualified path to a Help File
 Usage: Err.HelpFile [= contextID]

 Arguments contextID
 Optional. Fully qualified path to the Help file

 Remarks: If a Help file is specified in HelpFile, it is automatically called when the user
clicks the Help button (or presses the F1 key) in the error message dialog box. If
the HelpContext property contains a valid context ID for the specified file, that
topic is automatically displayed. If no HelpFile is specified, the VBScript Help file
is displayed.

 Example On Error Resume Next
Err.Raise 11 ‘Divide by 0 error
Err.HelpFile = “myHelpFile.hlp”
Err.HelpContext = usercontextID
If Err.Number <>0 Then
 MsgBox “Press F1 for help” & vbCrLf & “Error: “ &Err.Description _
 & Error.HelpFile & Err.HelpContext
End If

Property Number
 Function: Returns or sets a numeric value specifying an error. Number is the Err object's

default property
 Usage: Err. Number [= errornumber]
 Arguments errornumber
 An integer representing a VBScript error number or an SCODE error value
 Remarks: When returning a user-defined error from an Automation object, set Err.Number

by adding the number you selected as an error code to the constant
vbObjectError.

 Example On Error Resume Next
Err.Raise 11 ‘Divide by 0 error
Err.HelpFile = “myHelpFile.hlp”
Err.HelpContext = usercontextID
If Err.Number <>0 Then
 MsgBox “Press F1 for help” & vbCrLf & “Error: “ &Err.Description _
 & Error.HelpFile & Err.HelpContext
End If

Property Source
 Function: Returns or sets the name of the object or application that originally generated the

error.
 Usage: Err.Source [= stringexpression]
 Arguments stringexpression
 A string expression representing the application that generated the

error
 Remarks: The Source property specifies a string expression that is usually the class name

or programmatic ID of the object that caused the error. Use Source to provide
your users with information when your code is unable to handle an error
generated in an accessed object. For example, if you access Microsoft Excel and
it generates a Division by zero error, Microsoft Excel sets Err.Number to its error
code for that error and sets Source to Excel.Application. Note that if the error is
generated in another object called by Microsoft Excel, Excel intercepts the error
and sets Err.Number to its own code for Division by zero. However, it leaves the
other Err object (including Source) as set by the object that generated the error.

 Source always contains the name of the object that originally generated the
error — your code can try to handle the error according to the error
documentation of the object you accessed. If your error handler fails, you can
use the Err object information to describe the error to your user, using Source

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 201

and the other Err to inform the user which object originally caused the error, its
description of the error, and so forth.

 When generating an error from code, Source is your application's programmatic
ID.

Example On Error Resume Next
Err.Raise 8 ‘User defined error
Err.Description = “Invalid input”
Err.Source = “MyApplication”
MsgBox “Error Type = “ &Err.Description & “ generated in “ & Err.Source

Method Clear
 Function: Clears all property settings in the Err object
 Usage: Err.Clear
 Arguments: none
 Remarks: Use Clear to explicitly clear the Err object after an error has been handled. This

is necessary, for example, when you use deferred error handling with On Error
Resume Next. VBScript calls the Clear method automatically whenever any of
the following statements is executed:

• On Error Resume Next
• Exit Sub
• Exit Function

Method Raise
 Function: Generates a run-time error
 Usage: Err.Raise(number, source, description, helpfile, helpcontext)
 Arguments: number
 A Long integer subtype that identifies the nature of the error. VBScript errors

(both VBScript-defined and user-defined errors) are in the range 0–65535.
 source
 A string expression naming the object or application that originally generated

the error. When setting this property for an Automation object, use the form
project.class. If nothing is specified, the programmatic ID of the current
VBScript project is used.

 description
 A string expression describing the error. If unspecified, the value in number is

examined. If it can be mapped to a VBScript run-time error code, a string
provided by VBScript is used as description. If there is no VBScript error
corresponding to number, a generic error message is used.

 helpfile
 The fully qualified path to the Help file in which help on this error can be

found. If unspecified, VBScript uses the fully qualified drive, path, and file
name of the VBScript Help file.

 helpcontext
 The context ID identifying a topic within helpfile that provides help for the

error. If omitted, the VBScript Help file context ID for the error corresponding
to the number property is used, if it exists.

 Remarks: All the arguments are optional except number. If you use Raise, however,
without specifying some arguments, and the property settings of the Err object
contain values that have not been cleared, those values become the values for
your error.

 When setting the number property to your own error code in an Automation

object, you add your error code number to the constant vbObjectError. For
example, to generate the error number 1050, assign vbObjectError + 1050 to
the number property.

Example On Error Resume Next
 Dim Msg

VBScript Reference Manual InduSoft Web Studio

202 InduSoft, Ltd.

 Err.Raise 6 'Raise an overflow error.
 Err.Raise vbObjectError + 1, "SomeObject" 'Raise Object Error #1.
 MsgBox ("Error # " & CStr(Err.Number) & " " & Err.Description & Err.Source)
 Err.Helpfile = "yourHelp.hlp"
 Err.HelpContext = yourContextID
 If Err.Number <> 0 Then
 Msg = "Press F1 or Help to see " & Err.Helpfile & " topic for" &
 " the following HelpContext: " & Err.HelpContext
 MsgBox Msg, , "error: " & Err.Description, Err.Helpfile, Err.HelpContext
 End If
 Err.Clear ‘ Clear the error

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 203

Match
Description Provides access to the read-only properties of a regular expression match.
Usage For Each Match in Matches
 strRet = Match.prop
 Rem other statement can go here
 Next
Arguments varies with properties and methods used
 Match
 The Match object. Does not need to be instantiated
 Matches
 The Matches collection. Needs to be instantiated in a Set statement
 prop
 A Match object property
 strRet
 Return value.
Return The return value and type depends on the Match property used
See Also Length property, Value property, FirstIndex property
Remarks A Match object can be only created using the Execute method of the RegExp object, which

actually returns a collection of Match objects. All Match object properties are read-only.

 When a regular expression is executed, zero or more Match objects can result. Each Match
object provides access to the string found by the regular expression, the length of the string, and
an index to where the match was found.

Example See example under Matches collection

Property FirstIndex
Description Returns the position in a search string where a match occurs
Usage strRet = objMatch.FirstIndex
Arguments None
Return A numeric value indicating the position in a string where the match occurs.
Remarks The FirstIndex property uses a zero-based offset from the beginning of the search string. In

other words, the first character in the string is identified as character zero (0).

Property Length
Description Returns the length of a match found in a search string.
Usage strRet = objMatch.Length
Arguments None
Return A numeric value indicating the length of a match string
Remarks Always used with the Match object

Property Value
Description Returns the value or text of a match found in a search string.
Usage strRet = objMatch.Length
Arguments None
Return A String containing the match found in the search string
Remarks Always used with the Match object

VBScript Reference Manual InduSoft Web Studio

204 InduSoft, Ltd.

Matches
Description Collection of regular expression Match objects.
Usage Set Matches = objRegexp.Execute(string)
Arguments objRegexp
 A RegExp object that was previously instantiated
 string
 A command string to execute for the RegExp object
Remarks A Matches collection contains individual Match objects, and can be only created using the

Execute method of the RegExp object. The Matches collection's one property is read-only, as
are the individual Match object properties.

 When a regular expression is executed, zero or more Match objects can result. Each Match
object provides access to the string found by the regular expression, the length of the string, and
an index to where the match was found.

See Also RegExp, Match
Example Dim regEx, Match, Matches, RetStr, srExp 'Create variable.
 strExp = “Is1 is2 IS3 is4” ‘Input string
 Set regEx = New RegExp 'Instantiate RegExp object
 regEx.Pattern = “is.” 'Set pattern.
 regEx.IgnoreCase = True 'Set case insensitivity.
 regEx.Global = True 'Set global applicability.
 Set Matches = regEx.Execute(strExp) 'Execute search.
 RetStr = “” ‘Zero out string
 For Each Match in Matches 'Iterate Matches collection.
 RetStr = RetStr & "Match found at position "
 RetStr = RetStr & Match.FirstIndex & ". Match Value is '"
 RetStr = RetStr & Match.Value & "'." & vbCRLF
 Next
 MsgBox RetStr

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 205

RegExp
Description Provides simple regular expression support.
Usage Varies with properties and methods used
Arguments Varies with properties and methods used
Remarks
Property Global
 Function: Sets or returns a Boolean value that indicates if a pattern should match all

occurrences in an entire search string or just the first one.
 Usage: RegExp.Global [= True | False]
 Arguments The value of the Global property is True if the search applies to the entire string,

False if it does not. Default is False.
 Remarks See example below
Property Pattern
 Function: Sets or returns the regular expression pattern being searched for.
 Usage: RegExp.Pattern [= "searchstring"]
 Arguments searchstring
 Optional. Regular string expression being searched for. May include any of

the regular expression characters defined in the table in the Settings section.
 Settings Special characters and sequences are used in writing patterns for regular

expressions. The following tables describe the characters that can be used.

 Position Matching
 Position matching involves the use of the ^ and $ to search for beginning or

ending of strings. Setting the pattern property to "^VBScript" will only successfully
match "VBScript is cool." But it will fail to match "I like VBScript."

 Literals
 Literals can be taken to mean alphanumeric characters, ACSII, octal characters,

hexadecimal characters, UNICODE, or special escaped characters. Since some
characters have special meanings, we must escape them. To match these
special characters, we precede them with a "\" in a regular expression.

 Character Classes
 Character classes enable customized grouping by putting expressions within []

braces. A negated character class may be created by placing ^ as the first
character inside the []. Also, a dash can be used to relate a scope of characters.
For example, the regular expression "[^a-zA-Z0-9]" matches everything except
alphanumeric characters. In addition, some common character sets are bundled
as an escape plus a letter.

 Repetition
 Repetition allows multiple searches on the clause within the regular expression.

By using repetition matching, we can specify the number of times an element
may be repeated in a regular expression.

 Alternation & Grouping
 Alternation and grouping is used to develop more complex regular expressions.

Using alternation and grouping techniques can create intricate clauses within a
regular expression, and offer more flexibility and control.

Back References
Back references enable the programmer to refer back to a portion of the regular
expression. This is done by use of parenthesis and the backslash (\) character
followed by a single digit. The first parenthesis clause is referred by \1, the
second by \2, etc.

VBScript Reference Manual InduSoft Web Studio

206 InduSoft, Ltd.

Position Matching
Symbol Function
\ Marks the next character as either a special character or a literal. For

example, "n" matches the character "n". "\n" matches a newline character.
The sequence "\\" matches "\" and "\(" matches "(".

^ Matches the beginning of input.
$ Matches the end of input.
\b Matches a word boundary, that is, the position between a word and a space.

For example, "er\b" matches the "er" in "never" but not the "er" in "verb".
\B Matches a non-word boundary. "ea*r\B" matches the "ear" in "never early".

 Literals

Symbol Function
AlphaNum Matches alphabetical and numerical characters literally.
\n Matches a newline character.
\f Matches a form-feed character.
\r Matches a carriage return character.
\t Matches a tab character.
\v Matches a vertical tab character.
\? Matches ?
* Matches *
\+ Matches +
\. Matches .
\| Matches |
\{ Matches {
\} Matches }
\\ Matches \
\[Matches [
\] Matches]
\(Matches (
\) Matches)
\n Matches n, where n is an octal escape value. Octal escape values must

be 1, 2, or 3 digits long. For example, "\11" and "\011" both match a tab
character. "\0011" is the equivalent of "\001" & "1". Octal escape values
must not exceed 256. If they do, only the first two digits comprise the
expression. Allows ASCII codes to be used in regular expressions.

\xn Matches n, where n is a hexadecimal escape value. Hexadecimal escape
values must be exactly two digits long. For example, "\x41" matches "A".
"\x041" is equivalent to "\x04" & "1". Allows ASCII codes to be used in
regular expressions.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 207

Character Classes
Symbol Function
[xyz] Match any one character enclosed in the character set.

"[abc]" matches "a" in "plain".
[a-z] Match any one character in the specified range. For example, "[a-z]"

matches any lowercase alphabetic character in the range "a" through "z".
"[a-e]" matches "b" in "basketball".

[^xyz] Match any one character not enclosed in the character set.
"[^a-e]" matches "s" in "basketball".

[^m-z] Matches any character not in the specified range. For example, "[m-z]"
matches any character not in the range "m" through "z".

. Match any single character except \n (newline).
\w Match any word character including underscore. Equivalent to [a-zA-Z_0-

9].
\W Match any non-word character. Equivalent to [^a-zA-Z_0-9].
\d Match any digit. Equivalent to [0-9].
\D Match any non-digit. Equivalent to [^0-9].
\s Match any space character (e.g. space, tab, form-feed, etc). Equivalent to

[\t\r\n\v\f].
\S Match any non-space character. Equivalent to [^ \t\r\n\v\f].

Repetition
Symbol Function
{n} Match exactly n occurrences of a regular expression. n must be a non-

negative integer. "\d{5}" matches 5 digits. For example, "o{2}" does not
match the "o" in "Bob," but matches the first two o's in "foooood".

(n,} Match n or more occurrences of a regular expression. n must be a non-
negative integer. "\s{2,}" matches at least 2 space characters. For
example, "o{2,}" does not match the "o" in "Bob" and matches all the o's in
"foooood." "o{1,}" is equivalent to "o+". "o{0,}" is equivalent to "o*"

{n,m} Matches n to m number of occurrences of a regular expression. n and m
must be non-negative integers. "\d{2,3}" matches at least 2 but no more
than 3 digits. For example, "o{1,3}" matches the first three o's in
"fooooood." "o{0,1}" is equivalent to "o?".

? Match zero or one occurrences. Equivalent to {0,1}.
"a\s?b" matches "ab" or "a b"
"a?ve?" matches the "ve" in "never"

* Match zero or more occurrences. Equivalent to {0,}.
+ Match one or more occurrences. Equivalent to {1,}.
\num Matches num, where num is a positive integer. A reference back to

remembered matches. For example, "(.)\1" matches two consecutive
identical characters.

VBScript Reference Manual InduSoft Web Studio

208 InduSoft, Ltd.

 Alternation & Grouping
Symbol Function
() Grouping a clause to create a clause. May be nested. "(ab)?(c)" matches

"abc" or "c".
(pattern) Matches pattern and remembers the match. The matched substring can

be retrieved from the resulting Matches collection, using Item [0]...[n]. To
match parentheses characters (), use "\(" or "\)".

x | y Alternation combines clauses into one regular expression and then
matches any of the individual clauses; i.e. matches x or y.
"(ab)|(cd)|(ef)" matches "ab" or "cd" or "ef".

 BackReferences

Symbol Function
()\n Matches a clause as numbered by the left parenthesis

"(\w+)\s+\1" matches any word that occurs twice in a row, such as "hubba
hubba."

 Remarks See example below

Property IgnoreCase
 Function: Sets or returns a Boolean value that indicates if a pattern search is case-

sensitive or not.
 Usage: RegExp.IgnoreCase [= True | False]
 Arguments The object argument is always a RegExp object. The value of the IgnoreCase

property is False if the search is case-sensitive, True if it is not. Default is False.
 Remarks See example below
Method Execute Method
 Function: Executes a regular expression search against a specified string.
 Usage: RegExp.Execute(string)
 Arguments string

Required. The text string upon which the regular expression is executed
 Return The Execute method returns a Matches collection containing a Match object for

each match found in string. Execute returns an empty Matches collection if no
match is found.

 Remarks The actual pattern for the regular expression search is set using the Pattern
property of the RegExp object.

Method Replace
 Function: Replaces text found in a regular expression search.
 Usage: RegExp.Replace(string1, string2)
 Arguments string1

Required. String1 is the text string in which the text replacement is to occur
 string2
 Required. String2 is the replacement text string.
 Return The Replace method returns a copy of string1 with the text of RegExp.Pattern

replaced with string2. If no match is found, a copy of string1 is returned
unchanged.

 Remarks The actual pattern for the text being replaced is set using the Pattern property of
the RegExp object.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 209

Methods Test
 Function: Executes a regular expression search against a specified string and returns a

Boolean value that indicates if a pattern match was found
 Usage: RegExp.Test(string)
 Arguments string
 Required. The text string upon which the regular expression is executed
 Return The Test method returns True if a pattern match is found; False if no match is

found.
 Remarks The actual pattern for the regular expression search is set using the Pattern

property of the RegExp object. The RegExp.Global property has no effect on
the Test method.

Example Function RegExpTest(patrn, strng)
 Dim regEx, Match, Matches ' Create variable.
 Set regEx = New RegExp ' Create a regular expression.
 regEx.Pattern = patrn ' Set pattern.
 regEx.IgnoreCase = True ' Set case insensitivity.
 regEx.Global = True ' Set global applicability.
 Set Matches = regEx.Execute(strng) ' Execute search.
 For Each Match in Matches ' Iterate Matches collection.
 RetStr = RetStr & "Match found at position "
 RetStr = RetStr & Match.FirstIndex & ". Match Value is '"
 RetStr = RetStr & Match.Value & "'." & vbCRLF
 Next
 RegExpTest = RetStr
 End Function

 Rem Program Starts here
 MsgBox(RegExpTest("is.", "IS1 is2 IS3 is4"))

 Function RegExpTest(patrn, strng)
 Dim regEx, retVal ' Create variable.
 Set regEx = New RegExp ' Create regular expression.
 regEx.Pattern = patrn ' Set pattern.
 regEx.IgnoreCase = False ' Set case sensitivity.
 retVal = regEx.Test(strng) ' Execute the search test.
 If retVal Then
 RegExpTest = "One or more matches were found."
 Else
 RegExpTest = "No match was found."
 End If
 End Function

 Rem Program Starts here
 MsgBox(RegExpTest("is.", "IS1 is2 IS3 is4"))

VBScript Reference Manual InduSoft Web Studio

210 InduSoft, Ltd.

The Replace method can replace subexpressions in the pattern. The following call to the function
ReplaceTest swaps the first pair of words in the original string:

 Function ReplaceTest(patrn, replStr)
 Dim regEx, str1 ' Create variables.
 str1 = "The quick brown fox jumped over the lazy dog."
 Set regEx = New RegExp ' Create regular expression.
 regEx.Pattern = patrn ' Set pattern.
 regEx.IgnoreCase = True ' Make case insensitive.
 ReplaceTest = regEx.Replace(str1, replStr) ' Make replacement.
 End Function

Rem Program Starts here

 MsgBox(ReplaceTest("fox", "cat")) ' Replace 'fox' with 'cat'.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 211

SubMatches
Description A collection of regular expression submatch strings.
Usage varies with properties and methods used
Arguments varies with properties and methods used
Remarks A SubMatches collection contains individual submatch strings, and can only be created using the

Execute method of the RegExp object. The SubMatches collection's properties are read-only

 When a regular expression is executed, zero or more submatches can result when
subexpressions are enclosed in capturing parentheses. Each item in the SubMatches collection
is the string found and captured by the regular expression.

Example Function SubMatchTest(inpStr)
 Dim oRe, oMatch, oMatches
 Set oRe = New RegExp
 oRe.Pattern = "(\w+)@(\w+)\.(\w+)" ‘Look for an e-mail address
 Set oMatches = oRe.Execute(inpStr) 'Get the Matches collection
 Set oMatch = oMatches(0) 'Get the first item in the Matches collection
 retStr = "Email address is: " & oMatch & vbNewline 'Create the results string.

 'The Match object is the entire match - dragon@xyzzy.com
 'Get the sub-matched parts of the address.

 retStr = retStr & "Email alias is: " & oMatch.SubMatches(0) ' dragon
 retStr = retStr & vbNewline
 retStr = retStr & "Organization is: " & oMatch. SubMatches(1)' xyzzy
 SubMatchTest = retStr
 End Function

 Rem Program Starts here
 MsgBox(SubMatchTest("Please send mail to dragon@xyzzy.com. Thanks!"))

VBScript Reference Manual InduSoft Web Studio

212 InduSoft, Ltd.

Scripting Type Library
The Scripting Type Library consists of the following item:

• Dictionary Object
The Dictionary object is part of the VBScript Scripting Library and is used to store name/value
pairs (known as key/item respectively) in an array. The key is a unique identifier for the
corresponding item. The key cannot be used of any other item in the same Dictionary object. A
Dictionary object is similar to a normal array, except that instead of using a numeric index, a
key is used.

• FileSystemObject Object Model
The FileSystemObject is an object model that is part of the VBScript Scripting Library and is
used to gain access to a local computer or network share computer file system. It can access
drives, folders and files Collections of drives, folders and files can also be retrieved. In addition,
the FileSystemObject can create, write to and read Text files.

o Drive object
o Drives collection
o File object
o File collection
o Folder object
o Folder collection
o TextStream object

 Folders Collection

Folder Object

Drives Object Drives Object

Folder Object

Files Collection

File Object File Object

TextStream Object

 Drives Collection

FileSystemObject

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 213

Dictionary Object
The dictionary object is contained in the Scripting Type library and is a general-purpose data structure
that is a cross between a link list and an array. The dictionary stores data and makes the data
accessible from one variable. The advantages of a dictionary over an array are:

• You can use “keys” to identify items in the dictionary. Keys are usually strings or integers but
can be any data type other than an array or a dictionary. Keys must be unique.

• Methods are provided to add new items and check for existing items in the dictionary
• The dictionary size can be changed without calling the ReDim statement
• Automatically “shifts up” the remaining items when any item in the dictionary is deleted

You can use a Dictionary when you need to access random elements frequently or need to access
information contained in the array based on its value, not position.

Dictionary
Description Is an associative array that can store any type of data. Data is accessed by a key.
Remarks Keys must be unique.

Property CompareMode

Description: Sets and returns the comparison mode for comparing a string keys in a
Dictionary object.

Arguments: Compare
 Optional. If provided, compare is a value representing the comparison mode.

Values are:
 0 = Binary
 1 = Text
 2 = Database
 Values >2 can be used to refer to comparisons using specific Locale IDs

(LCID)
Return: Comparison mode
Remarks: An error occurs if you try to change the comparison mode of a Dictionary object

that already has data
Use Object.CompareMode[= compare]
Example: Dim d
 Set d = CreateObject(“Scripting.Dictionary”)
 d.CompareMode = vbTextCompare
 d.Add “a”, “Chicago”
 d.Add “b”, “New York”
 d.Add “A” = “Austin” ‘ Method fails because “b” already exists

Property Count
Description: Returns the number of items pairs in a Dictionary object.
Usage: Object.Count
Arguments: None
Return: Integer value of the count of item pairs in a Dictionary object.
Remarks: Read Only.
Example: Dim d, item_count
 Set d = CreateObject(“Scripting.Dictionary”)
 d.Add “a”, “Chicago”
 d.Add “b”, “New York”
 item_count = d.Count ‘ Count the items in a Dictionary object
 MsgBox item_count

VBScript Reference Manual InduSoft Web Studio

214 InduSoft, Ltd.

Property Item
Description: Sets or returns an item for a specified key in a Dictionary object.
Usage: Object.Item (key) [= newitem]
Arguments: key
 Required. Is the key associated with the item being retrieved or added.
 newitem
 Optional. If provided, new item is the new value associated with the specified key
Return: None
Remarks: If the key is not found when changing an item, a new key is created with the

specified new item. If a key is not found when attempting to return an existing
item, a new key is created and its corresponding item is left empty.

Example: Dim d
 Set d = CreateObject(“Scripting.Dictionary”)
 d.Add “a”, “Chicago”
 d.Add “b”, “New York”
 MyItem = d.Item(“a”)
 MsgBox MyItem ‘ Displays Chicago
 d.Item(“b”) = “Austin” ‘ Change item for key “b” to Austin

Property Key
Description: Sets a key in a Dictionary object.
Usage: Object.Key (key) = newkey
Arguments: key
 Required. Is the key value being changed
 newkey
 Required. New value that replaces the specified key
Return: None
Remarks: If the key is not found when changing a key, a new key is created and its

associated item is left empty.
Example: Dim d
 Set d = CreateObject(“Scripting.Dictionary”)
 d.Add “a”, “Chicago”
 d.Add “b”, “New York”
 d.Key(“a”) = “city1”

 d.Key(“b”) = “city2”
Method Add

Description: Adds the name of a dictionary object
Usage: object.Add (key, item)
Arguments: key
 Required. The key associated with the item being added. Must be unique.
 item
 Required. This is the item associated with the key being added.
Return: None. Error occurs if the key already exists
Example: Dim d

 Set d = CreateObject(“Scripting.Dictionary”)
 d.Add “a”, “Chicago”
 d.Add “b”, “New York”

Method Exists
Description: Determine is a specified key exists in the Dictionary object
Usage: object.Exists (key)
Arguments: key

 Required. The key value being searched for
Return: TRUE if a specified key exists in the Dictionary object, otherwise FALSE
Example Dim d, msg
 Set d = CreateObject(“Scripting.Dictionary”)
 d.Add “a”, “Chicago”

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 215

 d.Add “b”, “New York”
 Msg = “key does not exist”
 if d.Exists (“b”) Then msg = “Key exists”
 MsgBox (Msg) ‘ Indicate if the key exists

Method Items
Description: Returns an array containing all the existing items in a Dictionary object
Usage: Object.Items ()
Arguments: None
Return: Array containing all the existing items in the Dictionary object
Example: Dim a, d
 Set d = CreateObject(“Scripting.Dictionary”)
 d.Add “a”, “Chicago”
 d.Add “b”, “New York
 a = d.Items
 For i = 0 to d.Count – 1
 s = s & a(i) & vbCrLf
 Next
 MsgBox s ‘ Display all the items

Method Keys
Description: Returns an array containing all the existing keys in a Dictionary object
Usage: Object.Keys ()
Arguments: None
Return: Array containing all the existing keys in the Dictionary object
Example: Dim a, d
 Set d = CreateObject(“Scripting.Dictionary”)
 d.Add “a”, “Chicago”
 d.Add “b”, “New York
 a = d.Keys
 For i = 0 to d.Count – 1
 s = s & a(i) & vbCrLf
 Next
 MsgBox s ‘ Display all the keys

Method Remove
Description: Removes a key, item pair from a Dictionary object
Usage: Object.Remove (key)
Arguments: key

 Required. Is the key associated with the key, item pair you want to remove
from the Dictionary object

Return: None
Example: Dim a, d
 Set d = CreateObject(“Scripting.Dictionary”)
 d.Add “a”, “Chicago”
 d.Add “b”, “New York”
 d.Remove(“b”) ‘ Removes the “b, New York” key/item pair

Method RemoveAll
Description: Removes all key, item pairs from a Dictionary object
Usage: Object.RemoveAll()
Arguments: None
Return: None
Example: Dim a, d
 Set d = CreateObject(“Scripting.Dictionary”)
 d.Add “a”, “Chicago”
 d.Add “b”, “New York”
 d.RemoveAll ‘ Removes all key/item pairs

VBScript Reference Manual InduSoft Web Studio

216 InduSoft, Ltd.

FileSystemObject (FSO)
The FileSystemObject (FSO) object model is part of the VBScript Scripting Type library. It is a COM
component and is used to manipulate the Windows File System from VBScript. Note that VBScript does
not include commands to access files directly, instead the FSO is used.

The FSO consists of collections (Drives Collection, Folders Collection, and Files Collection) that are a
grouping of like objects, and individual objects (Drive object, Folder object, File object, and TextStream
object). The individual objects are generally derived from a collection or accessed/created directly
through the FSO.

The FSO must be instantiated by the following set of statements:

Dim objFso ‘Declare the variable(s)
Set objFso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FileSystemObject

FSO Properties and Methods
Property Drives
Description: Returns a collection of Drive objects.
Use: Set objDrive = fso.Drives
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated.
Return: An object containing a collection of Drives objects
Remarks: Returns a collection of Drives objects available on the local machine, including networked drives

mapped to the local machine. Removable media drives do not have to have media inserted to
appear in the Drives Collection.

Example: Dim fso, dc, d, strDrvList
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set dc = fso.Drives ‘Instantiate the Drives collection object
strDrvList = “”
For each d in dc ‘Evaluate each drive in the drives
collection
 strDrvList = strDrvList & d.driveLetter & “ – “ ‘Get the Drive letter
 If d.DriveType = 3 Then ‘See if a network drive
 strDrvList = strDrvList & d.ShareName ‘Yes
 ElseIf d.IsReady Then ‘No – is a local drive. Check if ready
 strDrvList = strDrvList & d.VolumeName ‘Yes – add to list
 End If
 strDrvList = strDrvList & vbCrLf ‘Add a Cr & Lf and then get next drive
Next
MsgBox strDrvList ‘Display the list of drives

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 217

Method: BuildPath
Description: Appends a name to an existing path
Use: fso.BuildPath(path, name)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated.
 path

Required. Existing path to which name is appended. Path can be absolute or relative, and
need not specify an existing folder

 name
 Required. Name being appended to the existing path.

Return: None
Remarks: The BuildPath method inserts an additional path separator between the existing path and the

name, only if necessary. Does not check for a valid path.
Example: Dim fso, path, newpath
 Set fso = CreateObject("Scripting.FileSystemObject")
 path = $getAppPath()
 newpath = fso.BuildPath(path, "SubFolder")

Method: CopyFile
Description: Copies one or more files from one location to a new location
Use: fso.CopyFile (source, destination[, overwrite])
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated.
 source

Required. A character string file specification, which can include wildcard characters, for one
or more files to be copied.

destination
Required. Character string destination where the file or files from source are to be copied.
Wildcard characters are not allowed in the destination string.

 overwrite
Optional. Boolean value that indicates if existing files are to be overwritten. If True, files are
overwritten; if False, they are not. The default is True. Note that CopyFile will fail if
destination has the read-only attribute set, regardless of the value of overwrite.

Return: None
Remarks: Wildcard characters can only be used in the last path component of the source argument. If

source contains wildcard characters or destination ends with a path separator (\), it is assumed
that destination is an existing folder in which to copy matching files. Otherwise, destination is
assumed to be the name of a file to create. In either case, three things can happen when a file is
copied.

• If destination does not exist, source gets copied. This is the usual case.
• If destination is an existing file, an error occurs if overwrite is False. Otherwise, an

attempt is made to copy source over the existing file.
• If destination is a directory, an error occurs. (Occurs because the directory doesn’t exist).

An error also occurs if a source using wildcard characters doesn't match any files. The CopyFile
method stops on the first error it encounters. No attempt is made to roll back or undo any
changes made before an error occurs.

Example: Const OverWrite = False
 Dim fso, srcFiles, destPath
 Set fso = CreateObject("Scripting.FileSystemObject")
 srcFiles = $getAppPath() & “Alarm*.*”

destPath = $getAppPath() & “AlarmHistory”
 If fso.FolderExists (destPath) = False Then
 fso.CreateFolder (destPath)
 End If
 fso.CopyFile srcFiles, destPath

VBScript Reference Manual InduSoft Web Studio

218 InduSoft, Ltd.

Method: CopyFolder
Description: Copies a folder to a new location
Use: fso.CopyFolder (source, destination[, overwrite])
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated.
 source

Required. A character string folder specification, which can include wildcard characters, for one or more
folders to be copied. Wildcard characters can only be used in the last path component of the source
argument.

destination
Required. Character string destination where the folder and subfolders from source are to be copied.
Wildcard characters are not allowed in the destination string.

 overwrite
Optional. Boolean value that indicates if existing folders are to be overwritten. If True, files are
overwritten; if False, they are not. The default is True.

Return: None
Remarks: If source contains wildcard characters or destination ends with a path separator (\), it is assumed that

destination is an existing folder in which to copy matching folders and subfolders. Otherwise, destination is
assumed to be the name of a folder to create. In either case, four things can happen when an individual
folder is copied.

• If destination does not exist, the source folder and all its contents gets copied. This is the usual case.
• If destination is an existing file, an error occurs.
• If destination is a directory, an attempt is made to copy the folder and all its contents. If a file

contained in source already exists in destination, an error occurs if overwrite is false. Otherwise, it will
attempt to copy the file over the existing file.

• If destination is a read-only directory, an error occurs if an attempt is made to copy an existing read-
only file into that directory and overwrite is false.

An error also occurs if a source using wildcard characters doesn't match any folders. The CopyFolder
method stops on the first error it encounters. No attempt is made to roll back or undo any changes made
before an error occurs

Example: Const OverWrite = False
 Dim fso, srcPath, destPath
 Set fso = CreateObject("Scripting.FileSystemObject")
 srcPath = $getAppPath() & “*”

destPath = fso.GetParentFolderName(srcPath) & “SaveApp”
 If fso.FolderExists (destPath) = False Then
 fso.CreateFolder (destPath)
 End If
 fso.CopyFolder srcPath, destPath, OverWrite

Method: CreateFolder
Description: Creates a new folder in the specified location
Use: fso.CreateFolder(foldername)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated.
 foldername

Required. A character string expression that identifies the folder to create.
Return: None
Remarks: An error occurs if the specified folder already exists.
Example: Dim fso, destPath
 Set fso = CreateObject("Scripting.FileSystemObject")
 destPath = $getAppPath() & “AlarmHistory”
 If fso.FolderExists (destPath) = False Then
 fso.CreateFolder (destPath)
 End If

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 219

Method: CreateTextFile
Description: Creates a specified file name and returns a TextStream object that can be used to read from or

write to the file
Use: Set objfile = fso.CreateTextFile(filename[, overwrite[, Unicode]])
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 filename

Required. A string expression that identifies the file to create
overwrite

Optional. Boolean value that indicates whether you can overwrite an existing file. The value is
True if the file can be overwritten, False if it can't be overwritten. If omitted, existing files are
not overwritten (default False).

unicode
Optional. Boolean value that indicates whether the file is created as a Unicode or ASCII file. If
the value is True, the file is created as a Unicode file. If the value is False, the file is created
as an ASCII file. If omitted, an ASCII file is assumed.

Remarks: None
Example: Dim fso, myFile

Set fso = CreateObject("Scripting.FileSystemObject")
Set myFile = fso.CreateTextFile("c:\testfile.txt", True, False)
myFile.WriteLine("This is a test.")
myFile.Close
Set Myfile = Nothing
Set fso = Nothing

Method: DeleteFile
Description: Deletes a specified file
Use: fso.DeleteFile (filename[, force])
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 filename

Required. The name of the file to delete. The filename can contain wildcard characters in the
last path component.

force
Optional. Boolean value that is True of files with the read-only attribute set are to be deleted;
False if they are not. False is the default.

Return: None
Remarks: An error occurs if no matching files are found. The DeleteFile method stops on the first error it

encounters. No attempt is made to roll back or undo any changes that were made before an error
occurred.

Example: Dim fso, myFile
Set fso = CreateObject("Scripting.FileSystemObject")
myFile = “C:\TempData\Log*.dat”
fso.DeleteFile(myFile)
Set fso = Nothing

VBScript Reference Manual InduSoft Web Studio

220 InduSoft, Ltd.

Method: DeleteFolder
Description: Deletes the specified folder and its contents
Use: fso.DeleteFolder (folderspec[, force])
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 folderspec

Required. The name of the folder to delete. The folderspec can contain wildcard characters in
the last path component.

force
Optional. Boolean value that is True of folders with the read-only attribute set are to be
deleted; False if they are not. False is the default.

Return: None
Remarks: The DeleteFolder method does not distinguish between folders that have contents and those that

do not. The specified folder is deleted regardless of whether or not it has contents. An error
occurs if no matching folders are found. The DeleteFolder method stops on the first error it
encounters. No attempt is made to roll back or undo any changes that were made before an error
occurred.

Example: Dim fso, myFolder
Set fso = CreateObject("Scripting.FileSystemObject")
myFolder = “C:\TempData\”
fso.DeleteFolder(myFolder)
Set fso = Nothing

Method: DriveExists
Description: Determines whether or not a specified drive exists
Use: fso.DriveExists (drivespec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 drivespec

Required. A drive letter or a complete path specification.
Return: Returns a boolean True if the specified drives exists, otherwise returns False.
Remarks: For drives with removable media, the DriveExists method returns true even if there are no media

present. Use the IsReady property of the Drive object to determine if a drive is ready.
Example: Dim fso, drv, msg

Set fso = CreateObject("Scripting.FileSystemObject")
drv = “e:\”
If fso.DriveExists(drv) Then
 msg = "Drive " & UCase(drv) & " exists."
Else
 msg = "Drive " & UCase(drv) & " doesn't exist."
End If
MsgBox msg

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 221

Method: FileExists
Description: Determines whether or not a specified file exists
Use: fso.FileExists (filespec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 filespec

Required. The name of the file whose existence is to be determined. A complete path
specification (either absolute or relative) must be provided if the file isn't expected to exist in
the current folder

Return: Returns a boolean True if the specified file exists, otherwise returns False.
Remarks: None
Example: Dim fso, myFile, msg

Set fso = CreateObject("Scripting.FileSystemObject")
myFile = $getAppPath() & “data\Mydata.mdb”
If fso.FileExists(myFile) Then
 msg = myFile & " exists."
Else
 msg = myFile & "doesn't exist."
End If
MsgBox msg

Method: FolderExists
Description: Determines whether or not a specified folder exists
Use: fso.FolderExists (folderspec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 folderspec

Required. The name of the folder whose existence is to be determined. A complete path
specification (either absolute or relative) must be provided if the folder isn't expected to exist
in the current folder

Return: Returns a boolean True if the specified folder exists, otherwise returns False.
Remarks: None
Example: Dim fso, myFolder, msg

Set fso = CreateObject("Scripting.FileSystemObject")
myFolder = $getAppPath() & “data\”
If fso.FolderExists(myFolder) Then
 msg = myFolder & " exists."
Else
 msg = myFolder & "doesn't exist."
End If
MsgBox msg

VBScript Reference Manual InduSoft Web Studio

222 InduSoft, Ltd.

Method: GetAbsolutePathName
Description: Returns a complete and unambiguous path name that cannot be easily determined from the

specified path information.
Use: strPath = fso.GetAbsolutePathName(pathspec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 pathspec

Required. Path specification to change to a complete and unambiguous path
Return: String containing a complete and unambiguous path name
Remarks: A path is complete and unambiguous if it provides a complete reference from the root of the

specified drive. A complete path can only end with a path separator character (\) if it specifies the
root folder of a mapped drive. Assuming the current directory is c:\mydocuments\reports, the
following table illustrates the behavior of the GetAbsolutePathName method:

pathspec Returned path
"c:" "c:\mydocuments\reports"
"c:.." "c:\mydocuments"
"c:\" "c:\"
"c:*.*\may97" "c:\mydocuments\reports*.*\may97"
"region1" "c:\mydocuments\reports\region1"
"c:\..\..\mydocuments" "c:\mydocuments"

Example: Dim fso, pathSpec, myPath

Set fso = CreateObject("Scripting.FileSystemObject" ‘Current directory is
c:\mydocuments\reports
pathSpec = “C:\”

 myPath = fso.GetAbsolutePathName(pathSpec) ‘Returns c:\mydocuments\reports

Method: GetBaseName
Description: Returns just the name of the object specified. It removes all other information including the

extension
Use: strBaseName = fso.GetBaseName(path)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 path

Required. The path specification for the component whose base name is to be returned.
Return: String containing the name of the object specified.
Remarks: The GetBaseName method works only on the provided path string. It does not attempt to resolve

the path, nor does it check for the existence of the specified path. The GetBaseName method
returns a zero-length string (“”) if no component matches the path argument.

Example: Dim fso, filespec, baseName
 Set fso = CreateObject("Scripting.FileSystemObject"
 filespec = $getAppPath() & “recipes.xml”
 baseName = fso.GetBaseName (filespec) ‘Returns “recipes”

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 223

Method: GetDrive
Description: Returns a Drive object corresponding to the drive for a specified path
Use: objDrv = fso.GetDrive(drivespec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 drivespec

Required. The drivespec argument can be a drive letter (c), a drive letter with a colon
appended (c:), a drive letter with a colon and path separator appended (c:\), or any network
share specification (\\computer2\share1).

Return: Drive Object corresponding to the drive for a specified path
Remarks: For network shares, a check is made to ensure that the share exists. An error occurs if drivespec

does not conform to one of the accepted forms or does not exist.
Example: Dim fso, drvPath, d, s
 Set fso = CreateObject("Scripting.FileSystemObject")
 drvPath = “c:”
 Set d = fso.GetDrive(fso.GetDriveName(drvPath))
 s = "Drive " & UCase(drvPath) & " - "
 s = s & d.VolumeName & vbCrLf
 s = s & "Free Space: " & FormatNumber(d.FreeSpace/1024, 0)
 s = s & " Kbytes"
 MsgBox s

Method: GetDriveName
Description: Returns a string containing the name of the drive for a specified path
Use: strName = fso.GetDriveName(path)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 path

 Required. The path specification for the component whose drive name is to be returned.
Return: String containing the name of the drive for a specified path
Remarks: The GetDriveName method works only on the provided path string. It does not attempt to resolve

the path, nor does it check for the existence of the specified path. The GetDriveName method
returns a zero-length string (“”) if the drive can’t be determined.

Example: Dim fso, drvPath, GetAName
 Set fso = CreateObject("Scripting.FileSystemObject")
 drvPath = “c:”
 GetAName = fso.GetDriveName(drvPath) ‘Returns “c:”

Method: GetExtensionName
Description: Returns a string containing the extension name for the last component in a path.
Use: strExtName = fso.GetExtensionName(path)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 path

 Required. The path specification for the component whose drive name is to be returned.
Return: String containing the extension name for the last component in a path.
Remarks: For network drives, the root directory (\) is considered to be a component. The

GetExtensionName method returns a zero-length string ("") if no component matches the path
argument.

Example: Dim fso, drvPath, ExtName
 Set fso = CreateObject("Scripting.FileSystemObject")
 drvPath = $getAppPath() & “recipes.xml”
 ExtName = fso.GetExtensionName(drvPath) ‘Returns “xml”

VBScript Reference Manual InduSoft Web Studio

224 InduSoft, Ltd.

Method: GetFile
Description: Returns a File object corresponding to the file in the specified path. The file object methods and

properties can be accessed. See File Object for the file object’s methods and properties.
Use: objFile = fso.GetFile(fileSpec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 fileSpec

 Required. The filespec is the path (absolute or relative) to a specific file.
Return: File Object
Remarks: An error occurs if the specified file does not exist. The GetFile method does not support the use

of wildcard characters, such as ? or *.
Example: Dim fso, fileSpec, f, s
 Set fso = CreateObject("Scripting.FileSystemObject")
 fileSpec = $getAppPath() & “recipes.xml”
 Set f = fso.GetFile(fileSpec)
 s = f.Path & vbCrLf

s = s & "Created: " & f.DateCreated & vbCrLf
s = s & "Last Accessed: " & f.DateLastAccessed & vbCrLf
s = s & "Last Modified: " & f.DateLastModified
MsgBox s

Method: GetFileName
Description: Returns the last component of a specified path (file name or folder name) that is not part of the

drive specification.
Use: strName = fso.GetFileName(fileSpec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 fileSpec

 Required. The path (absolute or relative) to a specific file.
Return: String containing the last component of a specified path
Remarks: The GetFileName method works only on the provided path string. It does not attempt to resolve

the path, nor does it check for the existence of the specified path. The GetFileName method
returns a zero-length string (“”) if pathspec does not end with the named component.

Example: Dim fso, fileSpec, s
 Set fso = CreateObject("Scripting.FileSystemObject")
 fileSpec = $getAppPath() & “recipes.xml”
 s = fso.GetFile(fileSpec) ‘Returns “recipes.xml”
 MsgBox s

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 225

Method: GetFileVersion
Description: Returns the version number of a specified file
Use: strVersionNum = fso.GetFileVersion(fileSpec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 fileSpec

 Required. The path (absolute or relative) to a specific file.
Return: String containing the version number of a specified file
Remarks: The GetFileVersion method works only on the provided path string. It does not attempt to

resolve the path, nor does it check for the existence of the specified path. The GetFileVersion
method returns a zero-length string (“”) if pathspec does not end with the named component.

Example: Dim fso, fileSpec, s
 Set fso = CreateObject("Scripting.FileSystemObject")
 fileSpec = “c:\windows\system32\notepad.exe”
 s = fso.GetFile(fileSpec) ‘Returns “5.1.2600.2180”
 If Len(s) Then
 MsgBox “File Version is : “ & s
 Else
 MsgBox “No File Version information is available”
 End If

Method: GetFolder
Description: Returns a Folder object corresponding to the folder in a specified path
Use: objFolder = fso.GetFolder(folderSpec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 folderSpec

 Required. The folderspec is the path (absolute or relative) to a specific folder.
Return: Returns a folder object
Remarks: Since this method creates an object, you need to use it with the Set command. An error occurs if

the specified folder does not exist.
Example: Dim fso, drvPath, f, fc, s
 Set fso = CreateObject("Scripting.FileSystemObject")
 drvPath = $getAppPath()
 Set f = fso.GetFolder(drvPath)

Set fc = f.SubFolders
 s = “”
 For Each x in fc
 s = s & x.Name & vbCrLf
 Next

MsgBox s ‘Displays a list of folders in the App directory

VBScript Reference Manual InduSoft Web Studio

226 InduSoft, Ltd.

Method: GetParentFolderName
Description: Returns a string containing the name of the parent folder of the last component in the specified

path
Use: strName = fso.GetParentFolderName(path)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 path

Required. The path specification for the component whose parent folder name is to be
returned.

Return: String containing the name of the parent folder
Remarks: The GetParentFolderName method works only on the provided path string. It does not attempt

to resolve the path, nor does it check for the existence of the specified path. The
GetParentFolderName method returns a zero-length string (“”) if there is no parent folder for the
component specified in the path argument.

Example: Dim fso, drvPath, s
 Set fso = CreateObject("Scripting.FileSystemObject")
 drvPath = $getAppPath()
 s = fso.GetParentFolderName(drvPath)
 MsgBox “Parent Folder = “ & s ‘Returns “c:\My Documents\InduSoft Web Studio v6.1

Projects”

Method: GetSpecialFolder
Description: Returns the special folder specified
Use: strFolderName = fso.GetSpecialFolder(folderSpec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 folderSpec

Required. Then name of the special folder to be returned. Can be any of the following
constants:

Constant Value Description
WindowsFolder 0 The Windows folder containing files installed by the

Windows operating system
SystemFolder 1 The (Windows) System folder containing libraries, fonts

and device drivers
TemporaryFolder 2 The Temp folder is used to store temporary files. Its path

is found in the TMP environment variable.
Return: String containing the name of the parent folder
Remarks: None
Example: Dim fso, WinFolder, SysFolder
 Set fso = CreateObject("Scripting.FileSystemObject")
 WinFolder = fso.GetSpecialFolder(0) & “\” ‘Result is “C:\Windows\”
 SysFolder = fso.GetSpecialFolder(1) & “\” ‘Result is “C:\Windows\system32\”

Method: GetStandardStream
Description: Returns a TextStream object corresponding to the standard input, output, or error stream

Note:
• The GetStandardStream Method does not work with IWS and if you use it, you will get an error.

GetStandardStream only works for standard I/O when CScript is the VBScript Interpreter. For operator I/O,
use MsgBox and InputBox instead.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 227

Method: GetTempName
Description: Returns a randomly generated temporary file or folder name that is useful for performing

operations that require a temporary file or folder
Use: strName = fso.GetTempName
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
Return: String that contains a randomly generated temporary file or folder name. A random name with

a .tmp extension will be returned.
Remarks: The GetTempName method does not create a file. It only provides only a temporary file name

that can be used with CreateTextFile to create a file.
Example: Dim fso, tempFile

 Function CreateTempFile
 Const TemporaryFolder = 2
 Dim tfolder, tname, tfile
 Set tfolder = fso.GetSpecialFolder(TemporaryFolder)
 tname = fso.GetTempName
 Set tfile = tfolder.CreateTextFile(tname)
 Set CreateTempFile = tfile
End Function

Set fso = CreateObject("Scripting.FileSystemObject")
Set tempFile = CreateTempFile
tempFile.WriteLine "Hello World"
tempFile.Close

Method: MoveFile
Description: Moves one or more files from one location to another
Use: fso.MoveFile (source, destination)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 source

Required. The path to the file or files to be moved. The source argument string can contain
wildcard characters in the last path component only.

 destination
Required. The path where the file or files are to be moved. The destination argument can't
contain wildcard characters.

Return: None
Remarks: If source contains wildcards or destination ends with a path separator (\), it is assumed that

destination specifies an existing folder in which to move the matching files. Otherwise, destination
is assumed to be the name of a destination file to create. In either case, three things can happen
when an individual file is moved:

• If destination does not exist, the file gets moved. This is the usual case.
• If destination is an existing file, an error occurs.
• If destination is a directory, an error occurs.

An error also occurs if a wildcard character that is used in source doesn't match any files. The
MoveFile method stops on the first error it encounters. No attempt is made to roll back any
changes made before the error occurs

Example: Dim fso, drvPath
Set fso = CreateObject("Scripting.FileSystemObject")
drvPath = $getAppPath() & “recipes.xml”
fso.MoveFile drvPath, "c:\backup\"

VBScript Reference Manual InduSoft Web Studio

228 InduSoft, Ltd.

Method: MoveFolder
Description: Moves one or more folders from one location to another.
Use: fso.MoveFolder (source, destination)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 source

Required. The path to the folder or folders to be moved. The source argument string can
contain wildcard characters in the last path component only.

 destination
Required. The path where the folder or folders are to be moved. The destination argument
can't contain wildcard characters.

Return: None
Remarks: If source contains wildcards or destination ends with a path separator (\), it is assumed that

destination specifies an existing folder in which to move the matching folders. Otherwise,
destination is assumed to be the name of a destination folder to create. In either case, three
things can happen when an individual folder is moved:

• If destination does not exist, the folder gets moved. This is the usual case.
• If destination is an existing file, an error occurs.
• If destination is a directory, an error occurs.

An error also occurs if a wildcard character that is used in source doesn't match any folders. The
MoveFolder method stops on the first error it encounters. No attempt is made to roll back any
changes made before the error occurs

Example: Dim fso, drvPath
Set fso = CreateObject("Scripting.FileSystemObject")
drvPath = $getAppPath()
fso.MoveFolder drvPath, "c:\backup\"

Method: OpenTextFile
Description: Opens a specified file and returns a TextStream object that can be used to read from, write to, or

append to a file.
Use: oTSO = fso.OpenTextFile(filename [, iomode[, create[, format]]])
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 filename

Required. A string expression that identifies the file to open.
 iomode

Optional. Indicates the file input/output mode. Can be one of three constants:
Constant Value Description
ForReading 1 Open a file for reading only. You can’t write to this file
ForWriting 2 Open a file for reading & writing
ForAppending 8 Open a file and write to the end of the file

create
Optional. Boolean value that indicates whether a new file can be created if the specified
filename doesn't exist. The value is True if a new file is to be created if it doesn’t exist, False
if it isn't to be created if it doesn’t exist. If omitted, a new file isn't created (default = FALSE).

format
Optional. One of three Tristate values used to indicate the format of the opened file. If
omitted, the file is opened as ASCII.

Constant Value Description
TristateUseDefault -2 Opens the file using the system default
TristateTrue -1 Opens the file as Unicode
TristateFalse 0 Opens the file as ASCII

Return: A TextStream object
Example: Const ForReading=1, ForWriting=2, ForAppending=8
 Dim fso, f
 Set fso = CreateObject("Scripting.FileSystemObject")

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 229

 Set f = fso.OpenTextFile("c:\testfile.txt", ForWriting, True)
 f.Write "Hello world!"
 f.Close

Drives Collection
FSO Property Drives
Description: Returns a collection of Drives objects.
Use: Set objDrives = fso.Drives
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated.
 objDrives

Required. The name of a Drive Collection.
Return: An object containing a collection of Drives objects
Remarks: Returns a collection of Drives objects available on the local machine, including networked drives

mapped to the local machine. Removable media drives do not have to have media inserted to
appear in the Drives Collection.

Example: Dim fso, dc, d, strDrvList
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set dc = fso.Drives ‘Instantiate the Drives collection object
strDrvList = “”
For each d in dc ‘Evaluate each drive in the drives
collection
 strDrvList = strDrvList & d.driveLetter & “ – “ ‘Get the Drive letter
 If d.DriveType = 3 Then ‘See if a network drive
 strDrvList = strDrvList & d.ShareName ‘Yes
 ElseIf d.IsReady Then ‘No – is a local drive. Check if ready
 strDrvList = strDrvList & d.VolumeName ‘Yes – add to list
 End If
 strDrvList = strDrvList & vbCrLf ‘Add a Cr & Lf and then get next drive
Next
MsgBox strDrvList ‘Display the list of drives

Property Count
Description: Returns the number of items in a collection. Read only.
Use: intCount = objDrives.Count
Arguments: objDrives

Required. The name of a Drive Collection previously instantiated.
Return: The number of items in a collection.
Remarks: Read only.
Example: Dim fso, dc, totDrives

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set dc = fso.Drives ‘Instantiate the Drives collection object
totDrives = dc.Count
MsgBox “There are “ & totDrives & “ drives available”

Property Item
Description: Returns an item (a Drive Name) based on the specified key.
Use: strName = objDrives.Item(key)
Arguments: objDrives

Required. The name of a Drive Collection previously instantiated.
key

Required. The key is associated with the item being retrieved.

VBScript Reference Manual InduSoft Web Studio

230 InduSoft, Ltd.

Return: The drive name for a specified key.
Remarks: Read only. This is a function more commonly used with the VBScript dictionary object.

(Scripting.Dictionary). The “Item” is similar to a numerical-based index in an array, except that an
Item can be character based and it must be unique.

Example: Dim fso, dc, myItem
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set dc = fso.Drives ‘Instantiate the Drives collection object
myItem = dc.Item (“c”)
MsgBox myItem ‘Displays “c:”

Folders Collection
FSO Method GetFolder
Description: Returns a Folder object corresponding to the folder in a specified path
Use: objFolder = fso.GetFolder(folderspec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 folderspec

 Required. The folderspec is the path (absolute or relative) to a specific folder.
Return: Returns a folder object
Remarks: Since this method creates an object, you need to use it with the Set command. An error occurs if

the specified folder does not exist.
Example: Dim fso, drvPath, f, fc, nf
 Set fso = CreateObject("Scripting.FileSystemObject")
 drvPath = $getAppPath()
 Set f = fso.GetFolder(drvPath) ‘Instantiate the parent folder object

Set fc = f.SubFolders ‘Return the subfolder Folders collection
 s = “”
 For Each x in fc
 s = s & x.Name & vbCrLf ‘Iterate through the Folders collection object
 Next

MsgBox s ‘Displays a list of subfolders in the App directory

Property Count
Description: Returns the number of items in a collection. Read only.
Use: intCount = objFolders.Count
Arguments: objFolders

Required. The name of a Folders Collection previously instantiated.
Return: The number of items in a collection.
Remarks: Read only.
Example: Dim drvPath, fso, fc, f, numf

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
drvPath = $getAppPath()
Set f = fso.GetFolder(drvPath) ‘Instantiate the parent folder object
Set fc = f.SubFolders ‘Return the subfolder Folders collection
numf = fc.Count
MsgBox “There are “ & numf & “ subfolders”

Property Item
Description: Returns an item (a Drive Name) based on the specified key.
Use: strName = objFolders.Item(key)
Arguments: objFolders

Required. The name of a Folders Collection.
key

Required. The key is associated with the item being retrieved.
Return: The drive name for a specified key.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 231

Remarks: Read only. This is a function more commonly used with the VBScript dictionary object.
(Scripting.Dictionary). The “Item” is similar to a numerical-based index in an array, except that an
Item can be character based and it must be unique.

Example: Dim drvPath, fso, fc, myItem
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
drvPath = $getAppPath()
Set f = fso.GetFolder(drvPath) ‘Instantiate the parent folder object
Set fc = f.SubFolders ‘Return the subfolder Folders collection
myItem = fc.Item (“Web”)
MsgBox myItem ‘displays the entire path to the Web
subfolder

Method Add
Description: Adds a new folder to the Folders collection.
Use: objFolders.Add(folderName)
Arguments: objFolders

Required. The name of a Folders Collection previously instantiated.
folderName

Required. The name of the new Folder being added.
Return: None
Remarks: Adds a subfolder to the parent folder. An error occurs if the folderName already exists.
Example: Dim drvPath, fso, fc, numf

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
drvPath = $getAppPath()
Set f = fso.GetFolder(drvPath) ‘Instantiate the parent folder object
Set fc = f.SubFolders ‘Return the subfolder Folders collection
numf = fc.Count
MsgBox “There are “ & numf & “ subfolders” ‘Returns “7”
fc.Add (“TempData”) ‘Add a “TempData” subfolder
numf = fc.Count
MsgBox “There are “ & numf & “ subfolders” ‘Returns “8”

VBScript Reference Manual InduSoft Web Studio

232 InduSoft, Ltd.

Files Collection
FSO Method GetFolder
Description: Returns a Folder object corresponding to the folder in a specified path
Use: objFolder = fso.GetFolder(folderspec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 folderspec

 Required. The folderspec is the path (absolute or relative) to a specific folder.
Return: Returns a folder object
Remarks: Since this method creates an object, you need to use it with the Set command. An error occurs if

the specified folder does not exist.
Example: Dim fso, drvPath, f, fc, x, s
 Set fso = CreateObject("Scripting.FileSystemObject")
 drvPath = $getAppPath() & “Hst”
 Set f = fso.GetFolder(drvPath) ‘Instantiate the folder object

Set fc = f.Files ‘Return the Files collection
 s = “”
 For Each x in fc
 s = s & x.Name & vbCrLf ‘Iterate through the Files collection object
 Next

MsgBox s ‘Displays a list of files in the “Hst” subfolder

Property Count
Description: Returns the number of items in a collection. Read only.
Use: intCount = objFiles.Count
Arguments: objFiles

Required. The name of a Files Collection object previously instantiated.
Return: The number of items in a collection.
Remarks: Read only.
Example: Dim drvPath, fso, fc, numf

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
drvPath = $getAppPath()
Set f = fso.GetFolder(drvPath) ‘Instantiate the parent folder object
Set fc = f.Files ‘Return the subfolder Folders collection
numf = fc.Count
MsgBox “There are “ & numf & “ files”

Property Item
Description: Returns an item (a Drive Name) based on the specified key.
Use: strName = objFiles.Item(key)
Arguments: objFiles

Required. The name of a Folders Collection object previously instantiated.
key

Required. The key is associated with the item being retrieved.
Return: The drive name for a specified key.
Remarks: Read only. This is a function more commonly used with the VBScript dictionary object.

(Scripting.Dictionary). The “Item” is similar to a numerical-based index in an array, except that an
Item can be character based and it must be unique.

Example: Dim drvPath, fso, fc, myItem
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
drvPath = $getAppPath()
Set f = fso.GetFolder(drvPath) ‘Instantiate the parent folder object
Set fc = f.Files ‘Return the subfolder Folders collection
myItem = fc.Item (“myApp.app”)
MsgBox myItem ‘displays the entire path to myApp.app

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 233

Drive Object
The Drive Object lets the programmer refer to a specific disk drive or network share drive. Once the Drive object
is instantiated, it can be referred to as an object from VBScript and its various Properties accessed.

The Drive Object is instantiated as follows:
 Dim fso, d, driveSpec

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO Object
driveSpec = “c”
Set d = fso.GetDrive(driveSpec) ‘Instantiate the Drive Object

See the GetDrive method under the FileSystemObject Object Model section for additional details on instantiation
of the Drive Object.

The Drive object has no Methods, only Properties. These properties are generally read-only and follow the format:

return = objDrive.Property
where

return = return value or a returned object
objDrive = the required Drive object (“d” in the examples below)
Property = the Drive object property being accessed

Property AvailableSpace
Description: Returns the amount of space available to a user on the specified drive or network share drive.
Use: intSpace = objDrive.AvailableSpace
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: The read-only value returned by the AvailableSpace property is typically the same as that

returned by the FreeSpace property. Differences may occur between the two for computer
systems that support quotas.

Remarks: Read only.
Example: Dim fso, d

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(fso.GetDriveName(“c:”)
MsgBox “Available Space = “ & FormatNumber(d.AvailableSpace/1024, 0) & “ Kbytes”

Property DriveLetter
Description: Returns the drive letter of a physical local drive or a network share.
Use: strLetter = objDrive.DriveLetter
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: The DriveLetter property returns a zero-length string ("") if the specified drive is not associated

with a drive letter, for example, a network share that has not been mapped to a drive letter.
Remarks: Read only.
Example: Dim fso, d

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(fso.GetDriveName(“c:”)
MsgBox “Drive “ & d.DriveLetter & “:”

VBScript Reference Manual InduSoft Web Studio

234 InduSoft, Ltd.

Property DriveType
Description: Returns a value indicating the type of a specified drive.
Use: intType = objDrive.DriveType
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: The DriveType property a value indication the type of the specified drive. Return values are:

0 – unknown
1 – Removable
2 – Fixed
3 – Network
4 – CD-ROM
5 – RAM Disk

Remarks: Read only.
Example: Dim fso, d, t

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(fso.GetDriveName(“c:”)
Select Case d.DriveType
 Case 0: t = "Unknown"
 Case 1: t = "Removable"
 Case 2: t = "Fixed"
 Case 3: t = "Network"
 Case 4: t = "CD-ROM"
 Case 5: t = "RAM Disk"
 End Select
 MsgBox "Drive " & d.DriveLetter & ": - " & “ is a “ & t & “ drive”

Property FileSystem
Description: Returns the type of file system in use for the specified drive.
Use: strType = objDrive.FileSystem
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: Available return types include FAT, NTFS, and CDFS.
Remarks: Read only.
Example: Dim fso, d

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(fso.GetDriveName(“c:”)
MsgBox “Drive “ & d.DriveLetter & “ Files System type =” & d.FileSystem

Property FreeSpace
Description: Returns the amount of space available to a user on the specified drive or network share drive.
Use: intSpace = objDrive.FreeSpace
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: The read-only value returned by the FreeSpace property is typically the same as that returned by

the AvailableSpace property. Differences may occur between the two for computer systems that
support quotas.

Remarks: Read only.
Example: Dim fso, d

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(fso.GetDriveName(“c:”)
MsgBox “Free Space = “ & d.FreeSpace/1024 & “ Kbytes”

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 235

Property IsReady
Description: Indicates whether the specified drive is ready or not
Use: boolReady = objDrive.IsReady
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: Returns True if the specified drive is ready; False if it is not.
Remarks: Read only.
Example: Dim fso, d, s

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(fso.GetDriveName(“c:”)
s = “Drive “ & d.DriveLetter
If d.IsReady Then
 s = s & " Drive is Ready."
Else
 s = s & " Drive is not Ready."
End If
MsgBox s

Property Path
Description: Returns the path for a specified drive.
Use: strPath = objDrive.Path
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: The path for a specified drive
Remarks: For drive letters, the root drive is not included. For example, the path for the C drive is C:, not C:\.
Example: Dim fso, d

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(fso.GetDriveName(“c:”))
MsgBox “Path = “ & UCase(d.Path) ‘Returns c:

Property RootFolder
Description: Returns a Folder object representing the root folder of a specified drive.
Use: objFolder = objDrive.RootFolder
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: The path for a specified drive
Remarks: Read-only. All the files and folders contained on the drive can be accessed using the returned

Folder object.
Example: Dim fso, d

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(“c:”)
MsgBox “RootFolder = “ & d.RootFolder ‘Returns “c:\”

Property SerialNumber
Description: Returns the decimal serial number used to uniquely identify a disk volume.
Use: intSerNum = objDrive.SerialNumber
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: A decimal serial number that uniquely identifies a disk volume
Remarks: Read-only. You can use the SerialNumber property to ensure that the correct disk is inserted in

a drive with removable media.
Example: Dim fso, d

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(“c:”)
MsgBox “Drive Serial Number = “ & d.SerialNumber ‘Returns “c:\”

VBScript Reference Manual InduSoft Web Studio

236 InduSoft, Ltd.

Property ShareName
Description: Returns the network share name for a specified drive.
Use: strName = objDrive.ShareName
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: A string that is the network share name for a specified drive.
Remarks: Read-only. If object is not a network drive, the ShareName property returns a zero-length string

("").
Example: Dim fso, dc, d

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(“c:”)
If d.DriveType = 3 Then ‘See if a network drive
 MsgBox “Network Shared Drive Name = “ & d.ShareName
Else
 MsgBox “Not a Network Shared Drive”
End If

Property TotalSize
Description: Returns the total space, in bytes, of a drive or network shared drive.
Use: intSize = objDrive.TotalSize
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: Integer. The total space, in bytes, of a drive or network shared drive
Remarks: Read-only.
Example: Dim fso, d

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(“c:”)
MsgBox “Total Drive Size = “ & d.TotalSize & “ bytes” ‘Returns the total size of the drive

Property VolumeName
Description: Sets or returns the volume name of the specified drive. Read/write.
Use: strName = objDrive.VolumeName
 objDrive.VolumeName [= newname]
Arguments: objDrive

Required. The name of a Drive Object previously instantiated..
newname

Optional. If provided, newname is the new name of the specified object
Return: String. The volume name of the specified drive.
Remarks: Read/Write.
Example: Dim fso, d

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(“c:”)
MsgBox “Total Drive Size = “ & d.TotalSize & “ bytes” ‘Returns the total size of the drive

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 237

Folder Object
The Folder Object allows the programmer refer to a specific folder. Once the Folder object is
instantiated, it can be referred to as an object from VBScript and its various Methods and Properties
accessed.

The Folder Object is instantiated as follows:
 Dim fso, f, myPath

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO Object
myPath = $GetAppPath() & “Hst” ‘Define the path to the folder of
interest
Set f = fso.GetFolder(myPath) ‘Instantiate the Drive Object

See the GetFolder method under the FileSystemObject Object Model section for additional details on
instantiation of the Folder Object.

Method Copy
Description: Copies a specified folder from one location to another.
Use: objFolder.Copy (destination, [overwrite])
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
destination

Required. Destination where the folder is to be copied. Wildcard characters are not allowed.
overwrite

Optional. Boolean value that is True (default) if existing folders are to be overwritten, False if
they are not.

Return: None
Remarks: The results of the Copy method on a Folder are identical to operations performed using

FileSystemObject.CopyFolder where the folder referred to by object is passed as an argument.
You should note, however, that the alternative method is capable of copying multiple folders.

Example: Dim fso, f, myFolder
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() & “Hst” ‘Application Folder for Historical files
Set f = fso.GetFolder (myFolder)
f.Copy (myFolder & “Temp”) ‘Creates folder /HstTemp and copies
files

Method: CreateTextFile
Description: Creates a specified file name and returns a TextStream object that can be used to read from or

write to the file
Use: Set objFile = objFolde.CreateTextFile(filename[, overwrite[, Unicode]])
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
 filename

Required. A string expression that identifies the file to create
overwrite

Optional. Boolean value that indicates whether you can overwrite an existing file. The value is
True if the file can be overwritten, False if it can't be overwritten. If omitted, existing files are
not overwritten (default False).

unicode
Optional. Boolean value that indicates whether the file is created as a Unicode or ASCII file. If
the value is True, the file is created as a Unicode file. If the value is False, the file is created
as an ASCII file. If omitted, an ASCII file is assumed.

Remarks: None

VBScript Reference Manual InduSoft Web Studio

238 InduSoft, Ltd.

Example: Dim fso, myFile
Set fso = CreateObject("Scripting.FileSystemObject")
Set myFile = fso.CreateTextFile("c:\testfile.txt", True, False)
myFile.WriteLine("This is a test.")
myFile.Close

Method: Delete
Description: Deletes a specified folder
Use: objFolder.Delete (force)
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
force

Optional. Boolean value that is True if folders with the read-only attribute set are to be
deleted; False if they are not (default).

Return: None
Remarks: An error occurs if the specified folder does not exist. The results of the Delete method on a

Folder are identical to operations performed using FileSystemObject.DeleteFolder. The Delete
method does not distinguish between folders that have content and those that do not. The
specified folder is deleted regardless of whether or not it has content.

Example: Dim fso, f, myFolder
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() & “HstTemp” ‘Specify the HstTemp folder in app
directory
Set f = fso.GetFolder (myFolder)
f.Delete ‘Delete it

Method: Move
Description: Moves a specified folder from one location to another.
Use: objFolder.Move (destination)
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
destination

Required. Destination where the folder is to be moved. Wildcard characters are not allowed.
Return: None
Remarks: The results of the Move method on a Folder is identical to operations performed using

FileSystemObject.MoveFolder. You should note, however, that the alternative methods are
capable of moving multiple folders.

Example: Dim fso, f, myFolder
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() & “HstTemp” ‘Specify the HstTemp folder in app
directory
Set f = fso.GetFolder (myFolder)
f.move(“c:\archive”) ‘Move it into c:\archive folder

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 239

Property: Attributes
Description: Sets or returns the attributes of files or folders.
Use: objFolder.Attributes = newAttributes
 intAttribute = objFolder.Attributes
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
newAttributes

Optional. If provided, newAttributes is the new value for the attributes of the specified object.
The newattributes argument can have any of the following values or any logical combination
of the following values:

Constant Value Description
Normal 0 Normal file. No Attributes are set.
ReadOnly 1 Read-only file. Attribute is read/write.
Hidden 2 Hidden file. Attribute is read/write.
System 4 System file. Attribute is read/write.
Volume 8 Disk drive volume label. Attribute is read-only
Directory 16 Folder or directory. Attribute is read-only.
Archive 32 File has changed since last backup. Attribute is read/write
Alias 1024 Link or shortcut. Attribute is read-only
Compressed 2048 Compressed file. Attribute is read-only.

Return: Can return an attribute of a file or folder
Remarks: Read/write or read-only, depending on the attribute. The newAttribute can have any valid

combination of the above values.
Example: Dim fso, f, attrVal, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
attrVal = f.Attributes
attrVal = attrVal And 16 ‘See if a folder
If attrVal = 16 Then
 MsgBox “Object is a folder”
Else
 MsgBox “Object is not a folder”
End If

Property: DateCreated
Description: Returns the date and time that the specified folder was created.
Use: objFolder.DateCreated
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: None
Remarks: Read-only.
Example: Dim fso, f, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
MsgBox “App Directory created on “ & f.DateCreated

VBScript Reference Manual InduSoft Web Studio

240 InduSoft, Ltd.

Property: DateLastAccessed
Description: Returns the date and time that the specified folder was last accessed
Use: objFolder.DateLastAccessed
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: None
Remarks: Read-only.
Example: Dim fso, f, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
MsgBox “App Directory was last accessed on “ & f.DateLastAccessed

Property: DateLastModified
Description: Returns the date and time that the specified folder was last modified
Use: objFolder.DateLastModified
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: None
Remarks: Read-only.
Example: Dim fso, f, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
MsgBox “App Directory was last modified on “ & f.DateLastModified

Property: Drive
Description: Returns the drive letter of the drive on which the specified folder resides
Use: objFolder.Drive
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: None
Remarks: Read-only.
Example: Dim fso, f, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
MsgBox “App Directory is installed on drive “ & f.Drive ‘Installed on drive c:

Property: Files
Description: Returns a Files collection consisting of all File objects contained in the specified folder.
Use: objFolder.Files
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: A file collection.
Remarks: Includes files with hidden and system file attributes set.
Example: Dim fso, f, fc, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
fc = f.files ‘Return file collection of files in app
folder

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 241

Property: IsRootFolder
Description: Tests to see if the specified folder is the root folder.
Use: boolValue = objFolder.IsRootFolder
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: True if the specified folder is the root folder; False if not.
Remarks: Includes files with hidden and system file attributes set.
Example: Dim fso, f, n, s, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
n = 0
If f.IsRootfolder Then
 MsgBox “The app folder is the root folder”
Else
 s = myFolder & vbCrLf
 Do Until f.IsRootFolder
 Set f = f.ParentFolder
 n = n+1
 s = s & “parent folder is “ & f.Name & vbCrLf
 Loop
 MsgBox “Folder was nested “ & n & “ levels” & vbCrLf & s
End If

Property: Name
Description: Sets or returns the name of a specified folder
Use: objFolder.Name = newName
 strName = objFolder.Name
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
newName

Optional. If provided, newName is the new name of the specified folder object
Return: The name of the specified folder.
Remarks: Read/write.
Example: Dim fso, f, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
MsgBox “folder name is “ & f.Name ‘Returns the folder name

VBScript Reference Manual InduSoft Web Studio

242 InduSoft, Ltd.

Property: ParentFolder
Description: Returns the folder object for the parent of the specified folder
Use: objParent = objFolder.ParentFolder
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: The folder object for the parent of the specified folder.
Remarks: Read-only
Example: Dim fso, f, pf, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
Set pf = f.ParentFolder ‘Get the parent folder
MsgBox “Parent Folder name = “ & pf.Name

Property Path
Description: Returns the path for a specified folder
Use: strPath = objFolder.Path
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: The path for a specified folder
Remarks: None
Example: Dim fso, f, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
MsgBox “Path = “ & UCase(f.Path) ‘Display path to app folder

Property ShortName
Description: Returns the short name used by programs that require the earlier 8.3 naming convention.
Use: strName = objFolder.ShortName
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: The short name for the folder object
Remarks: None
Example: Dim fso, f, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
MsgBox “Short name = “ & f.ShortName ‘Display short name of app folder

Property ShortPath
Description: Returns the short path used by programs that require the earlier 8.3 naming convention.
Use: strPath = objFolder.ShortPath
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: The short path for the folder object
Remarks: None
Example: Dim fso, f, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
MsgBox “Short pathname = “ & f.ShortPath ‘Display short path of app folder

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 243

Property Size
Description: Returns the size of all the files and subfolders contained in the specified folder
Use: intSize = objFolder.Size
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: The size of the specified folder
Remarks: Size is in bytes
Example: Dim fso, f, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
MsgBox “Size = “ & f.Size & “ bytes” ‘Display size of app folder

Property SubFolders
Description: Returns a Folders collection consisting of all folders contained in a specified folder,
Use: objFC = objFolder.SubFolders
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: A folders collection of all subfolders in a specified folder.
Remarks: Includes folders with hidden and system file attributes set.
Example: Dim fso, f, fc, s, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
fc = f.Subfolders ‘Returns collection of (sub)folders
s = “”
For each f1 in fc
 s = s & fc.name & vbCrLf
Next
MsgBox s

Property Type
Description: Returns information about the type of a folder.
Use: strType = objFolder.Type
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: The type of folder.
Remarks: If the object is a folder, “Folder” will be returned.
Example: Dim fso, f, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
MsgBox “Type = “ & f.Type ‘Displays “Folder”

VBScript Reference Manual InduSoft Web Studio

244 InduSoft, Ltd.

File Object
The File Object allows the programmer refer to a specific file. Once the File object is instantiated, it can
be referred to as an object from VBScript and its various Methods and Properties accessed.

The File Object is instantiated as follows:
 Dim fso, f, myPath

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO Object
myPath = $GetAppPath() & “notes.txt” ‘Define the path to the file of interest
Set f = fso.GetFile(myPath) ‘Instantiate the Drive Object

See the GetFile method under the FileSystemObject Object Model section for additional details on
instantiation of the File Object.

The File object has both Methods and Properties available.

Method Copy
Description: Copies a specified file from one location to another.
Use: objFile.Copy (destination, [overwrite])
Arguments: objFile

Required. The name of a File Object previously instantiated.
destination

Required. Destination where the File is to be copied. Wildcard characters are not allowed.
overwrite

Optional. Boolean value that is True (default) if existing files are to be overwritten, False if
they are not.

Return: None
Remarks: The results of the Copy method on a File are identical to operations performed using

FileSystemObject.CopyFile where the file referred to by object is passed as an argument. You
should note, however, that the alternative method is capable of copying multiple files.

Example: Dim fso, f, myFile
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Get the file object
Set f = fso.GetFile (myFile)
f.Copy (“c:\save\recipe1.xml”) ‘Save the file

Method: Delete
Description: Deletes a specified file
Use: objFile.Delete (force)
Arguments: objFile

Required. The name of a File Object previously instantiated.
force

Optional. Boolean value that is True if files with the read-only attribute set are to be deleted;
False if they are not (default).

Return: None
Remarks: An error occurs if the specified file does not exist. The results of the Delete method on a File are

identical to operations performed using FileSystemObject.DeleteFile. The Delete method does
not distinguish between files that have content and those that do not. The specified file is deleted
regardless of whether or not it has content.

Example: Dim fso, f, myFile
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the HstTemp folder in app
directory
Set f = fso.GetFile (myFile)
f.Delete ‘Delete it

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 245

Method: Move
Description: Moves a specified file from one location to another.
Use: objFile.Move (destination)
Arguments: objFile

Required. The name of a File Object previously instantiated.
destination

Required. Destination where the file is to be moved. Wildcard characters are not allowed.
Return: None
Remarks: The results of the Move method on a File is identical to operations performed using

FileSystemObject.MoveFile. You should note, however, that the alternative methods are
capable of moving multiple files.

Example: Dim fso, f, myFile
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the HstTemp folder in app
directory
Set f = fso.GetFile (myFile)
f.move(“Recipe1Save.xml”) ‘Moves the file

Method: OpenAsTextStream
Description: Opens a specified file name and returns a TextStream object that can be used to read from or

write to, or append to a file
Use: oTso = oFile.OpenAsTextStream([iomode[,format]])
Arguments: objFile

Required. The name of a File Object previously instantiated.
 iomode

Optional. Indicates the file input/output mode. Can be one of three constants:
Constant Value Description
ForReading 1 Open a file for reading only. You can’t write to this file
ForWriting 2 Open a file for reading & writing
ForAppending 8 Open a file and write to the end of the file

format
Optional. One of three Tristate values used to indicate the format of the opened file. If
omitted, the file is opened as ASCII.

Constant Value Description
TristateUseDefault -2 Opens the file using the system default
TristateTrue -1 Opens the file as Unicode
TrstateFalse 0 Opens the file as ASCII

Return: A TextStream object
Remarks The OpenAsTextStream method provides the same functionality as the OpenTextFile method

of the FileSystemObject. In addition, the OpenAsTextStream method can be used to write to a
file.

Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, tso
 Set fso = CreateObject("Scripting.FileSystemObject")
 Set f = fso.GetFile("c:\testfile.txt") ‘Must be an existing file
 Set tso = f.OpenAsTextStream(ForWriting, True) ‘Unicode file
 tso.Write "Hello world!" ‘Write a line of text to the file
 tso.Close

VBScript Reference Manual InduSoft Web Studio

246 InduSoft, Ltd.

Property: Attributes
Description: Sets or returns the attributes of files or folders.
Use: objFile.Attributes = newAttributes
 intAttribute = objFile.Attributes
Arguments: objFile

Required. The name of a File Object previously instantiated.
newAttributes

Optional. If provided, newAttributes is the new value for the attributes of the specified object.
The newattributes argument can have any of the following values or any logical combination
of the following values:

Constant Value Description
Normal 0 Normal file. No Attributes are set.
ReadOnly 1 Read-only file. Attribute is read/write.
Hidden 2 Hidden file. Attribute is read/write.
System 4 System file. Attribute is read/write.
Volume 8 Disk drive volume label. Attribute is read-only
Directory 16 Folder or directory. Attribute is read-only.
Archive 32 File has changed since last backup. Attribute is read/write
Alias 1024 Link or shortcut. Attribute is read-only
Compressed 2048 Compressed file. Attribute is read-only.

Return: Can return an attribute of a file or folder
Remarks: Read/write or read-only, depending on the attribute. The newAttribute can have any valid

combination of the above values.
Example: Dim fso, f, attrVal, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory and file
Set f = fso.GetFile(myFile)
attrVal = f.Attributes
attrVal = attrVal And 1 ‘See if a normal file
If attrVal = 0 Then
 MsgBox “Object is a normal file”
Else
 MsgBox “Object is not a normal file”
End If

Property: DateCreated
Description: Returns the date and time that the specified file was created.
Use: objFile.DateCreated
Arguments: objFile

Required. The name of a File Object previously instantiated.
Return: None
Remarks: Read-only.
Example: Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
MsgBox “File created on “ & f.DateCreated

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 247

Property: DateLastAccessed
Description: Returns the date and time that the specified file was last accessed
Use: objFile.DateLastAccessed
Arguments: objFile

Required. The name of a File Object previously instantiated.
Return: None
Remarks: Read-only.
Example: Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
MsgBox “File was last accessed on “ & f.DateLastAccessed

Property: DateLastModified
Description: Returns the date and time that the specified file was last modified
Use: objFile.DateLastModified
Arguments: objFile

Required. The name of a File Object previously instantiated.
Return: None
Remarks: Read-only.
Example: Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
MsgBox “File was last modified on “ & f.DateLastModified

Property: Drive
Description: Returns the drive letter of the drive on which the specified file resides
Use: objFile.Drive
Arguments: objFile

Required. The name of a File Object previously instantiated.
Return: None
Remarks: Read-only.
Example: Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
MsgBox “File is located on drive “ & f.Drive ‘Installed on drive c:

Property: Name
Description: Sets or returns the name of a specified file
Use: objFile.Name = newName
 strName = objFile.Name
Arguments: objFile

Required. The name of a File Object previously instantiated.
newName

Optional. If provided, newName is the new name of the specified file object
Return: The name of the specified file.
Remarks: Read/write.
Example: Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
MsgBox “file name is “ & f.Name ‘Returns the file name

VBScript Reference Manual InduSoft Web Studio

248 InduSoft, Ltd.

Property: ParentFolder
Description: Returns the folder object for the parent of the specified file
Use: objFolder = objFile.ParentFolder
Arguments: objFile

Required. The name of a File Object previously instantiated.
Return: The folder object for the parent folder of the specified file.
Remarks: Read-only
Example: Dim fso, f, pf, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
Set pf = f.ParentFolder ‘Get the parent folder
MsgBox “Parent Folder name = “ & pf.Name

Property Path
Description: Returns the path for a specified file
Use: strPath = objFile.Path
Arguments: objFile

Required. The name of a File Object previously instantiated.
Return: The path for a specified file
Remarks: None
Example: Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
MsgBox “Path = “ & UCase(f.Path) ‘Display path to app file

Property ShortName
Description: Returns the short name used by programs that require the earlier 8.3 naming convention.
Use: strName = objFile.ShortName
Arguments: objFile

Required. The name of a File Object previously instantiated.
Return: The short name for the file object
Remarks: None
Example: Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
MsgBox “Short name = “ & f.ShortName ‘Display short name of app file

Property ShortPath
Description: Returns the short path used by programs that require the earlier 8.3 naming convention.
Use: strPath = objFile.ShortPath
Arguments: objFile

Required. The name of a File Object previously instantiated.
Return: The short path for the file object
Remarks: None
Example: Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
MsgBox “Short name = “ & f.ShortPath ‘Display short path of app file

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 249

Property Size
Description: Returns the size of the specified file
Use: intSize = objFile.Size
Arguments: objFile

Required. The name of a File Object previously instantiated.
Return: The size of the specified file
Remarks: Size is in bytes
Example: Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
MsgBox “Size = “ & f.Size & “ bytes” ‘Display size of file

Property Type
Description: Returns information about the type of a file.
Use: strType = objFile.Type
Arguments: objFile

Required. The name of a File Object previously instantiated.
Return: The type of file.
Remarks: E.g. for files ending in .TXT, "Text Document" is returned.
Example: Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
MsgBox “Type = “ & f.Type ‘Dispays “XML Document”

VBScript Reference Manual InduSoft Web Studio

250 InduSoft, Ltd.

TextStream Object
The TextStream Object allows the programmer to sequentially access a text file. Once the TextStream
object is instantiated, it can be referred to as an object from VBScript and its various Methods and
Properties accessed.

The TextStream object can be instantiated in three different ways. These are
• Through the CreateTextFile method of the FSO object
• Through the OpenTextFile method of the FSO object
• Through the OpenAsTextStream method of the File Object

There are subtle differences between these methods. The CreateTextFile is used to create a file and a
TextStream object. This method can optionally overwrite an existing object. The OpenTextFile opens
an existing file and returns a TextStream object, but can optionally create the filename if it does not
exist. The OpenAsTextStream object opens an existing file and returns a TextStream object. This
method gives an error if the text file does not exist, there is no option to create the file if it does not exist.
Another difference is that the CreateTextFile method opens a TextStream object for reading and
writing, while the OpenTextFile and OpenAsTextStream methods open a TextStream object for
reading, writing or appending.

Examples of the various approaches to instantiating the TextStream object are:

Instantiating a TextStream object with the CreateTextFile Method
Dim fso, f, myfile
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.CreateTextFile(myFile, True, True) ‘Open as UniCode TextStream
object

Instantiating a TextStream object with the OpenTextFile Method

Constant forReading = 1, forWriting = 2, forAppending = 8
Dim fso, myfile, tso
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set tso = fso.OpenTextFile(myFile, ForWriting, True, True) ‘Open as UniCode TextStream
object

Instantiating a TextStream object with the OpenAsTextStream Method

Constant forReading = 1, forWriting = 2, forAppending = 8
Dim fso, f, myfile, tso
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.GetFile(myFile) ‘Instantiate the file object
Set tso = f.OpenAsTextStream(forAppending, True) ‘Open as UniCode TextStream
object

See the CreateTextFile and OpenTextFile methods under the FileSystemObject Object Model section
for additional details on instantiation of the TextStream Object. See the OpenAsTextStream method
under the File Object section for additional details on instantiation of the TextStream Object

The TextStream object supports either ASCII or UniCode characters, according to the argument
settings when calling the method used to instantiate the TextStream object.

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 251

Method: Close
Description: Closes an open TextStream file
Use: objTso.Close
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
Return: None
Remarks: The Close method closes the file, but still need to set the object variable to Nothing to release

memory. (e.g. “Set objTso = Nothing”
Example: Dim fso, f, myfile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.CreateTextFile(myFile, True)
f.WriteLine (“this is a note”)
f.Close ‘Close the document

Method: Read
Description: Reads a specified number of characters from a TextStream file and returns the resulting string.
Use: strChars = objTso.Read(numCharacters)
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
numCharacters

Required. The number of characters you want to read from the file
Return: A specified number of characters from the file
Remarks: None
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myfile, s

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForReading)
s = f.Read(10) ‘Read 10 characters
MsgBox “First 10 characters = “ & s ‘Display
f.Close ‘Close the document

Method: ReadAll
Description: Reads the entire TextStream file and returns the resulting string.
Use: strChars = objTso.ReadAll
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
Return: The entire TextStream file.
Remarks: VBScript does not have a limit on the resultant character string length other than the available

memory.
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myfile, s

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForReading)
s = f.ReadAll ‘Read entire file
MsgBox “File contents = “ & s ‘Display it
f.Close

VBScript Reference Manual InduSoft Web Studio

252 InduSoft, Ltd.

Method: ReadLine
Description: Reads an entire line (up to, but not including, the newline character) from a TextStream file and

returns the resulting string.
Use: strChars = objTso.ReadLine
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
Return: An entire line from a TextStream file
Remarks: Does not include the newline character. Successive calls to the ReadLine method do not return

any newline character(s). For display purposes, you must add a newline character
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myfile, s, linecount

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForReading)
linecount = 0
s = “”
Do While f.AtEndOfStream <> True
 linecount = linecount +1
 s = s & “line “ & linecount & “ “ & f.ReadLine & vbCrLf ‘Read a line at a time
Loop
MsgBox s ‘Display it
f.Close

Method: Skip
Description: Skips a specified number of characters when reading a TextStream file
Use: objTso.Skip(numCharacters)
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
numCharacters

Required. The number of characters you want to skip when reading a file
Return: None
Remarks: Skipped characters are discarded.
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myfile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForReading)
f.Skip(5) ‘Skip 5 characters
MsgBox f.ReadLine ‘Read the rest of the line
f.Close ‘Close the document

Method: SkipLine
Description: Skips the next line when reading from a TextStream file.
Use: objTso.SkipLine
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
Return: None
Remarks: The skipped line is discarded.
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myfile, s

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForReading)
f.SkipLine ‘Skip the first line

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 253

s=f.ReadLine
MsgBox s ‘Display the second line
f.Close

Method: Write
Description: Writes a specified string to a TextStream file.
Use: objTso.Write(string)
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
string

Required. The text you want to write to the file.
Return: None
Remarks: Specified strings are written to the file with no intervening spaces or characters between each

string. Use the WriteLine method to write a newline character or a string that ends with a newline
character.

Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForWriting, True)
f.Write “This is a new string of data” ‘Write a string
Set f = fso.OpenTextFile(myFile, ForReading)
MsgBox “File contents = “ & f.ReadLine ‘Display line of data
f.Close

Method: WriteBlankLines
Description: Writes a specified number of newline characters to a TextStream file.
Use: objTso.WriteBlankLines(numLines)
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
numLines

Required. The number of newline characters you want to write to the file.
Return: None
Remarks: None
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myfile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForWriting, True)
f.WriteBlankLines(3) ‘Write 3 blank lines
f.WriteLine “This is a new line of data” ‘Write data on the 4th line
f.Close

Method: WriteLine
Description: Writes a specified string and newline character to a TextStream file.
Use: objTso.WriteLine([string])
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
string

Optional. The text you want to write to the file.
Return: None
Remarks: If you omit the string, a newline character is written to the file.
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8

VBScript Reference Manual InduSoft Web Studio

254 InduSoft, Ltd.

 Dim fso, f, myfile
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForWriting, True)
f.WriteLine “This is a line of data” ‘Write a line of data
f.WriteLine ‘Write a blank line
f.Close

Property: AtEndOfLine
Description: Indicates whether the file pointer is positioned immediately before the end-of-line marker in a

TextStream file.
Use: objTso.AtEndOfLine
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
Return: Returns True if the file pointer is positioned immediately before the end-of-line marker in a

TextStream file; False if it is not.
Remarks: The AtEndOfLine property applies only to TextStream files that are open for reading; otherwise,

an error occurs.
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myfile, s

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForReading, False)
s =””
Do While f.AtEndOfLine <> True
 s=f.read(1) ‘Read one character at a time
Loop
MsgBox “A line of text = “ & s
f.Close

Property: AtEndOfStream
Description: Indicates whether the file pointer is positioned at the end of a TextStream file.
Use: objTso.AtEndOfStream
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
Return: Returns True if the file pointer is positioned at the end of a TextStream file; False if it is not.
Remarks: The AtEndOfStream property applies only to TextStream files that are open for reading;

otherwise, an error occurs.
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myfile, s

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForReading, False)
s =””
Do While f.AtEndOfLine <> True
 s = s & f.ReadLine ‘Read file one line at a time
Loop
MsgBox s ‘Display text
f.Close

InduSoft Web Studio VBScript Reference Manual

InduSoft, Ltd. 255

Property: Column
Description: Returns the column number of the current character position in a TextStream file.
Use: intColumnPos = objTso.Column
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
Return: An integer column number
Remarks: Read-only. After a newline character has been written, but before any other character is written,

Column is equal to 1.
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myfile, s, colNum

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForReading, False)
s = f.ReadLine ‘Read a line
colNum = f.Column ‘Get the column position
f.Close

Property: Line
Description: Returns the current line number in a TextStream file.
Use: intLineNum = objTso.Line
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
Return: An integer line number
Remarks: Read-only. After a file is initially opened and before anything is written, Line is equal to 1.
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myfile, s, lineNum

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForReading, False)
s = f.ReadAll ‘Read the entire file
lineNum = f.Line ‘Get the last line number
f.Close

