

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 1

CAN-8123/CAN-8223/

CAN-8423/CAN-8823

CANopen Slave Device

User’s Manual

Warranty

Without contrived damage, all products manufactured by ICP DAS are

warranted in one year from the date of delivery to customers.

Warning

ICP DAS revises the manual at any time without notice. However, no

responsibility is taken by ICP DAS unless infringement act imperils to patents

of the third parties.

Copyright

Copyright © 2007 is reserved by ICP DAS.

Trademark

The brand name ICP DAS as a trademark is registered, and can be used

by other authorized companies.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 2

Contents

1 Introduction ... 4

1.1 Overview ... 4

1.2 Hardware Features... 6

1.3 CAN-8x23 Features .. 7

1.4 Utility Features ... 8

2 Hardware Specification .. 9

2.1 Hardware Structure .. 9

2.2 Layout Structure .. 11

2.3 Wire Connection .. 12

2.4 CAN Connector .. 13

2.5 Terminal Resistor Jumper and Initial Switch 15

2.6 Power LED .. 15

2.7 CANopen Status LED... 16

2.7.1 The RUN LED ... 16

2.7.2 The ERR LED ... 17

2.8 The Node ID & the Baud rate Rotary Switch 19

2.9 I/O Pair-connection Mode .. 20

2.10 Module Support ... 21

3 CANopen Application ... 22

3.1 CANopen Introduction ... 22

3.2 SDO Introduction ... 29

3.3 PDO Introduction ... 31

3.4 EMCY Introduction ... 43

3.5 NMT Introduction ... 44

3.5.1 Module Control Protocols... 45

3.5.2 Error Control Protocols .. 46

4 Configuration & Getting Start .. 49

4.1 CAN-8123/CAN-8223 Configuration Flowchart 49

4.2 CAN-8423/CAN-8823 Configuration Flowchart 51

4.3 CANopen Slave Utility Overview .. 53

4.4 Configuration with the CANopen Slave Utility 54

4.5 CAN-8123/8223 Configuration (Off-line mode) 55

4.6 CAN-8423/8823 Configuration (On-line mode) 60

5 CANopen Communication Set ... 65

5.1 SDO Communication Set .. 66

5.1.1 Upload SDO Protocol .. 66

5.1.2 SDO Block Upload Protocol ... 75

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 3

5.1.3 Download SDO Protocol ... 86

5.1.4 SDO Block Download .. 91

5.1.5 Abort SDO Transfer Protocol ... 99

5.2 PDO Communication Set .. 102

5.2.1 PDO COB-ID Parameters .. 102

5.2.2 Transmission Type .. 104

5.2.3 PDO Communication Rule .. 105

5.3 EMCY Communication Set .. 144

5.3.1 EMCY COB-ID Parameter .. 144

5.3.2 EMCY Communication .. 145

5.4 NMT Communication Set .. 153

5.4.1 Module Control Protocol... 153

5.4.2 Error Control Protocol .. 156

5.5 Special Functions for CAN-8x23 ... 161

6 Object Dictionary of CAN-8x23 .. 169

6.1 Communication Profile Area ... 169

6.2 Manufacturer Specific Profile Area... 176

6.3 Standardized Device Profile Area ... 178

6.4 Object of Counter/Frequency Modules 182

6.5 Object of PWM Module (Only for I-8088W) 184

Appendix A: Type Code Table ... 186

Appendix B: DIO Type Define of I-8050 Modules 199

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 4

1 Introduction

1.1 Overview

CANopen, a kind of communication protocols, is an intelligent field bus

(CAN bus). It has been developed as a standard embedded network with a

high flexible configuration. It provides a standard communication protocol

transmitting real-time data in PDO (Process Data Objects), configuration data

in SDO (Service Data Objects), and network management data (NMT

message, and Error Control), even supports the special functions (Time Stamp,

Sync message, and Emergency message). Nowadays, CANopen is used on

many applications and in specific fields, such as medical equipment, off-road

vehicles, maritime electronics, public transportation, automation and so on.

The main control units CAN-8123/CAN-8223/CAN-8423/CAN-8823

(CAN-8x23 in general) are specially designed for the slave device of the

CANopen protocols. In order to expand the I/O channel, and make it more

flexible, the CAN-8x23 supports up to 8 expansion slots for users to increase

applications by adding I/O channels. Users can choose either the I-87K or the

I-8000 series DI/DO/AI/AO slot modules for their application purposes. The

CAN-8123/CAN-8223 has one and two expansion slots respectively, and the

CAN-8423/CAN-8823 supports four and eight expansion slots. Each

expansion slot can insert in one I-87K or I-8000 series I/O module. All of these

main control units follow the CANopen Spec DS-301 V4.01 and DS-401 V2.1,

and supply a great deal of features to users, such as dynamic PDO, EMCY

object, error output value, SYNC cyclic and acyclic and so forth. In addition,

the CAN Slave Utility is also provided to allow users to create EDS files

dynamically. EDS files based on the CANopen DS-306 is compatible with other

CANopen master interface made by different manufacturers, also supporting

the EDS files. The general application for the CAN-8x23 CANopen slave

device architecture is as follows.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 5

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 6

1.2 Hardware Features

 CPU:80186, 80MHz

 Philip SJA1000 CAN controller

 Philip 82C250 CAN transceiver

 SRAM:512 Kbytes

 Flash Memory:512 Kbytes

 EEPROM:2 Kbytes

 NVRAM: 32 bytes

 Real Time Clock

 Built-in Watchdog Timer

 16-bit Timer

 Power LED, RUN LED, and ERR LED

 Support 1/2/4 expansion I/O slots

 2500 Vrms isolation at CAN side

 120Ω terminal resister selected by jumper(s)

 CAN bus interface: ISO/IS 11898-2, 5-pin screw terminal with

on-board optical isolators’ protection.

 Power Supply: 20W. Unregulated from +10VDC ~ +30VDC

 Operating Temperature:-25°C ~ +75°C

 Storage Temperature:-30°C ~ +85°C

 Humidity:5%~95% RH

COM1

 RS-232: TXD,RXD,RTS,CTS,GND

 Communication speed: 115200 bps.

 Configure tool connection

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 7

1.3 CAN-8x23 Features

 NMT: Slave

 Error Control: Node Guarding、Heartbeat Producer

 Node ID: Setting by Rotary Switch

 No. of PDOs: 16 Rx, 16Tx

 PDO Modes: Event-triggered, remotely requested, cyclic and acyclic

SYNC

 PDO Mapping: variable

 No of SDOs: 1 server, 0 client

 Emergency Message: Yes

 CANopen Version: CiA-301 v4.02

 Device Profile: CiA-401 v2.1

 Produce EDS file dynamically

 Baud Rate Selection : 10K, 20K, 50K, 125K, 250K, 500K, 800K and

1M bps

 Power LED, RUN LED, and ERR LED indicators

 Support I-8000 and I-87K I/O expansion slot:

 CAN-8123: 1 slot

 CAN-8223: 2 slots

 CAN-8423: 4 slots

 CAN-8823: 8 slots

 Provide a friendly Utility to configure the I-8000 and I-87K series

modules

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 8

1.4 Utility Features

 Support parameter configuration on the I-8000 and I-87K modules

 Provide to show Application and Device Object information

 Provide to show Rx and Tx PDO mapping

 Support EDS file creation

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 9

2 Hardware Specification

2.1 Hardware Structure

CAN-8123:

CAN-8223:

CAN Bus Connector

CANopen

Status LED

Power LED

1 I/O Expansion Slot

Node ID and Baud

rate rotary switch

CAN Bus Connector

CANopen

Status LED
Power LED

Node ID and Baud

rate rotary switch

CANopen

Error LED

CANopen

Error LED

2 I/O Expansion Slot

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 10

CAN-8423:

CAN-8823:

CAN Bus Connector

CANopen

Status LED Power LED

RS-232 Port

(connect to PC)

4 I/O Expansion Slots

Power Pin

Node ID and Baud

rate rotary switch

CANopen

Error LED

8 I/O Expansion Slots

CAN Bus Connector

RS-232 Port

(connect to PC)

Power Pin

CANopen

Status LED Power LED

Node ID and Baud

rate rotary switch

CANopen

Error LED

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 11

2.2 Layout Structure

CAN-8123/CAN-8223:

.

CAN-8423:

CAN-8823:

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 12

2.3 Wire Connection

In order to minimize the reflection on the CAN bus line, the CAN bus line

has to be terminated at both ends by two terminal resistances as shown in the

following. According to the ISO 11898-2 spec, each terminal resistance is

120Ω (or other between 108Ω~132Ω). The length related resistance has to

reach 70mΩ/m. At this circumstance, users would better check the resistances

of the CAN bus before installing a new CAN network.

12
0Ω

120Ω

CAN_H

CAN_L

Device NDevice 2Device 1 . . .

 Moreover, to minimize the voltage drop, value of the terminal resistance

must be higher than the one defined in the ISO 11898-2. The following table is

for users’ reference.

Bus Length

(meter)

Bus Cable Parameters
Terminal

Resistance

(Ω)

Length Related

Resistance

(mΩ/m)

Cross Section

(Type)

0~40 70 0.25(23AWG)~

0.34mm2(22AWG)

124 (0.1%)

40~300 < 60 0.34(22AWG)~

0.6mm2(20AWG)

127 (0.1%)

300~600 < 40 0.5~0.6mm2

(20AWG)

150~300

600~1K < 20 0.75~0.8mm2

(18AWG)

150~300

In the CAN-8x23, the 120Ω terminal resistance is supplied as a standard

accessory. About enable/disable the 120Ω terminal resistance jumps, please

refer to section 2.5 “Terminal Resistor Jumper and Initial Switch”.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 13

The bus length determines the CAN bus baud rate. In the following the

table provides users a relationship between the baud rate and the bus length.

Baud rate (bit/s) Max. Bus length (m)

 1 M 25

800 K 50

500 K 100

250 K 250

125 K 500

 50 K 1000

 20 K 2500

 10 K 5000

Note: When the bus length is greater than 1000m, the bridge

or repeater devices may be needed.

2.4 CAN Connector

The pin descriptions of the CAN bus connectors on the CAN-8x23 are

shown below.

CAN-8123/CAN-8223:

Pin No. Signal Description

1 CAN_GND Ground (0V)

2 CAN_L CAN_L bus line (dominant low)

3 CAN_SHLD Optional CAN Shield

4 CAN_H CAN_H bus line (dominant high)

5 CAN_V+ CAN external positive supply (+10V ~ +30V)

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 14

CAN-8423:

Pin No. Signal Description

1 N/A N/A

2 CAN_L CAN_L bus line (dominant low)

3 CAN_SHLD Optional CAN Shield

4 CAN_H CAN_H bus line (dominant high)

5 N/A N/A

CAN-8823:

Pin No. Signal Description

2 CAN_L CAN_L bus line (dominant low)

5 CAN_SHLD Optional CAN Shield

7 CAN_H CAN_H bus line (dominant high)

Others N/A N/A

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 15

2.5 Terminal Resistor Jumper and Initial Switch

The jumpers enable/disable of the terminal resistor show as follow:

Device Jumper Enable Disable

CAN-8123 / CAN-8223 JP2

CAN-8423 JP1

CAN-8823 JP1

Before updating firmware or using the utility tool to configure the

CAN-8423 and the CAN-8823, the initial mode is needed. For more detail

configuration, please refer to the cheaper 4. Since the CAN-8123/CAN-8223

doesn’t support RS-232 COM Port, the utility tool in the off-line mode takes the

place to get the EDS file.

Following shows the initial switch of CAN-8423 and CAN-8823

(CAN-8123/CAN-8223 not support the initial function).

Device Switch Initial Mode Run Mode

CAN-8423
Baud

Rotary Switch
Switch to “9” Switch to “0” ~ “7”

CAN-8823 SW1 Switch to “Init” Switch to “Run”

2.6 Power LED

The CAN series products (CAN-8x23) need 10 to 30 VDC power supplies,

(Please note that other slot modules, inserted in, will also consume part of the

inputted power). Under a normal connection, a good power supply and a

correct voltage selection, as the unit is turned on, the LED will light up in yellow.

If it can’t work, please check with local agents or resellers for more help.

CANopen Status LED

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 16

2.7 CANopen Status LED

Each one CAN-8x23 has two LED indicators. One is the Error LED

(lighting in red) and the other one is the RUN (Performing) LED (lighting in

green). The Error LED and the Run (Performing) LED information are

presented in the CANopen specifications. When the CANopen communication

carries out, these indicators will glitter in different time. The following

descriptions will show meanings of the glittering signal as these indicators are

being triggered.

2.7.1 The RUN LED

The RUN LED relates to the physical mechanism on the CANopen that

will be discussed later. The data state and the signal state description are

respectively shown in the following figure and table.

No. Signal State Description

1 No Light Non-operation Malfunction or Power Supply

/Connection not ready

2 Single Flash Stopped The device is in Stopped state

3 Blinking Pre-operation The device is in the

pre-operational state

4 Continuing Light Operation The device is in the operational

state

5 Blinking rapidly Module Error I/O module is removed when

running or CAN-8x23 detects the

module different from before.

Users can use utility to reset it.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 17

2.7.2 The ERR LED

The ERR LED relates to the state of missing messages at the CAN

physical layer (These missing messages might be SYNC or Guard messages).

The data state and the signal state description are respectively shown in the

following figure and table.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 18

No. Signal State Description

1 No Light No error The device is in working

condition.

2 Single Flash Error Reminding

when Warning

Level is Reached

At least one of the error counters

of the CAN controller has

reached or exceeded the warning

level (too many error frames).

3 Double Flash Error Reminding

when Events

happen.

A guard event (NMT-Slave or

NMT-master) or a heartbeat

event (Medical Application) has

occurred.

4 Triple Flash SYNC Error The SYNC message has not

been received within the specific

communication cycle before time

out (see Object Dictionary Entry

0x1006).

5 Continuing

Light

Bus Off The CAN controller is in a bus off

condition.

Note: If several errors occur at the same time, the most severe error will have

high priority to show its signal first. For example, if NMT Error (No. =3)

and Sync Error (No. =4) occur, the SYNC error signal will indicate.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 19

2.8 The Node ID & the Baud rate Rotary Switch

 The first two rotary switches (MSB & LSB) control the CAN-8x23 node

ID. MSB (Most Significant Bit) means the high nibble of the node ID, and LSB

(Least Significant Bit).

ID Rotary Switch Status

0x01 ~ 0x7F Normal CANopen ID

0x81 ~ 0xFF I/O Pair-connection CANopen ID

 The last rotary switch (BAUD) handles the CAN-8x23 baud rate. The

relationship between the rotary switch value and the practical baud rate is

presented in the following table.

Rotary Switch Value Baud rate (K BPS)

0 10

1 20

2 50

3 125

4 250

5 500

6 800

7 1000

9
Initial Mode

(Only for CAN-8423)

Others N / A

Furthermore, when users apply the CAN-8x23 the CANopen firmware will

automatically check these rotary switches. Any illegal value for these rotary

switches will cause the boot-up failure.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 20

2.9 I/O Pair-connection Mode

The CAN-8x23 provides the I/O pair-connection function. Before using this

function, you need to prepare two CAN-8x23s with DI and DO I/O modules

(such as I-8057W and I-8053W). When applying this function, the DI channels

and the DO channels are mapping with each other. That is to say that when the

DI channels of one CAN-8x23 get the ON signal, the corresponding DO

channels of the other one will be turned on.

When you completed the connection of these two CAN-8x23s by CAN bus,

you need to set the ID rotary switch of these two modules to 0x81 ~ 0xFE by

the special rule. Set the node ID to be odd for one module, and set the node ID

of another module to be the value which is equal to the node ID increased one

of the former. Therefore, they are the couple as the following figure.

For example, user uses a CAN-8123 with I-8057W and a CAN-8123 with

I-8053W to do I/O pair-connection. The connection structure is as follows.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 21

The node ID of left CAN-8123 is “0x81”, and the node ID of right

CAN-8123 is “0x82”. Both of these two module’s node ID switch are selected

to I/O pair-connection mode node ID, and these two modules will into

Operational state automatically. When the DI module, right CAN-8123,

receives a DI ON-signal, the DO module, left CAN-8123, will output the

ON-signal at the corresponding DO channels.

2.10 Module Support

The CAN-8x23 supports many kinds of DI, DO, AI and AO types across

the I-8000/I-87K series modules. When users want to apply these modules on

the CANopen network, they only insert these modules into the CAN-8x23 I/O

expansion slots. Then, the CANopen firmware built in the CAN-8x23 will

automatically search them, and apply the corresponding CANopen objects.

The following table shows the information of the IO types and module names

which can be supported by the CAN-8x23.

IO Type Module Name IO Type Module Name

AI

I-8017H/I-8017HS/I-8017HW

I-87005/I-87013/I-87015/
I-87015P/I-87016/I-87017/
I-87017R/I-87017RC/I-87017A5/
I-87018/I-87018R/I-87018Z
I-87019R

AO

I-8024

I-87022/I-87024/I-87026/
I-87026P

DO

I-8037/I-8041/I-8041A/I-8056/
I-8057/ I-8060/I-8064/I-8065/
I-8066/I-8068/I-8069

I-87041/I-87057/ I-87064/
I-87065/ I-87066/I-87068I-87069

DI

I-8040/I-8046/I-8048/
I-8051/I-8052/I-8053/
I-8058/

I-87040/I-87040P/I-87046/
I-87051/ I-87052/I-87053/
I-87053P/I-87053A5/
I-87053E5/I-87058/I-87059

DO&DI

I-8042/I-8050/I-8054/I-8055/
I-8063/I-8077

I-87042/I-87054/I-87055/I-87063
/

Counter
Frequency

I-8080/I-8084/I-8088

Note: All modules are supported with “High profile” (W) and “Low

profile”. But only the “High profile” I-87K modules support hot-swap

function.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 22

3 CANopen Application

The CANopen is a kind of network protocols evolving from the CAN bus, used

on car control system in early days, and has been greatly used in various

applications, such as vehicles, industrial machines, building automation,

medical devices, maritime applications, restaurant appliances, laboratory

equipment & research.

3.1 CANopen Introduction

CANopen provides not only the broadcasting function but also the

peer-to-peer data exchange function between every CANopen node. The

network management function instructed in the CANopen simplifies the

program design. In addition, users can also implement and diagnose the

CANopen network, including network start-up, and error management by

standard mechanisms (CANopen device), i.e. the CANopen device can

effectively access the I/O values and detect node states of other devices in the

same network. Generally, a CANopen device can be modeled into three parts.

 Communication

 Object Dictionary

 Application program

The functions and general concepts for each part are shown as follows.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 23

Communication

The communication part provides several communication objects and

appropriate functionalities to transmit CANopen messages via the network

structure. These objects include PDO (Process Data Object), SDO (Service

Data Object), NMT (Network Management Objects), SYNC (Synchronous

Objects)…etc. Each communication object has its relative communication

model and functionality. For example, the communication objects for accessing

the device object dictionary is SDO, using the Client/Server structure as its

communication model (section 3.2). Real-time data or I/O values can be

accessed quickly without any protocol by means of PDO communication

objects. The PDO’s communication model follows the Producer/Consumer

structure. It is also named the Push/Pull model (section 3.3). NMT

communication objects are used for controlling and supervising the state of the

nodes in the CANopen network, and it follows a Master/Slave structure

(section 3.5). No matter which kind of communication object is used, the

transmitted message will comply with the data frame defined in the CAN 2.0A

spec. Generally, it looks like the following figure.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 24

ID RTR
Data

Length
8-byte Data

11-bit data is limited in the ID field. It is useful in the arbitration mechanism.

The RTR, limited in 1-bit data, is used for remote-transmitting requests as the

value is set to 1. The data length, limited in 4-bit data, shows the valid data

number stored in the 8-byte data field. The last field, 8-byte data, is applied to

store the message data.

In the CANopen specifications the 4-bit function code and 7-bit node ID

are assumed to combine the 11-bit ID of CAN message, and named the

communication object ID (COB-ID). The COB-ID structure is displayed below.

Function Code Node ID

bit 10 bit 0

The COB-IDs are used for recognizing where the message comes from or

where the message is sent to, as well deciding the priority of the message

transmission around node network. According to the arbitration mechanism

rule of the CAN bus, the CAN message with the lower COB-ID will get the

higher priority to be transmitted. In the CANopen specifications some COB-IDs

are reversed for specific communication objects, and can't be defined

arbitrarily by users. The following list shows these reversed COB-IDs.

Reversed COB-ID (Hex) Used by object

 0 NMT

 1 Reserved

 80 SYNC

 81~FF EMERGENCY

 100 TIME STAMP

101~180 reversed

581~5FF Default Transmit-SDO

601~67F Default Receive-SDO

 6E0 reversed

701~77F NMT Error Control

780~7FF reversed

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 25

In addition, the other COB-IDs shown in the following table can be used if

necessary.

(Bit10~Bit7)

(Function Code)
(Bit6~Bit0) Communication object Name

0000 0000000 NMT

0001 0000000 SYNC

0010 0000000 TIME STAMP

0001 Node ID EMERGENCY

0011/0101/0111/1001 Node ID TxPDO1/2/3/4

0100/0110/1000/1010 Node ID RxPDO1/2/3/4

1011 Node ID SDO for transmission (TxSDO)

1100 Node ID SDO for reception (RxSDO)

1110 Node ID NMT Error Control

Note: For the CAN-8x23, all communication objects are supported except the

TIME STAMP.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 26

Object Dictionary

The object dictionary collects a lot of important information which can

affect device’s reaction, such as the data accessing through I/O channels, the

communication values and the network states. Essentially, the object

dictionary consists of a group of entry objects, and these entries can be

accessed via the node network in a pre-defined method. Each object entry

within the object dictionary has its own function, for example communication

parameters, device profile, data type (ex. 8-bit Integer, 8-bit unsigned…), and

access type (read only, write only …). All of them are addressed in a 16-bit

index and an 8-bit sub-index. The overall profile of the standard object

dictionary is shown below.

Index Object

0x0000 Reserved

0x0001 - 0x001F Static Data Types

0x0020 - 0x003F Complex Data Types

0x0040 - 0x005F Manufacturer Specific Complex Data Types

0x0060 - 0x007F Device Profile Specific Static Data Types

0x0080 - 0x009F Device Profile Specific Complex Data Types

0x00A0 - 0x0FFF Reserved for further use

0x1000 - 0x1FFF Communication Profile Area

0x2000 - 0x5FFF Manufacturer Specific Profile Area

0x6000 - 0x9FFF Standardized Device Profile Area

0xA000 - 0xBFFF Standardized Interface Profile Area

0xC000 - 0xFFFF Reserved for further use

Take the standardized device profile area as an example. Assume that a

CANopen device has 16 DI, 8 DO, 2 AI and 1 AO channels. The values of

these channels will be stored in the Standardized Device Profile Area,

especially the entries with indexes 0x6000, 0x6200, 0x6401, and 0x6411.

When the CANopen device obtains the input value, these values will be stored

in the 0x6000 and 0x6401 indexes. Furthermore, the values stored in the

0x6200 and 0x6411 indexes will also output to the DO and AO channels. The

basic concept is presented as follows.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 27

Subindex1 : DI Channel 0~7

Subindex2 : DI Channel 8~15

Subindex1 : DO Channel 0~7

Subindex1 : AI Channel 0

Subindex2 : AI Channel 1

Subindex1 : AO Channel 0

DI Standardized Device

Dictionary Object (0x6000)

DO Standardized Device

Dictionary Object (0x6200)

AI Standardized Device

Dictionary Object (0x6401)

AO Standardized Device

Dictionary Object (0x6411)

Practical DI

Channel 0~15

Practical DO

Channel 0~7

Practical AI

Channel 0~1

Practical AO

Channel 0

Hardware
Standardized Device

Profile Area

Take the CAN-8423 as an example. There are some I-8000 or I-87K

series modules inserted in the CAN-8423 I/O expansion slots. The related

information for each module is shown below.

Module Name Slot No DO (ch) AO (ch) DI (ch) AI (ch)

I-8063 0 4 0 4 0

I-87053 1 0 0 16 0

I-8053 3 0 0 16 0

When the CAN-8423 is powered on, all device modules inserted in the

CAN-8423 channels will be scanned, as well the I/O values of these channels

will be arranged into proper object entries one by one with the minimum data

size 1 byte, If the DI and DO channels, which can’t reach one byte, will be

automatically regarded as one byte.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 28

 By objects with the index 0x6000, the CAN-8423 can store the input

values of DI channel, i.e. the I/O values of DO, AI, and AO channels are put

into the object with the indexes 0x6200, 0x6401, and 0x6411 respectively.

When values are resulted through these I/O, and correspond to the specific

object, the device will follow the rules below.

 The I/O channel values of the I-8000/I-87K series modules with lower

slot numbers will have priority to be placed into the object dictionary.

After the CAN-8423 has filled the all I/O channels in one module, then

the CAN-8423 will go to the next slot number to continue.

 Each analog channel will be stored in 2 bytes.

 The values of digital channels of one module, which can’t be divided

by 8, will be stored in 1 byte.

 After using the rule described above, the result of the object format is

as follows.

 Index

sub-index

0x6000

(for DI)

0x6200

(for DO)

0x6401

(for AI)

0x6411

(for AO)

0x00 9 1 9 4

0x01 DI0~DI3

(Slot:0)

DO0~DO3

(Slot:0)

0x02 DI0~DI7

(Slot:1)

0x03 DI8~DI15

(Slot:1)

0x04 DI0~DI7

(Slot:3)

0x05 DI8~DI15

(Slot:3)

The information described above can also be viewed by using the CAN

Slave Utility. For more details about the object dictionary and how to use the

CAN Slave Utility, please refer to the chapter 5 and chapter 6.

Application

The application objects control all of the device functions, related to the

interaction with the process environment. It’s just like a medium between the

object dictionary and practical process, such as the analog I/O, digital I/O….

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 29

3.2 SDO Introduction

In order to access the entries in a device object dictionary, service data

objects (SDOs) are provided. By means of the SDO communication method, a

peer-to-peer communication bridge between two devices is established, and

its transmission follows the client-server relationship. The general concept is

shown in the figure below.

Client Server

confirmation response
data

data
request indication

The SDO has two kinds of the COB-IDs, RxSDOs and TxSDOs. They can

be viewed in the CANopen device. For example, users send a SDO message

to the CAN-8x23 by using RxSDO. On the contrary, the devices CAN-8x23

transmit a SDO message by using TxSDOS.

Before the SDO has been used, only the client can take the active

requirement for a SDO transmission. When the SDO client starts to transmit a

SDO, it is necessary to choose a proper protocol.

If the SDO client has to get the information from the device object

dictionary and from the SDO server, the segment upload protocol or block

upload protocol will be applied.

It is worth to be mentioned, the front protocol is used for transmitting fewer

data; the latter protocol is used for transmitting larger data. Both the segment

download protocol and block download protocol will work when the SDO client

wants to modify the object dictionary to the SDO server. The differences

between the segment download protocol and the block download protocol are

similar to the differences between the segment upload protocol and the block

upload protocol. Because of the different access types in the object dictionary,

not all accessing action of the object dictionary via the SDO transmission is

allowed. If the SDO client trends to modify the entries of the SDO server object

dictionary which uses the read-only access type, the abort SDO transfer

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 30

protocol will be given, and the SDO transmission will also be stopped.

The CAN-8x23 only supports the SDO server. Therefore, it can be passive

and wait for requests from clients. The general concept figure of the upload

and download protocol with the CAN-8x23 is shown as follows.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 31

3.3 PDO Introduction

Based on the transmission data format of the CAN bus, the PDO can

transmit eight bytes of process data at one time. Because of the PDO

messages without overheads, it is more efficient than other communication

objects within CANopen and therefore used for real-time data transfer, such as

DI, DO, AI, AO, etc.

Communication Modes for the PDO

PDO reception or transmission is implemented via the producer/consumer

communication model (also called the push/pull model). When starting to

communicate in the PDO push mode, it needs one CANopen device to play

the role of PDO producer, and non device or more than one device to play the

role of PDO consumer.

The PDO producer sends out the PDO message after it reached the CAN

bus arbitration. Afterwards, each PDO consumer will receive this PDO

message respectively, and then message is processed by each device to

check whether it is needed or not (be dropped). In the PDO pull mode, one of

the PDO consumers needs to send out a remote transmit request to the PDO

producer. According to this remote request message, the PDO producer

responds the corresponding PDO message for each PDO consumer in the

CAN bus. The PDO communication structure figure is shown below.

Producer Consumers

request indication

indication

indication

data

Push model

response confirmation

indication

indication

data

Pull model

request

Producer Consumers

indication

request

request

Remote Transmit Request

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 32

For the CANopen device, the TxPDO specializes in transmitting data, and

is usually applied on DI/AI channels. The COB-ID of the PDO for receiving

data is RxPDO COB-ID, and it is usually applied on DO/AO channels. Take the

CAN-8x23 as an example. If a PDO producer sends a PDO message to the

CAN-8x23, it needs to use the RxPDO COB-ID of the CAN-8x23 because it is

a PDO reception action viewed from the CAN-8x23. Inversely, when some

PDO consumers send remote transmit requests to the CAN-8x23, it must use

the TxPDO COB-ID of the CAN-8x23 because it is a PDO transmission action

viewed from the CAN-8x23.

Trigger Modes Of PDO

For PDO producers, PDO transmission messages can be trigged by three

conditions. They are the event driven, timer driven and remote request

conditions. All of them are described below.

Event Driven

PDO transmission can be triggered by a specific driven event, including

the following conditions. Under the cyclic synchronous transmission type, the

event is driven by the expiration of the specified transmission period,

synchronized by the reception of the SYNC message.

Moreover, under the acyclic synchronous or asynchronous transmission

type, the PDO transmission can also be triggered or driven by a

device-specified event in the CANopen specification DS-401 v2.1, i.e. by

following this spec, the PDO will be triggered by any change in the DI-channel

states when the transmission type of this PDO is set to acyclic synchronous or

asynchronous.

Timer Driven

PDO transmissions are also triggered by a specific time event, even if a

specified time elapsed without occurrence of an event. For example, the PDO

transmission of the CAN-8x23 can be triggered by the event timer of the PDO

communication parameters, which is set by users.

Remote Request

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 33

The PDO transmission can be triggered by receiving a remote request

from any other PDO consumer with under the asynchronous or RTR setting.

PDO Transmission Types

Generally there are two kinds of PDO transmission modes, synchronous

and asynchronous. For the PDO in a synchronous mode, it must be triggered

by the reception of a SYNC message.

The synchronous mode can be further distinguished into three kinds of

transmission(s), acyclic synchronous, cyclic synchronous and RTR-only

synchronous. The acyclic synchronous can be triggered by both the reception

of a SYNC message and the driven event mentioned above.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 34

Acyclic synchronous

For the TxPDO object, after receiving an object from the SYNC producer,

the CAN-8x23 will respond with a pre-defined TxPDO message to the PDO

consumers. For the RxPDO object, the CAN-8x23 needs to receive the SYNC

objects to actuate the RxPDO object, which is received before the SYNC

object. The following figures indicate how the acyclic synchronous

transmission type works on the RxPDO and the TxPDO.

Cyclic synchronous

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 35

Inversely, the cyclic synchronous transmission mode is triggered by the

reception of an expected number of SYNC objects, and the max number of

expected SYNC objects can be 240. For example, if the TxPDO is set to

response when receiving 3 SYNC objects, the CAN-8x23 will feed back the

TxPDO object according to the set. For the RxPDO, actuating the DO/AO

channels by the RxPDO is independent of the number of SYNC objects. These

concepts are shown in the figures below.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 36

RTR-only synchronous

The RTR-only synchronous mode is activated when receiving a

remote-transmit-request message, i.e. SYNC objects. This transmission type

is only useful for TxPDO. In this situation, the CAN-8x23 will update the DI/AI

value when receiving any SYNC object. And, if the RTR object is received, the

CAN-8x23 will respond to the TxPDO object. The following figure shows the

mechanism of this transmission type.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 37

RTR-only asynchronous

The asynchronous mode is independent of the SYNC object. This mode

can also be divided into two parts. There are RTR-only asynchronous

transmission type and asynchronous transmission type. The RTR-only

transmission type is only for supporting TxPDO transmissions, only triggered

by receiving the RTR object from the PDO consumer. This action is depicted

below.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 38

Asynchronous

 The other part is the asynchronous transmission type. Under this type, the

TxPDO message can be triggered by receiving the RTR object and the

device-specified event mentioned in the event driven paragraph. Furthermore,

the DO/AO channels can act directly by receiving the RxPDO object. This

transmission type is the default value when the CAN-8x23 boots up. The

concept of the asynchronous type is shown as follows.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 39

Inhibit Time

Because of the arbitration mechanism of the CAN bus, the CANopen

communication object ID in small size has a higher transmission priority than

the bigger one. For example, there are two nodes on the CAN bus, the one

needs to transmit the CAN message with the COB-ID 0x181, and the other has

to transmit the message with COB-ID 0x182. When these two nodes transmit

the CAN message to the CAN bus simultaneously, only the message

containing COB-ID 0x181 can be successfully sent to the CAN bus because of

the higher transmission priority. So the message with COB-ID 0x182 will be

held to transmit until the message with COB-ID 0x181 is successfully

transmitted. This arbitration mechanism can guarantee the successful

transmission for one node when a transmission conflict occurs.

However, if the message with COB-ID 0x181 is continually transmitted,

the message with COB-ID 0x182 will be postponed to be transmitted. In order

to avoid the occupation of the transmission privilege by the message with the

lower COB-ID, the inhibit time parameters for each of the PDO objects are

supported to define a minimum time interval between each PDO message

transmission, which has a multiple of 100us. During this time interval, the PDO

message will be inhibited from transmission.

Event Timer

This parameter setting on the event timer is only used for TxPDO. If the

parameter of the event timer is not equal to 0 under the transmission type in

asynchronous mode, the expiration of this time value can be just considered to

be an event. This event will cause the TxPDO message transmission. The

event timer parameter is defined as a multiple of 1ms.

PDO Mapping Objects

The PDO mapping objects are provided to the interface which is for PDO

messages and real I/O data in the CANopen device. They define the meanings

for each byte in the PDO message, and may be changed by using a SDO

message. All of the PDO mapping objects are arranged in the Communication

Profile Area. In the CANopen spec (see DS 401), RxPDO and TxPDO default

mapping objects will specify something as follows:

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 40

 There shall be up to 4 TxPDO mapping objects and up to 4 RxPDO

mapping objects with default mappings.

 The 1st RxPDO and TxPDO mapping objects are used for digital

outputs and inputs to each other.

 The 2nd, 3rd, and 4th RxPDO and TxPDO mapping objects are

respectively assigned to record the value of analog outputs and

inputs.

 If a device supports too many digital input or output channels over 8

channels, the related analog default PDO mapping objects remaining

the additional unused digital I/Os will use its additional objects. This

rule with the same concept is used on the additional analog channels.

Take the RxPDO as an example; there are 11 DO and 13 AO object

entries in the object dictionary. Generally in the CAN-8x23, the first 8

DO object entries will be mapped to the first RxPDO mapping object

because one DO object entry needs one byte space. The last 3 DO

object entries will be assigned to the 5th RxPDO according to the

above rules the 2nd and the 3rd. Furthermore, one AO object entry

needs 2 bytes of space. Therefore, the second RxPDO mapping

object has been occupied by the first 4 AO object entries. The

following 4 AO object entries will be assigned to the third RxPDO

mapping object, as well to the 4th RxPDO mapping object. Because

the 5th RxPDO mapping object has been occupied by the DO object

entries, the last AO object entry shall be assigned into the 6th RxPDO

mapping object.

Before applying the PDO communications, the PDO producer and the

PDO consumers must have mutual PDO mapping information. On the one

hand, the PDO producers need PDO mapping information to decide how to

assign the expected practical I/O data to PDO messages. Besides, PDO

consumers need the PDO mapping information to recognize each byte of

received PDO message, i.e. when a PDO producer transmits a PDO object to

PDO consumers, the consumers will contrast this PDO message with PDO

mapping entries, previously obtained from the PDO producer, and then

interpret the meanings of these values from the received PDO object. For

example, if a CANopen device has 16 DI, 8 DO, 2 AI, and 1 AO channels. The

input or output values of these channels will be mutually stored into several

specific entries.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 41

Subindex1 : DI Channel 0~7

Subindex2 : DI Channel 8~15

Subindex1 : DO Channel 0~7

Subindex1 : AI Channel 0

Subindex2 : AI Channel 1

Subindex1 : AO Channel 0

DI Standardized Device

Dictionary Object (0x6000)

DO Standardized Device

Dictionary Object (0x6200)

AI Standardized Device

Dictionary Object (0x6401)

AO Standardized Device

Dictionary Object (0x6411)

1 2 3 4 5 6 70 1 2 3 4 5 6 70

RxPDO Mapping Object TxPDO Mapping Object

According to the PDO mapping objects in the figure above, if this

CANopen device gets the RxPDO message in three bytes, the first byte is for

the output value from the DO channels 0~7, and the following two bytes are for

the analog output value. After interpreting the data of the RxPDO message, the

device will actuate the DO and AO channels by the received RxPDO message.

It is worth to mention that TxPDO also operate in the same procedure as

RxPDO message. When the TxPDO trigger events occur, the CANopen device

will send the TxPDO message to the PDO consumers. The values of the bytes

assigned in the TxPDO message will follow the TxPDO mapping object as

shown in the above figure. The first two bytes of the TxPDO message are

respectively for the values from the DI channels 0~7 and channel 8~15. The

following third and forth bytes of the TxPDO message is for the value 0 of the

AI channel. And the fifth and sixth bytes are for the value 1 of the AI channel.

The relationships among the object dictionary, the PDO mapping object and

the PDO message are given below.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 42

.

.

.

TxPDO

D
I
0~

7

D
I

8~
15

A
I

0

A
I

1

TxPDO mapping objects

RxPDO

D
O

 0
~
7

A
O

 0

} } }

Object Dictionary

Practical I/O

B
y
te

 0

B
y
te

 1

B
y
te

 2

B
y
te

 3

B
y
te

 4

B
y
te

 5

B
y
te

 6

B
y
te

 7

B
y
te

 0

B
y
te

 1

B
y
te

 2

B
y
te

 3

B
y
te

 4

B
y
te

 5

B
y
te

 6

B
y
te

 7

RxPDO mapping objects

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 43

3.4 EMCY Introduction

EMCY messages are triggered when a device internal error occurs, i.e.

after a CANopen device detects the internal error, an emergency message will

be transmitted to the EMCY consumers per time per error event. But the

EMCY message will not be transmitted again if the same error repeatedly

occurs. When error reasons are gone, an emergency message containing the

emergency error code “00 00” will only respond to the specific error fields. So,

by checking the EMCY message, users can understand what happened in the

CAN-8x23, and then do something about the error event.

Please note that only the emergency consumers can receive the EMCY

object, and only the CAN-8x23 can support functions of the emergency

producer.

The general concept regarding EMCY communications is shown below.

An emergency message containing 8-byte of data is called emergency

object data. The abbreviated diagram is shown below, and all fields in the

emergency object data will be described in section 5.3.

Byte 0 1 2 3 4 5 6 7

Content Emergency Error Code Error register Manufacturer specific Error Field

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 44

3.5 NMT Introduction

The Network Management (NMT) follows the node-oriented structure and

the master-slave relationship. In the same CAN bus network, only one

CANopen device is allowed to execute the function of NMT master. Each

CANopen node is regarded as a unique NMT slave identified by its node ID

from 1 to 127.

The NMT service supplies two protocols, the module control protocol and

the error control protocol. Through the module control protocol, the nodes can

be controlled to several kinds of status, such as installing, pre-operational,

operational, and stopped. According to the NMT slave can present in different

statuses, it has different privileges to carry out the communication protocol.

Through the error control protocol, users are enable to detect the remote error

in the network in order to confirm whether the node still works or not.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 45

3.5.1 Module Control Protocols

Before introducing the modules control protocols, the architecture of the

NMT state mechanism needs to be mentioned. The diagram shows the

process and the relationships among each NMT state and the mechanism.

Operational

Initialization

State Mechanism Diagram

Stop

Pre-Operational

Power on or

Hardware reset

(1)

(2)

(4)(3)
(6)

(8)

(5)

(7)

(9)

(1) Under “Power on” or “Hardware Reset”, the initialization state

will be loaded automatically.

(2) As the Initialization accomplished, Pre-Operational state will

be entered automatically

(3),(6) Indication of starting remote node

(4),(7) Indication of entering Pre-Optional State

(5),(8) Indication of stopping remote node

(9) Indication of the “Reset Node” or the “Reset Communication”

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 46

Devices will directly lead to the Pre-Operational state after finishing the

device initialization. Then, the nodes will be switched into different state by

receiving a specific indication. By the way, each different NMT state will

consider a specific communication method. For example, the PDO message

can only do the transmission and receiving in the operational state. In the

following table, the relationship among each NMT state and communication

objects is given.

 Installing Pre-operational Operational Stopped

PDO O

SDO O O

SYNC Object O O

Time Stamp Object O O

EMCY Object O O

Boot-Up Object O

NMT O O O

3.5.2 Error Control Protocols

There are two kinds of protocols defined in the error control protocol.

According to the CANopen spec, one device is not allowed to use the following

error control mechanisms at the same time, Node Guarding Protocol and

Heartbeat Protocol. In addition, the CAN-8x23 provides the salve function of

the Node Guarding Protocol for practical applications. Therefore, only node

guarding protocols will be highlighted here, and described below.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 47

Node Guarding Protocol

The Node Guarding Protocol follows the Master/Slave relationship. It

helps users monitoring the node in the CAN bus. The communication method

of node guarding protocol is defined as follows.

Slave state

Slave state

NMT Master NMT Slave

request

request

confirm

confirm

indication

indication

indication

indication

Node Guarding Event Life Guarding Event

Node
Guard
Time

Node
Life
Time

Guarding error

Remote transmit request

Remote transmit request

response

response

 The NMT master will inspect each NMT slave at regular time intervals.

This time-interval is called the node guard time, given by the “guard time * life

time factor”, and may be different from each NMT slave. And the response of

the NMT slave contains the state of that NMT slave, which may be in a

"Stopped", "Operational", or "Pre-operational" state. The node life time

factor can also be different for each NMT slave. If the NMT slave has not been

inspected during its life time, a remote node error will be given, and indicate

through the "Life Guarding Event" service.

In addition, the reported NMT slave state, which does not match the

expected state, will also produce the “Node Guarding Event”. This event may

occur in the DO and AO channels, and output the error mode value, recorded

in the object with index 0x6207 and index 0x6444. Moreover, the object with

index 0x6206 and 0x6443 can control the error mode value of the DO or AO

channels in enabling or disabling when the “Lift Guarding Event” has been

indicated. For more information about objects with index 0x6206, 0x6207,

0x6443, and 0x6444, please refers to the chapter 6.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 48

Heartbeat Protocol

The Heartbeat Protocol follows the Producer/Consumer relationship. It

provides a way to help uses monitor the node in the CAN bus. The

communication method of heartbeat protocol is defined as follows.

The Heartbeat Protocol defines an Error Control Service without need for

remote frames. A Heartbeat Producer transmits a Heartbeat message

cyclically. One or more Heartbeat Consumer receive the indication. The

relationship between producer and consumer is configurable via the object

dictionary. The Heartbeat Consumer guards the reception of the Heartbeat

within the Heartbeat Consumer Time. If the Heartbeat is not received within the

Heartbeat Consumer Time a Heartbeat Event will be generated.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 49

4 Configuration & Getting Start

4.1 CAN-8123/CAN-8223 Configuration Flowchart

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 50

The following procedure is the general concept for the off-line mode. This

procedure can be applied in the CAN-8x23.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 51

4.2 CAN-8423/CAN-8823 Configuration Flowchart

Select one or more of I-8000/I-87K

AI/AO/DI/DO modules for the user’s

application

Plug these I-8000/I-87K modules

into the available C A N -842 3 I/O

expansion slots

Apply this EDS file with the

CANopen master interface and run

the CAN-8423 on the CAN network

 Select the necessary

ICPDAS I-8000/I-87K

IO modules for users

CANopen application.

Use the CAN Slave Utility to

configure the AI/AO channels of the

I-8000/I-87K modules and produce

an EDS file for the present state

1. Turn off the CAN-8423.

2. Connect the COM1 of the CAN-8423 with

the PC’s COM port via the RS-232 cable,

CA0910F.

3. Turn the “BAUD” rotary switch to ‘9’.

4. Turn on the CAN-8423.

5. Execute the CAN Slave Utility to configure

the AI/AO channels of the I-8000/I-87K

modules and establish the EDS file.

After finishing the parameter

configuration and EDS file

production, turn off the C A N -

8423, set the proper node ID and

baud rate by using the rotary

switches, and turn on the C A N -

8423.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 52

The following procedure is the general concept for the on-line mode. This

procedure can be applied only in the CAN-8423 and CAN-8823.

Start

Power on the CAN-8423

Is the value of Baud

rotary switch 9?

Connect the CAN-8423

CAN port with CANopen

network

Apply the CAN-8423 on

the CANopen network

Finish

Power off the CAN-8423

Configure the CAN-8423 by

using CANSL.exe

Connect the CAN-8423 COM

port to the PC available COM

port

Yes

No

Set the Baud rotary switch

to proper baud rate

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 53

4.3 CANopen Slave Utility Overview

The CANopen Slave Utility is designed for the devices CAN-8x23. It

provides following functions.

 Allows configuring the input range of the I-8000 and I-87K AI/AO

modules plugged in CAN-8423 and CAN-8823.

 Supports to create EDS files to match the scan result in the on-line

mode after scanning the I-8000 or I-87K modules in CAN-8423 and

CAN-8823.

 Supports to produce the EDS file by using the off-line method for

CAN-8x23.

 Shows the important information which is useful in the CANopen

network. Such as the PDO communication objects, and the

standardized device objects and manufacturer specific objects

defined in the CAN-8x23.

Because all parameters configuration of the I-8000/I-87K AI/AO can be

done by using SDO protocol, complying with the CANopen specifications, the

CAN-8x23 can work directly without using the CANopen Slave Utility if users

don’t need the CAN-8x23 EDS file created under the on-line mode, i.e. users

can turn on the CAN-8x23 and directly apply it in the CANopen network. If the

EDS file is requested, users can get the EDS file by using CAN Slave Utility. If

the AI/AO channels configuration is also requested, users can apply SDO

protocol to modify the AI/AO parameter configurations. For more detail

information, please refer to the chapters 5.5 and 6.2.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 54

4.4 Configuration with the CANopen Slave Utility

CANopen Slave Utility

Step 1: Download the CANopen Slave Utility file from the web site

http://www.icpdas.com/products/Remote_IO/can_bus/can-8423.htm or

http://www.icpdas.com/products/Remote_IO/can-8123.htm or CD-ROM disk

via the following path of “CD:\CANopen\Slave\CAN-8x23\Utility\”.

Step 2: Execute the CANopen_SL.exe file to start the CANopen Slave Utility.

http://www.icpdas.com/products/Remote_IO/can_bus/can-8423.htm
http://www.icpdas.com/products/Remote_IO/can-8123.htm

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 55

4.5 CAN-8123/8223 Configuration (Off-line mode)

Step 1: Select “None” in the “COM Port” area.

Step 2: Take the CAN slave device (CAN-8823 with node ID 1) as an example,

Users have to fill in “NODE ID” with 1 and choose “Device Name” with

CAN-8823. Then, press “Next” button.

Step 3: Then, select a specific device presented in the “Off line Setting” frame,

and choose a correct slot module inserted.

For example, if the I-87057 and I-8051 modules are inserted in slot 0 and slot 1

respectively, please select 87057 in the list box, and click “Apply Module” to

save the configuration.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 56

Step 4: After finishing the configuration, users can one-left click on the slot

module in the “Off Line Setting” frame if need to change the configuration. If

the configuration is successful, users can see the correct module name when

mouse moving in, for example 87057 on the top of the slot module.

Step 5: Then, repeat the step 3~4 to configure the slot 1 to I-8042 module.

Then, click “Save Setting” button to finish the off-line parameter settings.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 57

Step 6: Then users can press button “Create EDS Module” for create

CANopen slave EDS file.

Step 7: The two fields, “description” and “create by”, can help users to do some

notes in EDS files. If these two fields are empty, the “ICPDAS CANopen I/O

Slave Device” and “ICPDAS” will be used as the default value when creating

the EDS file.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 58

Step 8: Users can select the “PDO Info”, the “Device Info“ and the “Module

Info” button for purpose to view the PDO objects, device profile and slot

module configuration information. These information dialogs are shown below.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 59

If everything is ok, click the “Finish” button to create the EDS file.

Note: If users use off-line method to get the EDS file, the objects, used to

record the input/output range of the analog modules, will be described to

default value in the EDS file. However, the I-87K slot modules will keep the

input/output range parameter settings in their own EEPROM. As a matter of

fact, it may cause the mismatch between real input/output range setting and

EDS file. By the way, CAN-8123/CAN-8223 needs to configure the input/output

range settings by using CANopen SDO protocol. For more detail, please refer

to the section 5.5.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 60

4.6 CAN-8423/8823 Configuration (On-line mode)

Before using the CAN Slave utility in the On-line mode of the

CAN-8423/8823, please make sure that all connections are ready, from the

CAN-8423/8823 to your PC via COM port. The architecture figure is displayed

in the following. Take the following application as an example, the CAN-8423

and slot modules, I-87057, I-8051, I-8024 and I-8017 are inserted in the slot 0,

1, 2, 3 respectively.

Step 1: To turn off the CAN-8423 is the beginning. Then, users can set the

“Baud” rotary switch of CAN-8423 to 9. Then, turn on the CAN-8423.

8
7

0

C

4

2

1
F

DB

9
5 3

A

6

E

BAUD

Step 2: Please use the “Baud” rotary switch again to set the baud rate for the

CAN-8423, i.e. if users want to set baud rate in 1000Kbps, they have to adjust

the “Baud” rotary switch to 7.

8
7

0

C

4

2

1
F

DB

9

5 3

A

6

E

BAUD

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 61

Step 3: To execute the CAN_SL.exe file, and to display the figure, users have

to connect a PC COM port and the CAN-8423 or CAN-8823 well. Here, take

the PC COM 1 as an example. Click “Connect” button to get the information

stored in the CAN-8823.

Step 4: Then, users can set the slot information of CAN-8823 in the below of

“CAN-8x23 Configure” frame.

Step 5: Please select the slot module 3 in the control tab area, and choose the

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 62

output range in the channel area. Here, take the selection -5.00V~+5.00V as

an example. Because of the feature of I-8017H8 slot module, output range on

each channel will be changed in the same way after users select the output

range in one of the channels.

Step 6: After setting the proper output range, users can click “Set” button to

store the configuration. If all of slot module configurations are finished, click

“Next” button to next step.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 63

Step 7: Then, “EDS File Information” window will pop out. Users can fill the

“Description” and “Create by” fields for the EDS file. Also, users can see the

CANopen objects information and modules information by clicking the buttons.

For more detail information, please refer to the Step 7 and 8 in section 4.5.

If User wants to set dynamic PDO COB-ID, input the COB-ID into the field of

“PDO setting Result” window.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 64

Then press button “ Set Dynamic PDO” to store the dynamic PDO COB-ID.

Note1: The CAN-8423/8823 can also create the EDS file by using off-line

mode, and set the analog input range or analog output range by using the

CANopen SDO protocol.

Note2: The function, dynamic PDO setting, is only supported on-line mode.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 65

5 CANopen Communication Set

In the following section, several CANopen communication protocols are

described. Each protocol description has one corresponding example.

Because the communication methods in the CAN-8123/CAN-8223/CAN-8823

are similar to the one in CAN-8423, only the example for CAN-8423 is given.

Before the example, users must have one CAN interface to send out the CAN

command. Therefore, the PISO-CAN200/400 CAN interface card with a 2/4

CAN port PCI will be requested. It provides an easy-to-use utility tool to

sending the CAN 2.0A or 2.0B command. The relationship between the

software and the hardware is shown as follows.

Please refer to the PISO-CAN200/400 user manual to know how to use its

Utility Tool.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 66

5.1 SDO Communication Set

5.1.1 Upload SDO Protocol

Initiate SDO Upload Protocol

Before transferring the SDO segments, the client and server need to

communicate with each other by using the initiate SDO upload protocol. Via

the initiate SDO upload protocol, the SDO client will inform the SDO server

what object the SDO client wants to request. As well, the initiate SDO upload

protocol is permitted to transmit up to four bytes of data. Therefore, if the data

length of the object, which the SDO client can read, is equal to or less than the

permitted data amount, the SDO communication will be finished only by using

the initial SDO upload protocol, i.e. if the data upload is less enough to be

transmitted in the initiate SDO upload protocol, then the upload SDO segment

protocol will not be used. The communication process of this protocol is shown

as follows.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 67

ccs : client command specified

2: initiate upload request

scs : server command specified

2: initiate upload response

n : Only valid if e = 1 and s = 1, otherwise 0. If valid, it indicates the

number of bytes in d that do not contain data. Bytes [8-n, 7] do

not contain segment data.

e : transfer type

0: normal transfer

1: expedited transfer

If the e=1, it means that the data of the object are equal or less

than 4 bytes, and only initiate SDO upload protocol is needed. If

e=0, the upload SDO segment protocol is necessary.

s : size indicator

0: Data set size is not indicated.

1: Data set size is indicated.

m : multiplexer

It represents the index/sub-index of the data to be transfer by

the SDO. The first two bytes are the index value and the last

byte is the sub-index value.

d : data

e=0, s=0: d is reserved for further use.

e=0, s=1: d contains the number of bytes to be uploaded, and

byte 4 contains the least significant bit, and byte 7

contains the most significant bit.

e=1, s=1: d contains the data of length 4-n to be uploaded, the

encoding depends on the type of the data referenced

by index and sub-index.

e=1, s=0: d contains unspecified number of bytes to be

uploaded.

x : not used, always 0

reserved : reserved for further use , always 0

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 68

Upload SDO Segment Protocol

When the upload data length is over 4 bytes, the upload SDO segment

protocol will be needed. After finishing the transmission of the initiate SDO

upload protocol, the SDO client will start to upload the data. The upload SDO

segment protocol will comply with the process shown below.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 69

ccs : client command specified

3: upload segment request

scs : server command specified

0: upload segment response

t : toggle bit

This bit must alternate for each subsequent segment that is

uploaded. The first segment will have the toggle bit set to 0. The

toggle bit will be equal for the request and the response

message.

c : indicates whether there are still more segments to be uploaded

0: more segments to be uploaded.

1: no more segments to be uploaded.

seg-data : It is at most 7 bytes of segment data to be uploaded. The

encoding depends on the type of the data referenced by index

and sub-index.

n : It indicates the number of bytes in seg-data that do not contain

segment data. Bytes [8-n, 7] do not contain segment data. n = 0

if no segment size is indicated.

x : not used, always 0

reserved : reserved for further use , always 0

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 70

SDO Upload Example

The practical application of the SDO upload is illustrated as below.

SDO Client

Upload SDO Protocol (t=0, c=0)

Initial SDO Upload Protocol (e=0)

Upload SDO Protocol (t=1, c=0)

Upload SDO Protocol (t=0, c=0)

Upload SDO Protocol (t=?, c=1)

...

SDO Upload with normal transfer

SDO Client

SDO Server

(CAN-8123/CAN-8223/

CAN-8423)

Initial SDO Upload Protocol (e=1)

SDO Upload with expedited transfer

SDO Server

(CAN-8123/CAN-8223/

CAN-8423)

 In the following paragraph, both expedited transfer and normal

transfer are given according to the procedure described above. In addition, the

method of how to get the value stored in the object dictionary is also presented.

As to the initiate SDO upload protocol, users can obtain how many

sub-indexes the object with index 0x1400 can support. This information is in

the object with index 0x1400 with sub-index 00. As well, users can get the

string in the object with index 0x1008 via the initiate SDO upload protocol and

the upload SDO segment protocol.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 71

 Example for expedited transfer

Step 1. SDO message will be sent to the CAN-8423 to obtain the object entry

with index 0x1400 and sub-index 00 stored in the communication profile area.

The message structure is as follows. Moreover, the node ID of the CAN-8423

set to 1, and the information about the object entry with index 0x1400 will be

described in the chapter 6.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 40 00 14 00 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 2

m : 00 14 00

According to the low byte has the higher transferred sequence, the

first byte “00” will get the priority than the second byte “14”. Here the

last byte “00” means the sub-index 00.

Step 2. The CAN-8423 will reply to the data stored in the object entry with

index 0x1400 and sub-index 00.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 4F 00 14 00 02 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 2

n : 3

e : 1

s : 1

m : 00 14 00

d : 02 00 00 00

Because of the n=3, only the 4th byte is valid. Therefore, the

feedback value is 02.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 72

 Example for normal transfer

Step 1. Send the RxSDO message to the CAN-8423 to obtain the object entry

with index 0x1008 and sub-index 00 stored in the communication profile area.

The message structure is as follows. Moreover, the node ID for the CAN-8423

set to 1, and the information about object entry with index 0x1008 will be

described in the chapter 6.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 40 08 10 00 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 2

m : 08 10 00

Step 2. The CAN-8423 will respond to the SDO message with the indication of

how many bytes will be uploaded from the CAN-8423.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 41 08 10 00 09 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 2

n : 0

e : 0

s : 1

m : 08 10 00

d : 09 00 00 00

Because of the e=0 and s=1, the d means how many data users

will upload from the CAN-8423. The byte “09” is the lowest byte in

the data length with a long format. Therefore, the data “09 00 00

00” means that users will upload 9 bytes data from CAN-8423.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 73

Step 3. The CAN-8423 is requested to start the data transmission.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 60 00 00 00 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 3

t : 0

Step 4. The CAN-8423 will respond to the first 7 bytes in the index 0x1008 and

sub-index 00 object entries.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 00 43 41 4E 2D 38 34 32

SDO client
 SDO server

(CAN-8x23)

scs : 0

t : 0

n : 0

c : 0

seg-data : 43 41 4E 2D 38 34 32

Users can check the chapter 6 to know that the object entry with

index 0x1008 and sub index 00 has the data type

“VISIBLE_STRING”. Therefore, users need to transform these

data values into the corresponding ASCII character. After

transformation, they become “CAN-842”.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 74

Step 5. The CAN-8423 is requested to transmit the rest of the data.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 70 00 00 00 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 3

t : 1

Step 6. Tthe rest of the data will be received from the SDO server.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 1B 33 00 00 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 0

t : 1

n : 5

c : 1

seg-data : 33 00 00 00 00 00 00

Because of the n=5, and only the first two bytes are valid, the

value of 0x33 and 0x00 will be transferred to the corresponding

ASCII character. After transformation, it became “3 ”.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 75

5.1.2 SDO Block Upload Protocol

Initiate SDO Block Upload Protocol

The SDO Block Upload is usually used for the large data transmission. At the

beginning of the SDO Block Upload, the Initiate SDO Block Upload protocol is

needed. This protocol is described below.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 76

ccs : client command specified

5: block upload

scs : server command specified

6: block upload.

cs : client subcommand

0: initiate upload request

3: start upload

ss : server subcommand

0: initiate upload response

m : multiplexor

It represents the index/sub-index of the data to be transfer by the

SDO.

cc : client CRC support

cc=0: Client does not support generating CRC on data.

cc=1: Client supports generating CRC on data.

sc : server CRC support

sc=0: Server does not support generating CRC on data.

sc=1: Server supports generating CRC on data.

pst : Protocol Switch Threshold in bytes to change the SDO transfer

protocol

pst=0: change of transfer protocol not allowed

pst>0: If the size of the data in bytes that has to be uploaded is

less or equal pst, the server can optionally switch to the ‘SDO

Upload Protocol’ by transmitting the server response of the ‘SDO

Upload Protocol’.

s : size indicator

0: Data set size is not indicated.

1: Data set size is indicated.

size : upload size in byes

s=0: size is reserved for further use, always 0.

s=1: size contains the number of bytes to be uploaded. Byte 4

contains the LSB and byte 7 is the MSB.

blksize : number of segments per block with 0 < blksize < 128

x : not used, always 0

reserved : reserved for further use , always 0

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 77

Upload SDO Block Segment Protocol

After finishing the Initiate SDO Block Upload protocol, the SDO server

starts to respond to the data by using the Upload SDO Block Segment protocol.

Each block contains 1 segment for the minimum and 127 segments for the

maximum. One segment consists of 1~7 bytes. And only one block can be

transmitted during an Upload SDO Block Segment protocol. The SDO server

can send a maximum of 127 blocks by using 127 Upload SDO Block Segment

protocols. The following figure is the structure for the Upload SDO Block

Segment protocol.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 78

ccs : client command specifier

5: block upload

cs : client subcommand

2: block upload response

c : It indicates whether there are still more segments to be

uploaded.

0: more segments to be uploaded

1: no more segments to be uploaded , enter ‘End block upload’

phase

seqno : sequence number of segment, 0 < seqno < 128

seg-data : It is at most 7 bytes of segment data to be uploaded.

ackseq : sequence number of last segment that was successfully

received during the last block upload

If ackseq is set to 0, the client will indicate that the segment with

the sequence number 1 was not received correctly and all

segments have to be retransmitted by the server.

blksize : number of segments per block that has to be used by server for

the following block upload with 0 < blksize < 128

x : not used, always 0

reserved : reserved for further use , always 0

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 79

End SDO Block Upload Protocol

The End SDO Block Upload protocol is used for finishing the SDO Block

upload, and is shown in the following figure.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 80

ccs : client command specifier

5: block upload

scs : server command specifier

6: block upload

cs : client subcommand

1: end block upload request

ss : server subcommand

1: end block upload response

n : It indicates the number of bytes in the last segment of the last

block that do not contain data. Bytes [8-n,7] do not contain

segment data.

crc : 16 bit Cyclic Redundancy Checksum (CRC) for the whole data

set.

The algorithm for generating the CRC is as follows.

x^16+x^12+x^5+1

CRC is only valid if in Initiate Block Upload cc and sc are set to

1. Otherwise crc has to be set to 0. For

CAN-8123/CAN-8223/CAN-8423, it is not support CRC check

mechanism.

x : not used, always 0

reserved : reserved for further use , always 0

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 81

SDO Block Upload Example

The following figure shows the general procedure of applying the SDO

Block upload.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 82

By the following procedure, an example is provided to obtain a value of

the index 0x1008 and sub-index 00 object entries.

Step 1. The CAN-8423 is requested to transmit the data by using the SDO

Block Upload method.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 A0 08 10 00 7F 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 5

cc : 0

cs : 0

m : 08 10 00

blksize : 7F

Each block contains 127 segments.

pst : 00

Step 2. The CAN-8423 will confirm the requirement with the Initiate SDO Block

Upload protocol.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 C2 08 10 00 09 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 6

sc : 0

s : 1

ss : 0

m : 08 10 00

size : 09 00 00 00

The CAN-8123 will response 9 bytes data during the SDO Block

Upload.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 83

Step 3. The message is sent to finish the Initiate SDO Block Upload protocol,

and will actuate the CAN-8423 to start the data transmission.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 A3 00 00 00 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 5

cs : 3

Step 4. The CAN-8423 will responds to the first 7 bytes of data by using the

Upload SDO Block Segment protocol.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 1 43 41 4E 2D 38 34 32

SDO client
 SDO server

(CAN-8x23)

c : 0

seqno : 1

seg-data : 43 41 4E 2D 38 34 32

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 84

Step 5. The CAN-8423 will transmit the rest of the data.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 82 33 00 00 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

c : 1

seqno : 2

seg-data : 33 00 00 00 00 00 00

Because this segment is the last one, not all of the data in the

seg-data filed is useful. The valid data length will be indicated

when the CAN-8423 send a message to finish the Block Upload

protocol. Please refer to the value of n in the step 7.

Step 6. Then, users will send a message to confirm the received data

transmitted from the CAN-8423.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 A2 02 7F 00 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 5

cs : 2

ackseq : 2

blksize : 7F

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 85

Step 7. When the reception is confirmed, the CAN-8423 will send a message

to enter the End SDO Block Upload protocol.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 D5 00 00 00 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 6

n : 5

This value means the invalid data in the last segment are from

[8-5] to 7, i.e. only the first 3 bytes are valid.

ss : 1

crc : 00 00

Step 8. Users will send a message to finish the End SDO Block Upload

protocol.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 A1 00 00 00 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 5

cs : 1

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 86

5.1.3 Download SDO Protocol

Initiate SDO Download Protocol

The download modes are similar to the upload modes, but different in

some parameters of the SDO messages. They are also separated into two

steps. If the download data length is less than 4 bytes, the download action will

finish in the download initialization protocol. Otherwise, the download segment

protocol will be needed. These two protocols are shown below.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 87

ccs : client command specified

1: initiate download request

scs : server command specified

3: initiate download response

n : Only valid if e = 1 and s = 1, otherwise 0. If valid, it indicates the

number of bytes in d that do not contain data. Bytes [8-n, 7] do

not contain segment data.

e : transfer type

0: normal transfer

1: expedited transfer

If the e=1, it means that the data of the object are equal or less

than 4 bytes, and only initiate SDO download protocol is needed.

If e=0, the download SDO protocol is necessary.

s : size indicator

0: data set size is not indicated

1: data set size is indicated

m : multiplexer

It represents the index/sub-index of the data to be transfer by the

SDO.

d : data

e=0,s=0: d Is reserved for further use.

e=0,s=1: d contains the number of bytes to be downloaded, and

byte 4 contains the least significant bit, and byte 7

contains the most significant bit.

e=1,s=1: d contains the data of length 4-n to be downloaded, the

encoding depends on the type of the data referenced

by index and sub-index.

e=1,s=0: d contains unspecified number of bytes to be

downloaded.

x : not used, always 0

reserved : reserved for further use , always 0

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 88

Download Segment Protocol

ccs : client command specified

0: download segment request

scs : server command specified

1: download segment response

seg-data : It is at most 7 bytes of segment data to be downloaded. The

encoding depends on the type of the data referenced by index

and sub-index.

n : It indicates the number of bytes in segment data that do not

contain segment data. Bytes [8-n, 7] do not contain segment

data. n = 0 if no segment size is indicated.

c : It indicates whether there are still more segments to be

downloaded.

0 more segments to be downloaded

1: no more segments to be downloaded

t : toggle bit

This bit must alternate for each subsequent segment that is

downloaded. The first segment will have the toggle-bit set to 0.

The toggle bit will be equal for the request and the response

message.

x : not used, always 0

reserved : reserved for further use , always 0

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 89

SDO Download Example

When the SDO download example has been applied, the procedure in the

below figure may be applied.

Since all of those object entries, which can be written, in the

CAN-8123/CAN-8223/CAN-8423 are equal or less than 4 bytes, we can only

provide the example for expedited transfer.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 90

 Example for expedited transfer

Step 1. The Rx SDO message is sent to the CAN-8423 to access the object

entry with index 0x1400 and sub-index 02 stored in the communication profile

area. For example, the value of this object entry is changed to 5, as the node

ID for the CAN-8423 is set to 1.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 2F 00 14 02 05 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 3

e : 1

s : 1

m : 00 14 02

d : 05 00 00 00

Because the n=3, only the 4th byte is valid. Therefore, the feedback

value is 05.

Step 2. The CAN-8423 will reply with the message to finish the data download.

Then, users can use the upload methods to read back the value.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 00 14 02 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 00 14 00

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 91

5.1.4 SDO Block Download

The procedure of SDO Block Download is similar to the SDO Block

Upload. There are three steps during the SDO Block Download. The Initiate

SDO Block Download protocol is the beginning protocol for SDO Block

Download. In this protocol, the SDO server and SDO client will mutually

communicate. Afterwards, the SDO Block Download protocol will also be used.

And, data will be sent to SDO server by SDO client. After finishing the data

transmission, the client and server will use the End SDO Block protocol to

terminate the SDO Block Download. The following figures are the structures

for the three protocols.

Initiate SDO Block Download Protocol

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 92

ccs : client command specified

6: block download

scs : server command specified

5: block download

s : size indicator

0: Data set size is not indicated.

1: Data set size is indicated.

cs : client subcommand

0: initiate download request

ss : server subcommand

0: initiate download response

cc : client CRC support

cc=0: Client does not support generating CRC on data.

cc=1: Client supports generating CRC on data.

sc : server CRC support

sc=0: Server does not support generating CRC on data.

sc=1: Server supports generating CRC on data.

m : multiplexor

It represents the index/sub-index of the data to be transfer by the

SDO.

size : download size in byes

s=0: Size is reserved for further use, always 0.

s=1: Size contains the number of bytes to be downloaded. Byte

4 contains the LSB and byte 7 is the MSB.

blksize : number of segments per block with 0 < blksize < 128

x : not used, always 0

reserved : reserved for further use , always 0

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 93

Download SDO Block Segment Protocol

scs : server command specified

5: block download

ss : server subcommand

0: initiate download response

c : It indicates whether there are still more segments to be

downloaded.

0: more segments to be downloaded

1: no more segments to be downloaded , enter ‘End block

download’ phase

seqno : sequence number of segment, 0 < seqno < 128

seg-data : It is at most 7 bytes of segment data to be downloaded.

ackseq : sequence number of last segment that was received

successfully during the last block download

If ackseq is set to 0, the server indicates the client that the

segment with the sequence number 1 was not received correctly

and all segments have to be retransmitted by the client.

blksize : number of segments per block that has to be used by client for

the following block download with 0 < blksize < 128

x : not used, always 0

reserved : reserved for further use , always 0

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 94

End SDO Block Download Protocol

ccs : client command specified.

6: block download

scs : server command specified.

5: block download

cs : client subcommand

1: end block download request

ss : server subcommand

1: end block download response

n : It indicates the number of bytes in the last segment of the last

block that do not contain data. Bytes [8-n,7] do not contain

segment data.

crc : 16 bit Cyclic Redundancy Checksum (CRC) for the whole data

set.

The algorithm for generating the CRC is as follows.

x^16+x^12+x^5+1

CRC is only valid if in Initiate Block Download cc and sc are set

to 1. Otherwise, crc has to be set to 0. For

CAN-8123/CAN-8223/CAN-8423, it is not support CRC check

mechanism.

X : not used, always 0

reserved : reserved for further use , always 0

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 95

SDO Block Download Example

In this example, the value of the object entry with index 0x1400 and

sub-index 0x02 will be changed to 5 by using the SDO Block Download

communication method. When the SDO Block Download is actuated, the

procedure will be as follows.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 96

Step 1. When the Initiate SDO Block Download protocol is carried out, the

CAN-8423 will be informed with the value of the object entry with index 0x1400

and sub-index 02 modified by the method of the SDO Block Download,

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 C0 00 14 02 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 6

cc : 0

s : 0

cs : 0

m : 00 14 02

size : 00 00 00 00

Because the value of s is 0, the size is not used.

Step 2. The CAN-8423 will reply to the message by using the Initiate SDO

Block Download protocol. Then, the SDO client will download the object‘s data

with index 0x1400 and sub-index 02 to CAN-8423.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 A0 00 14 02 7F 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 5

sc : 0

s : 0

ss : 0

m : 00 14 02

blksize : 7F

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 97

Step 3. The SDO client will transmit the data of the object entry index 0x1400

and sub-index 02 by using the Download SDO Block Segment protocol. The

following description shows that the data length of the value is less than the

maximum data length of one block, the SDO Block Segment Download

protocol is just implemented once.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 81 05 00 00 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

c : 1

seqno : 1

seg-data : 05 00 00 00 00 00 00

Because this segment is the last one, not all of the data in the

seg-data filed is useful. The valid data length will be indicated when

the users send a message to finish the Block Download protocol.

Please refer to the value of n in the step 5.

Step 4. The CAN-8423 will reply to the message in order to check whether the

transmission is successful or not. If not, this block transmission will be

requested again. After finishing the data transmission, the Download SDO

Block Segment protocol will be terminated.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 A2 01 7F 00 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 5

ss : 2

ackseq : 01

blksize : 7F

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 98

Step 5. The SDO client will send the ending message to finish the SDO Block

Download.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 D9 00 00 00 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 6

n : 6

This value means the useless data in the last segment are from [8-6]

to 7, i.e. only the first 2 bytes are valid.

cs : 1

crc : 00 00

Step 6. The CAN-8423 will reply to the message, and terminate the End SDO

Block Download protocol.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 A1 00 00 00 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 5

ss : 1

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 99

5.1.5 Abort SDO Transfer Protocol

In some conditions, the SDO client or SDO server will terminate the SDO

transmission. For example, the value of entries that users want to modify does

not exist or is read-only, even users wouldn’t continue the uncompleted SDO

protocol under some special situations. When these conditions occur, both the

client and the server can be activated to send the Abort SDO Transfer

message. The Abort SDO Transfer protocol is shown below.

cs : command specified

4: abort transfer request

x : not used, always 0

m : multiplexer

It represents index and sub-index of the SDO

d : contains a 4-byte “Abort Code” about the reason for the abort

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 100

Abort Code Description

0503 0000h Toggle bit not alternated.

0504 0000h SDO protocol timed out.

0504 0001h Client/server command specified not valid or unknown.

0504 0002h Invalid block size (block mode only).

0504 0003h Invalid sequence number (block mode only).

0504 0004h CRC error (block mode only).

0504 0005h Out of memory.

0601 0000h Unsupported access to an object.

0601 0001h Attempt to read a write only object.

0601 0002h Attempt to write a read only object.

0602 0000h Object does not exist in the object dictionary.

0604 0041h Object cannot be mapped to the PDO.

0604 0042h
The number and length of the objects to be mapped would exceed

PDO length.

0604 0043h General parameter incompatibility reason.

0604 0047h General internal incompatibility in the device.

0606 0000h Access failed due to an hardware error.

0607 0010h
Data type does not match, length of service parameter does not

match

0607 0012h Data type does not match, length of service parameter too high

0607 0013h Data type does not match, length of service parameter too low

0609 0011h Sub-index does not exist.

0609 0030h Value range of parameter exceeded (only for write access).

0609 0031h Value of parameter written too high.

0609 0032h Value of parameter written too low.

0609 0036h Maximum value is less than minimum value.

0800 0000h General error.

0800 0020h Data cannot be transferred or stored to the application.

0800 0021h
Data cannot be transferred or stored to the application because of

local control.

0800 0022h
Data cannot be transferred or stored to the application because of

the present device state.

0800 0023h

Object dictionary dynamic generation fails or no object dictionary is

present (e.g. object dictionary is generated from file and generation

fails because of an file error).

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 101

Abort SDO Transfer Example

 The object index 0x1008 doesn’t support the sub-index 01 entry.

Therefore, if users read the object entry with index 0x1008 and sub-index 01,

the CAN-8x23 will reply the Abort SDO Transfer message. The example is

figured as follows.

Step 1. The Rx SDO message will be sent to the CAN-8423 in order to get the

object entry with index 0x1008 and sub-index 01. The following example is

assumed that the node ID for the CAN-8423 is set to 1.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 40 08 10 01 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 2

m : 08 10 01

Step 2. The CAN-8423 will reply to the Abort SDO message as shown below.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 80 08 10 01 11 00 09 06

SDO client
 SDO server

(CAN-8x23)

cs : 4

m : 08 10 01

d : 11 00 09 06

According to the low byte data have the transferring priority, the data

will be converted to “06 09 00 11”. Therefore, after searching the Abort

Code table described above, this Abort Code can be interpreted as

“Sub-index does not exist”.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 102

5.2 PDO Communication Set

5.2.1 PDO COB-ID Parameters

Before the real-time data are transmitted by the PDO, it is necessary to

check the COB-ID parameter of this PDO in the PDO communication objects.

This parameter setting controls the COB-ID of the PDO communication, which

is in 32 bits, and each bit with its meaning is given in the table follow.

Bit Number Value Meaning

31 (MSB) 0 PDO exits (PDO is valid)

 1 PDO does not exist (PDO is not valid)

30 0 RTR allowed on this PDO

 1 No RTR allowed on this PDO

29 0 11-bit ID (CAN 2.0A)

 1 29-bit ID (CAN 2.0B)

28-11 0 If bit 29=0

 x If bit 29=1: 28-11 bits of 29-bit COB-ID

10-0 (LSB) x 10-0 bits of COB-ID

Note: Only CAN-8123/CAN-8223/CAN-8423 supports CAN 2.0A.

In the following table, it’s regarding the default PDO COB-ID

parameters.

Number of PDO

Default COB-ID of PDO

Bit10~Bit7

(Function Code)
Bit6~Bit0

TxPDO1 0011 Node ID

TxPDO2 0101 Node ID

TxPDO3 0111 Node ID

TxPDO4 1001 Node ID

RxPDO1 0100 Node ID

RxPDO2 0110 Node ID

RxPDO3 1000 Node ID

RxPDO4 1010 Node ID

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 103

Note: 1. Users can also define the PDO COB-ID by themselves. Actually, all

COB-ID can be defined by users except the reserved COB-ID

described in the table of the section 3.1. It is important to avoid the

conflict with the defined COB-ID used in the same node.

2. The PDO COB-ID parameters cannot be changed if the PDO is valid

(bit 31 =0).

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 104

5.2.2 Transmission Type

The transmission type is one of the several parameters defined in PDO

communication objects with sub-index 02. Each PDO has its own transmission

type. The transmission type can indicate the transmission or reception

character for its corresponding PDO. The following table describes the

relationship between the value of the transmission type and the PDO character.

For example, if users used transmission type 0 for the first TxPDO, the

CANopen device will follow the rule of the acyclic and synchronous PDO

transmission.

Transmission

Type

PDO Transmission method

cyclic acyclic synchronous asynchronous
RTR

only

0 O O

1-240 O O

241-251 -------------------------reversed-------------------------

252 O O

253 O O

254 O

255 O

Note:

1. The transmission type 1-240 indicates how many SYNC objects the TxPDO

will be triggered. The RxPDO is always triggered by the following SYNC

upon reception of data independent of the transmission types 0-240.

2. The transmission type 252 and 253 are only used for TxPDO. The

transmission type 252 means that the data is updated (but not sent)

immediately after reception of the SYNC object. For these two transmission

types, the PDO is only transmitted on remote transmission requests.

3. For the transmission types 254 and 255, the event timer will be used in the

TxPDO. The PDO, including the DI value, will be sent when the DI value is

changed. And both transmission types will directly trigger an update of the

mapped data when receiving the RxPDO.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 105

5.2.3 PDO Communication Rule

The PDO related objects are indicated from index 0x1400 to 0x1BFF. For

the CAN-8x23, RxPDO communication objects are from index 0x1400 to index

0x140F, and RxPDO mapping objects are from index 0x1600 to index 0x160F.

The ranges of the TxPDO communication objects and the mapping objects are

from index 0x1800 to index 0x180F and from index 0x1A00 to index 0x1A0F

respectively. Moreover, each PDO communication object has its own PDO

mapping object.

For example, the first RxPDO communication object is stored in the entry

with index 0x1400, and the corresponding mapping object is stored in an entry

with index 0x1600. The object with index 0x1401 and the object with index

0x1601 are a group, and so on. The TxPDO also follows the same rules. The

first TxPDO communication object is stored in the entry with 0x1800, and the

corresponding mapping object is in the 0x1A00 entry, and so on. Therefore,

before users access the practical I/O channels via PDO communication, each

parameter for the PDO communications and mapping objects must be

controlled.

Besides, only PDO communications can be used in the NMT operational

state. Users can use the NMT module control protocol to change the NMT

state of the CAN-8x23. It is described in the section 5.3. Besides, during

communication via the PDO messages, the data length of the PDO message

must match with the PDO mapping object. If the data length ‘L’ of the PDO

message exceeds the total bytes ‘n’ of the PDO mapping object entries, only

the first 'n' bytes of the PDO message are used by the PDO consumer. If ‘L’ is

less than 'n', the PDO message will not be disposed by the PDO consumer,

and an Emergency message with error code 8210h will be transmitted to the

PDO producer. The PDO communication set is shown as follows.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 106

Write PDO Protocol

PDO Producer PDO Consumers

request

8-byte Data (byte)Len

L0

RTR11-bit COB-ID (bit)

10~0

COB-ID

0~7

Indication

indication

indication

PDO-msg

COB-ID : the default PDO COB-ID, or the PDO COB-ID can be defined by

user

L : the data length about how many bytes the PDO message has

PDO-msg : the real-time data or the data which can be mapped into the

PDO mapping objects

Read PDO Protocol

PDO Consumer PDO Producer

request

8-byte Data (byte)Len

L0

RTR11-bit COB-ID (bit)

10~0

COB-ID

0~7

Indication
PDO-msg

request

request

Remote Transmit Request

8-byte Data (byte)Len

01

RTR11-bit COB-ID (bit)

10~0

COB-ID

0~7

reserved

COB-ID : the default PDO COB-ID, or the PDO COB-ID defined by users

L : the data length about how many bytes the PDO message has

PDO-msg : the real-time data or the data which can be mapped into the

PDO mapping objects

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 107

PDO Communication Example

 To take a look at a PDO communication demo, some I-8000 slot modules

will be needed. They are I-8057, I-8053, I-8024 and I-87017. Connect each I/O

channels for these modules as following figure.

Please use the CAN-8423 rotary switch to set the node ID to 1, and CAN

bus baud rate to 125Kbps. Moreover, use CAN Slave Utility to set the I-8024

and I-87017 input/output range to -10V~+10V. When using the CAN Slave

Utility, the following information can be as a reference. (Note:

CAN-8123/CAN-8223 can’t be used with the on-line mode to set the channel

input/output range. Therefore, users have to refer to the section 5.5 to know

how to use the SDO protocol to set the channel input/output range)

RxPDO Information

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 108

TxPDO Information

Standardized Device Profile Area Information

After concluding the above preparations, the several functions of PDO

communication will be introduced as follows.

 The function of accessing digital I/O & analog I/O with asynchronous

PDO.

 The function by using Event Timer to obtain the input value.

 The function of the acyclic and synchronous RxPDO.

 The function of the acyclic and synchronous TxPDO.

 The function of the cyclic and synchronous TxPDO.

 The function of the synchronous and RTR-only TxPDO.

 The function of the asynchronous and RTR-only RxPDO.

 The function of the dynamic PDO mapping for DI/AI/DO/AO channels

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 109

Before describing the example, the step0 must be checked. And the

default COB-ID for each communication object is assumed to be being used.

Step0: The following message must be sent in order to change the NMT state

of the CAN-8423 first, because only the PDO communication can run under

the NMT Operational state.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0 0 0 0 8 01 01 00 00 00 00 00 00

NMT master
 NMT slave

(CAN-8x23)

cs : 1

Node ID : 1

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 110

 Access Digital I/O & Analog I/O

Step 1. In order to change the DO value of the I-8057 to be 0x1234, users must

send the PDO message by using the first RxPDO.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0 0 1 0 8 34 12 00 00 00 00 00 00

PDO

producer

 PDO consumer

(CAN-8x23)

COB-ID : 0x201

L : 8

PDO-msg : 34 12 00 00 00 00

Only the first two bytes are valid, even if the L is set to 8, because

the data in the first RxPDO contains only two bytes. According to the

PDO mapping table shown above, the first byte is for the DO0~DO7

channel values of the I-8057. The second byte is for the DO8~DO15

channel values of the I-8057.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 111

Step 2. Because of the change of the DI-channel status, the TxPDO is

transmitted automatically when the transmission type is 255, based on the

CANopen spec 401. Then, users will receive the 1st TxPDO message.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0 0 1 0 2 34 12 00 00 00 00 00 00

PDO

consumer

 PDO consumer

(CAN-8x23)

COB-ID : 0x181

L : 2

PDO-msg : 34 12 00 00 00 00 00 00

Because the data length is 2, only the first two bytes are valid. The

DI value will be 1 if the DI is OFF, according to the character of the

I-8053 DI channels. Therefore, the first byte indicates that the DI2,

DI4, and DI5 of the I-8053 are in ON state. The second byte shows

that the DI9 and DI12 of the I-8053 are in ON state.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 112

Step 3. In order to output 5V to the AO0 of the I-8024, users must send the

PDO message by using the 2nd RxPDO.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 1 1 0 0 0 0 0 0 0 1 0 8 FF 3F 00 00 00 00 00 00

PDO

producer

 PDO consumer

(CAN-8x23)

COB-ID : 0x301

L : 8

PDO-msg : FF 3F 00 00 00 00 00 00

The first two bytes are for AO channel 0, and the others are for AO

channel 1, 2 and 3. Users need to transfer the float value to hex

format because only the CAN-8123/CAN-8223/CAN-8423 supports

the hex format. The output range of the I-8024 is -10V~10V.

According to the transformation table stored in the appendix table,

the mapping hex-format range is from 0x8000 (-32768) to 0x7FFF

(32767). Therefore, the 5V is mapped to the 0x3FFF by applying

following equation.

FFFx

VV

VV
HexValue

301638325.16383

)32768()32768(32767
)10(10

)10(5

The first two bytes of the PDO message will be filled with “FF” and

“3F”. All the other AI channels are set to 0V. Then, the value “00 00”

will be given for these channels. For more details about how to

transfer the value between the hex and float, please refer to the

section 6.3.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 113

Step 4. Even the AI input value has been changed according the AO value, the

RxPDO will not respond automatically in the CAN-8423. Therefore, users need

to use the RTR message from the 2nd TxPDO to read back the AI value.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 1 0 1 0 0 0 0 0 0 1 1 0 00 00 00 00 00 00 00 00

PDO

consumer

 PDO consumer

(CAN-8x23)

COB-ID : 0x281

Step 5. The feedback value for AI is 5V.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 1 0 1 0 0 0 0 0 0 1 0 8 00 40 FD FF FD FF FD FF

PDO

consumer

 PDO consumer

(CAN-8x23)

COB-ID : 0x281

L : 8

PDO-msg : 00 40 FD FF FD FF FD FF

The first two bytes are for AI channel 0. The others are for AI channel

1, 2, and 3. The feedback AI0 value is 0x4000. All the other AI

channels are 0xFFFD. Users need to transfer this AI0 value to float.

The I-87017’s input float range is set to -10V ~ +10V and the input

hex range is from 0x8000 (-32768) to 0x7FFF (32767). The value

0x4000 (16384) can be transferred by using the following equation.

V

VVVFloatValue

001.5

101010
3276832767

3276816384

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 114

 Event Timer Functionality

Step 6. Users can use the SDO to change the event timer of the 2nd RxPDO to

1000, stored in index 0x1801 with sub-index 5. In addition, the value 1000

means 1 second according to the event timer is ms,

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 2B 00 18 05 E8 03 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 2

e : 1

s : 1

m : 00 18 05

d : E8 03 00 00

The value 0x03E8 is equal to 1000. Because the n=2, the last two

bytes “00 00” is useless.

Step 7. The CAN-8423 will response the message to finish the data download.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 00 18 05 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 00 18 05

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 115

Step 8. After changing the value of the event timer, the AI value will be

automatically transmitted per second. The example below shows that at the

first time the 2n TxPDO message is received.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 1 0 1 0 0 0 0 0 0 1 0 8 00 40 FD FF FF FF FF FF

PDO

consumer

 PDO producer

(CAN-8x23)

COB-ID : 0x281

L : 8

PDO-msg : 00 40 FD FF FF FF FF FF

Step 9. The following example shows that at the second time the 2nd TxPDO

message is received.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 1 0 1 0 0 0 0 0 0 1 0 8 06 40 FF FF FF FF FF FF

PDO

consumer

 PDO producer

(CAN-8x23)

COB-ID : 0x281

L : 8

PDO-msg : 06 40 FF FF FF FF FF FF

The value of 0x4006 is equal to 5.002V. The AI value is changed

because of the noise disturbance or other factors.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 116

Step 10. It shows that at the third time for the 2nd TxPDO message is received.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 1 0 1 0 0 0 0 0 0 1 0 8 00 40 FF FF FD FF FF FF

PDO

consumer

 PDO producer

(CAN-8x23)

COB-ID : 0x281

L : 8

PDO-msg : 00 40 FF FF FD FF FF FF

Step 11. Users can set the event timer to 0 to finish the event timer test.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 2B 00 18 05 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 2

e : 1

s : 1

m : 00 18 05

d : 00 00 00 00

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 00 18 05 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 00 18 05

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 117

 Transmission Type 0 for the first RxPDO

Step 12. Users can set the transmission type of the first RxPDO to 0.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 2F 00 14 02 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 3

e : 1

s : 1

m : 00 14 02

d : 00

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 00 14 02 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 00 14 02

Step 13. Change the DO value of the I-8057 to be 0x5678 by using the 1st

RxPDO.

 11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0 0 1 0 8 78 56 00 00 00 00 00 00

PDO

producer

 PDO consumer

(CAN-8x23)

COB-ID : 0x201

L : 8

PDO-msg : 78 56 00 00 00 00 00 00

Step 14. The DO value isn’t changed immediately according to the character of

the transmission type 0. Meanwhile, the SYNC message is needed to trigger

the action of the 1st RxPDO.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 118

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 0 1 0 0 0 0 0 0 0 0 0 00 00 00 00 00 00 00 00

SYNC

producer

 SYNC consumer

(CAN-8x23)

COB-ID : 0x80

The message of the SYNC object is always fixed as the format

described above. The COB-ID of the SYNC object can be changed

arbitrarily. It complies with the producer/consumer relationship.

Step 15. After transmitting the SYNC object, the 1st RxPDO is triggered. The

DI value is also changed at the same time. Hence, users can receive the 1st

TxPDO from CAN-8423.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0 0 1 0 2 78 56 00 00 00 00 00 00

PDO

consumer

 PDO producer

(CAN-8x23)

COB-ID : 0x181

L : 2

PDO-msg : 78 56 00 00 00 00 00 00

Step 16. Users can set the transmission type of the first RxPDO to 255 to finish

the test.

11-bit COB-ID (bit)
RTR

Data

Length
8-byte Data (byte)

Func Code Node ID

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 119

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 2F 00 14 02 FF 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 3

e : 1

s : 1

m : 00 14 02

d : FF 00 00 00

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 00 14 02 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 00 14 02

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 120

 Transmission Type 0 for the first TxPDO

Step 17. Users can set the transmission type of the first TxPDO to 0.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 2F 00 18 02 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 3

e : 1

s : 1

m : 00 18 02

d : 00 00 00 00

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 00 18 02 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 00 18 02

Step 18. Users can change the DO value of the I-8057 to be 0x90AB by using

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 121

the first RxPDO.

 11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0 0 1 0 8 AB 90 00 00 00 00 00 00

PDO

producer

 PDO consumer

(CAN-8x23)

COB-ID : 0x201

L : 8

PDO-msg : AB 90 00 00 00 00 00 00

Step 19. The first TxPDO will not be transmitted immediately even if the DI

value is changed according to the character of the transmission type 0. In

addition, the SYNC message is needed to trigger the action of the first TxPDO.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 0 1 0 0 0 0 0 0 0 0 0 00 00 00 00 00 00 00 00

SYNC

producer

 SYNC consumer

(CAN-8x23)

COB-ID : 0x80

Step 20. After transmitting the SYNC object, the 1st TxPDO is triggered, and

users can receive the 1st TxPDO from CAN-8423.

 11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0 0 1 0 2 90 AB 00 00 00 00 00 00

PDO

consumer

 PDO producer

(CAN-8x23)

COB-ID : 0x181

L : 2

PDO-msg : 90 AB 00 00 00 00 00 00

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 122

Step 21. Users can send the SYNC message again.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 0 1 0 0 0 0 0 0 0 0 0 00 00 00 00 00 00 00 00

SYNC

producer

 SYNC consumer

(CAN-8x23)

SYNC

COB-ID

: 0x80

Step 22. Nothing happened because the DI values were not changed. This is

the main difference between transmission type 0 and 1. (Under the

transmission type 1, the TxPDO is always transmitted no matter whether the

DI values are changed or not, when the CAN-8423 receives the SYNC object.)

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 123

 Transmission Type 3 for the first TxPDO

Step 23. Users can set the transmission type of the first TxPDO to 3.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 2F 00 18 02 03 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 3

e : 1

s : 1

m : 00 18 02

d : 03 00 00 00

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 00 18 02 00 00 00 00

SDO client
 SDO server

(CAN-8x423)

scs : 3

m : 00 18 02

Step 24. Users can change the DO value of the I-8057 to be 0xCDEF by using

the first RxPDO.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 124

 11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0 0 1 0 8 EF CD 00 00 00 00 00 00

PDO

producer

 PDO consumer

(CAN-8x23)

COB-ID : 0x201

L : 8

PDO-msg : EF CD 00 00 00 00 00 00

Step 25. The SYNC message has to be transmited in 3 times according to the

character of transmission type 3.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 0 1 0 0 0 0 0 0 0 0 0 00 00 00 00 00 00 00 00

SYNC

producer

SYNC consumer

(CAN-8x23)

COB-ID : 0x80

Step 26. After finishing the transmission of the three SYNC objects, the first

TxPDO will be triggered, and users will receive the first TxPDO from

CAN-8423.

 11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0 0 1 0 2 EF CD 00 00 00 00 00 00

PDO

consumer

 PDO producer

(CAN-8x23)

COB-ID : 0x181

L : 2

PDO-msg : EF CD 00 00 00 00 00 00

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 125

 Transmission Type 252 for the first TxPDO

Step 27. Users can set the transmission type of the first TxPDO to 252.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 2F 00 18 02 FC 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 3

e : 1

s : 1

m : 00 18 02

d : FC 00 00 00

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 00 18 02 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 00 18 02

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 126

Step 28. Users can change the DO value of the I-8057 to be 0x1234 by using

the first RxPDO.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0 0 1 0 8 34 12 00 00 00 00 00 00

PDO

producer

 PDO consumer

(CAN-8x23)

COB-ID : 0x201

L : 8

PDO-msg : 34 12 00 00 00 00 00 00

Step 29. The fist TxPDO will not be transmitted immediately according to the

transmission type 252. Meanwhile, it will send the RTR message of the first

TxPDO.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0 0 1 1 0 00 00 00 00 00 00 00 00

PDO

consumer

 PDO producer

(CAN-8x23)

COB-ID : 0x181

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 127

Step 30. The feedback DI values are out-of-date. (Users can see the LEDs

status on the I-8053 to confirm the practical DI values).

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0 0 1 0 2 34 12 00 00 00 00 00 00

PDO

consumer

 PDO producer

(CAN-8x23)

COB-ID : 0x181

L : 2

PDO-msg : 34 12 00 00 00 00 00 00

Step 31. Transmit a SYNC message.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 0 1 0 0 0 0 0 0 0 0 0 00 00 00 00 00 00 00 00

SYNC

producer

 SYNC consumer

(CAN-8x23)

COB-ID : 0x80

Step 32. Users can send the RTR message of the first TxPDO again.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0 0 1 1 0 00 00 00 00 00 00 00 00

PDO

consumer

 PDO producer

(CAN-8x23)

COB-ID : 0x181

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 128

Step 33. The feedback DI values will be the real DI values.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0 0 1 0 2 34 12 00 00 00 00 00 00

PDO

consumer

 PDO producer

(CAN-8x23)

COB-ID : 0x181

L : 2

PDO-msg : 34 12 00 00 00 00 00 00

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 129

 Transmission Type 253 for the first TxPDO

Step 34. Users can set the transmission type of the first TxPDO to 253.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 2F 00 18 02 FD 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 3

e : 1

s : 1

m : 00 18 02

d : FD 00 00 00

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 00 18 02 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 00 18 02

Step 35. Users can change the DO value of the I-8057 to be 0x5678 by using

the first RxPDO.

 11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0 0 1 0 8 78 56 00 00 00 00 00 00

PDO

producer

 PDO consumer

(CAN-8x23)

COB-ID : 0x201

L : 8

PDO-msg : 78 56 00 00 00 00 00 00

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 130

Step 36. According to the transmission type 253, only the first TxPDO can be

transmitted when receiving the RTR message. So, users can send the RTR

message to get DI values. Then, the CAN-8423 will reply with the I-8053 digital

input status.

 11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0 0 1 1 0 00 00 00 00 00 00 00 00

PDO

consumer

 PDO producer

(CAN-8x23)

COB-ID : 0x181

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0 0 1 0 2 78 56 00 00 00 00 00 00

PDO

consumer

 PDO producer

(CAN-8x23)

COB-ID : 0x181

L : 2

PDO-msg : 78 56 00 00 00 00 00 00

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 131

Step 37. Set the transmission type of the 1st TxPDO to 255 to finish the test.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 2F 00 18 02 FF 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 3

e : 1

s : 1

m : 00 18 02

d : FF 00 00 00

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 00 18 02 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 00 18 02

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 132

 Dynamic PDO Mapping for DI/AI/DO/AO Channels

Step 38. Users can use the 5th TxPDO to create a new PDO communication

with PDO COB-ID 0x182, which is useless for the CAN-8423. Before setting

the COB-ID of a PDO, users have to check the bit 31 of the COB-ID first. Only

the COB-ID with the value 0 on the bit 31 can be changed. So the COB-ID can

be configured directly according to the 5th TxPDO is invalid.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 23 05 18 01 82 01 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 0

e : 1

s : 1

m : 05 18 01

d : 82 01 00 00

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 05 18 01 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 05 18 01

Step 39. Users can create a new PDO mapping object for the 5th TxPDO.

Before getting the device objects into the index 0x1A05, users have to check

the value of the index 0x1A05 with sub-index 00. If the value is not equal to 0,

any modification will be rejected. In this case, it is necessary to have the value

in 0. Therefore, users have to fill the DI0~DI7 of the I-8053 into the index

0x1A05 with sub-index 01.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 133

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 23 05 1A 01 08 01 00 60

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 0

e : 1

s : 1

m : 05 1A 01

d : 08 01 00 60

The value “08 01 00 60” means the mapped object is stored in the

index 0x6000 with sub-index 01. It is an 8-bit data unit. Users can

check this object in the Standardize object mapping table described

above. It is mapped according to the DI0~DI7 of the I-8053.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 05 1A 01 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 05 1A 01

Step 40. According to the purposes, users have to fill the DI8~DI15 of the

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 134

I-8053 and AI0 of the I-87017 into the index 0x1A05 with sub-index 02 and 03

respectively.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 23 05 1A 02 08 02 00 60

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 0

e : 1

s : 1

m : 05 1A 02

d : 08 02 00 60

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 1 0 1 1 1 0 1 0 8 60 05 1A 02 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 05 1A 02

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 135

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 23 05 1A 03 10 01 01 64

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 0

e : 1

s : 1

m : 05 1A 03

d : 10 01 01 64

The value “10 01 01 64” means that the mapped object is stored in the

index 0x6401 with sub-index 01. It is a 16-bit data unit. User can

check this object in the Standardize object mapping table described

above. It is mapped according to AI0 of the I-87017. In CAN-8123/

CAN-8223/CAN-8423, all analog channels are presented by 16-bit

value.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 05 1A 03 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 05 1A 03

Step 41. In order to use this PDO mapping object normally, the value of the

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 136

index 0x1A05 with sub-index 00 must be changed to 3. The value 3 means

there are 3 objects mapped to the 5th TxPDO. They are the index 0x6000 with

sub-index 01, index 0x6000 with sub-index 02, and index 0x6401 with

sub-index 01.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 2F 05 1A 00 03 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 3

e : 1

s : 1

m : 05 1A 00

d : 03 00 00 00

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 05 1A 00 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 05 1A 00

Step 42. Users can use the 5th RxPDO to create a new PDO communication

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 137

with PDO COB-ID 0x202, and create the RxPDO mapping object in the index

0x1605 because the COB-ID 0x202 is not available for the CAN-8423. This

procedure is similar to the steps 37 to 40.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 23 05 14 01 02 02 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 0

e : 1

s : 1

m : 05 14 01

d : 02 02 00 00

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 05 14 01 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 05 14 01

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 138

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 23 05 16 01 08 01 00 62

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 0

e : 1

s : 1

m : 05 16 01

d : 08 01 00 62

The value “08 01 00 62” means the mapped object is stored in the

index 0x6200 with sub-index 01. It is an 8-bit data unit. Users can

check this object in the Standardize object mapping table described

above. It is mapped to the DO0~DO7 for I-8057.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 05 16 01 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 05 16 01

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 139

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 23 05 16 02 08 02 00 62

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 0

e : 1

s : 1

m : 05 16 02

d : 08 02 00 62

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 05 16 02 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 05 16 02

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 140

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 23 05 16 03 10 01 11 64

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 0

e : 1

s : 1

m : 05 16 03

d : 10 01 11 64

The value “10 01 11 64” means the mapped object is stored in the

index 0x6411 with sub-index 01. It is a 16-bit data unit. Users can

check this object in the Standardize object mapping table described

above. It is mapped according to the AO0 of the I-8024.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 05 16 03 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 05 16 03

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 141

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 2F 05 16 00 03 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 3

e : 1

s : 1

m : 05 16 00

d : 03 00 00 00

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 05 16 00 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 05 16 00

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 142

Step 43. Transform the DO0~DO15 of I-8057 and AO0 of I-8024 to be 0x90AB

and 0V respectively.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0 1 0 0 8 AB 90 00 00 00 00 00 00

PDO

consumer

 PDO producer

(CAN-8x23)

COB-ID : 0x202

PDO-msg : AB 90 00 00 00 00 00 00

The first two bytes are assigned to the value 0x90AB of the

DO0~DO15 of the I-8057. The 3rd and 4th bytes are assigned to the

value 0x0000 for the AO0 of the I-8024. Total bytes of this PDO

message are 4.

Step 44. Users will receive the 1st TxPDO and 5th TxPDO simultaneously

because the DI values have been changed.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0 0 1 0 2 AB 90 00 00 00 00 00 00

PDO

consumer

 PDO producer

(CAN-8x23)

COB-ID : 0x181

L : 2

PDO-msg : AB 90 00 00 00 00 00 00

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 143

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 1 0 1 0 4 AB 90 FF FF 00 00 00 00

PDO

consumer

 PDO producer

(CAN-8x23)

COB-ID : 0x185

L : 4

PDO-msg : AB 90 FF 3F 00 00 00 00

The first two bytes are assigned to the value 0x90AB for the

DI0~DI15 of the I-8053. The 3rd and 4th bytes are assigned to the

value 0xFFFF for the AI0 of the I-87017. After transferring, the input

value of the AI0 is -0.001V.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 144

5.3 EMCY Communication Set

5.3.1 EMCY COB-ID Parameter

The EMCY COB-ID is similar to the PDO COB-ID. It can be a default value

or can be the value defined by users via SDO communication methods. This

COB-ID is stored in the object 0x1014, and the data format is shown in the

following table. Before using the EMCY mechanism, bit 31 of the EMCY

COB-ID needs to be confirmed.

Bit Number Value Meaning

31 (MSB) 0 EMCY exits (EMCY is valid)

 1 EMCY does not exist (EMCY is not valid)

30 0 reserved (always 0)

29 0 11-bit ID (CAN 2.0A)

 1 29-bit ID (CAN 2.0B)

28-11 0 If bit 29=0

 x If bit 29=1: 28-11 bits of 29-bit COB-ID

10-0 (LSB) x 10-0 bits of COB-ID

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 145

5.3.2 EMCY Communication

The EMCY message is triggered when some internal error occurs. After

the transmission of one EMCY message, the object with index 0x1003 will

record this EMCY event. Therefore, users can track the error’s occurrences.

The CAN-8x23 supports the maximum of 5 records stored in the index 0x1003

object. The sub-index 1 of this object will store the last EMCY event, and

sub-index 5 will record the most previous EMCY event. The EMCY

communication set is given below.

COB-ID : the EMCY COB-ID

The EMCY COB-ID can be defined by users. This situation is

similar to the PDO COB-ID. The default value is 4-bit function

code “0001” with 7-bit node ID.

EMCY-msg : record the type or the class of the occurrence error

The data format of the emergency object data complies with the structure

bellows.

Byte 0 1 2 3 4 5 6 7

Content Emergency Error Code Error register Manufacturer specific Error Field

Each bit on the error register is defined as follows. Only the CAN-8x23

supports bit 0, bit 4 and bit 7.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 146

Bit Meaning

0 generic error

1 current

2 voltage

3 temperature

4 communication error (overrun, error state)

5 device profile specific

6 reserved (always 0)

7 manufacturer specific

The emergency error codes and the error register are specified in the

following table.

Emergency

Error Code

Error

Register

Manufacturer Specific Error

Field

Description

High

Byte

Low

Byte

First Two

Byte

Last Three

Byte

00 00 00 00 00 00 00 00 Error Reset or No Error

10 00 81 01 00 00 00 00 CAN Controller Error Occur

50 00 81 02 00 00 00 00 EEPROM Access Error

50 00 81 03 00 00 00 00 COM Port Access Error

81 10 11 04 00 00 00 00 Soft Rx Buffer Overrun

81 10 11 05 00 00 00 00 Soft Tx Buffer Overrun

81 10 11 06 00 00 00 00 CAN Controller Overrun

81 30 11 07 00 00 00 00 Lift Guarding Fails

81 40 11 08 00 00 00 00 Recover from bus off

82 10 11 09 00 00 00 00 PDO Data length Error

FF 00 80 0A 00 00 00 00 Request to reset Node or

communication

After producing the EMCY message, the emergency object data will be saved

to the object with index 0x1003, and the error register of the emergency object

data will be mapped to object 0x1001. Therefore, users can use these two

objects to view what happened in the CAN-8x23 and check the error history.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 147

EMCY Communication Example

Before starting the example, CAN-8423 with I-8057, I-8053, I-8024 and

I-87017 slot module are needed. Here, the same hardware configuration

shown in the PDO example is used for the EMCY communication.

Step 1. In order to generate the emergency event, it’s necessary to send the

data to RxPDO1 with data length 1.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0 0 1 0 1 00 00 00 00 00 00 00 00

PDO

consumer

 PDO producer

(CAN-8x23)

COB-ID : 0x201

L : 1

PDO-msg : 00

Step 2. Then, the CAN-8423 will reply to an emergency message based on the

PDO data length of TxPDO1 doesn’t correspond to the value defined in the

PDO mapping object.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 0 1 0 0 0 0 0 0 1 0 8 10 82 11 09 00 00 00 00

EMCY

consumer

 EMCY producer

(CAN-8x23)

COB-ID : 0x81

EMCY-msg : 10 82 11 09 00 00 00 00

The first two bytes “10 82” are for the emergency error codes. The

3rd byte “11” is for the error register, i.e. the CAN-8423 has either a

communication or a generic error. The last five bytes “09 00 00 00

00” are for the manufacturer specific errors. This emergency

message means that the data length of TxPDO doesn’t

correspond to the value defined in the PDO mapping object.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 148

Step 3. After recognizing the 0x1003 object with sub-index 01, users will get

emergency error codes of the emergency object data recording in this object.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 40 03 10 01 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 2

m 03 10 01

Step 4. The CAN-8423 will reply to the ending message.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 43 03 10 01 10 82 09 00

SDO client
 SDO server

(CAN-8x23)

scs : 2

n : 0

e : 1

s : 1

m : 03 10 01

d : 10 82 09 00

Step 5. Users have to check the object 0x1001, and make sure that the

communication and generic errors on the error register are indicated.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 40 01 10 00 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 2

m 01 10 00

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 149

Step 6. The communication and generic errors on the error register are

indicated in the received message.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 4F 01 10 00 11 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 2

n : 3

e : 1

s : 1

m : 01 10 00

d : 11 00 00 00

Step 7. Users can send the data to RxPDO1 with data length 2. Then, the

EMCY message containing the error reset information will be received.

Because the value of TxPDO is the same with the previous one, the DO

channels will not change.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0 0 1 0 2 00 00 00 00 00 00 00 00

PDO

consumer

 PDO producer

(CAN-8x23)

COB-ID : 0x201

L : 2

PDO-msg : 00 00 00 00 00 00 00 00

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 150

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 0 1 0 0 0 0 0 0 1 0 8 00 00 00 00 00 00 00 00

NMT master
 NMT slaver

(CAN-8x23)

EMCY-msg : 00 00 00 00 00 00 00 00

The data “00 00 00 00 00 00 00 00” are for the error reset EMCY

message, i.e. CAN-8423 has no error now.

Step 9. Users have to check the index 0x1003 with sub-index 01 again. Then,

the error reset emergency code should be recorded.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 40 03 10 01 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 2

m 03 10 01

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 43 03 10 01 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 0

e : 1

s : 1

m : 03 10 01

d : 00 00 00 00

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 151

Step 10. Users have to check the index 0x1003 with sub-index 02. Then, the

received emergency error code had been recorded in the emergency object

data.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 40 03 10 02 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 2

m : 03 10 02

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 43 03 10 02 10 82 09 00

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 0

e : 1

s : 1

m : 03 10 02

d : 10 82 09 00

Step 11. Users have to confirm the error register stored in index 0x1001. The

value should be 0 now.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 40 01 10 00 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 2

m 01 10 00

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 152

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 4F 01 10 00 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n 2

e 1

s 1

m : 01 10 00

d : 00 00 00 00

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 153

5.4 NMT Communication Set

5.4.1 Module Control Protocol

The NMT communication set can be applied for changing the NMT slave

status. The following figure shows how to change the different NMT statuses

for the CAN-8x23.

Start Remote Node Protocol

cs : NMT command specified

1: start

Node ID : the node ID of the NMT slave device

Stop Remote Node Protocol

cs : NMT command specified

2: stop

Node ID : the node ID of the NMT slave device

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 154

Enter Pre-Operational Protocol

cs : NMT command specified

128: enter PRE-OPERATIONAL

Node ID : the node ID of the NMT slave device

Reset Node Protocol

cs : NMT command specified

129: Reset_Node

Node ID : the node ID of the NMT slave device

Reset Communication Protocol

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 155

cs : NMT command specified

130: Reset_Communication

Node ID : the node ID of the NMT slave device

Module Control Protocol Example

 If the CAN-8423 node ID is set to 5 as an example, the following steps

would be…

Step1. Turn off the CAN-8423.

Step2. Then, turn it on. After the initialization, the CAN-8423 will automatically

enter the Pre_Operational state. Users will note the RUN LED flashing twice

per second.

Step3. Users can send the NMT module control protocol, and control the

CAN-8423 to enter the operational state.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0 0 0 0 8 01 05 00 00 00 00 00 00

NMT master
 NMT slave

(CAN-8x23)

cs : 1

Node ID : 5

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 156

5.4.2 Error Control Protocol

Error Control Protocol is a kind of the solution to check whether the

CANopen device is still alive or not. And its related objects include 0x100C and

0x100D. The 0x100C is the guard time, and the 0x100D is the life time factor.

The node life time is the guard time multiplied by the life time factor. The Node

Guarding timer of the CAN-8x23 will start to count after receiving the first RTR

message for the guarding identifier. The communication set of the Error

Control protocol is displayed below.

t : toggle bit

The value of this bit will be alternatively changed between two

consecutive responses from the NMT slave. After the node

Guarding protocol becomes active, the value of the toggle-bit of

the first response will be 0.

s : the state of the NMT Slave

4: STOPPED

5: OPERATIONAL

127: PRE-OPERATIONAL

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 157

Error Control Protocol Example

The default EMCY function code and the node ID 1 for the CAN-8423 are

used as an example on the error control protocol. The steps will be as follows.

Step 1. Turn off the CAN-8423. Then, turn it on. The CAN-8423 will be in the

pre_operational state.

Step 2. Users can set the guard time value to 250. This value will be stored in

index 0x100C with sub-index 00.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 2B 0C 10 00 FA 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 2

e : 1

s : 1

m : 0C 10 00

d : FA 00 00 00

Step 3. The CAN-8423 will reply with the ending message.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 0C 10 00 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 0C 10 00

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 158

Step 4. Users can set the life-time factor value to 4. This value will be stored in

the index 0x100D with sub-index 00. Then, the ending message from

CAN-8423 will be received.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 2F 0D 10 00 04 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 3

e : 1

s : 1

m : 0D 10 00

d : 04 00 00 00

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 0D 10 00 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 0D 10 00

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 159

Step 5. Users can send the node guarding protocol to start the mechanism of

the node guard. The life time here is equal to 1000 ms (guard time * life time

factor =250*4=1000),

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 1 0 0 0 0 0 0 0 1 1 0 00 00 00 00 00 00 00 00

NMT master
 NMT slaver

(CAN-8x23)

COB-ID : 0x701

Step 5. Then, users will receive the message, recording the NMT state of the

CAN-8423. For the reason that life time is equal to 1000 ms (guard time * life

time factor =250*4=1000), users will transmit the node guarding protocol

again.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 1 0 0 0 0 0 0 0 1 0 8 7F 00 00 00 00 00 00 00

NMT master
 NMT slaver

(CAN-8x23)

COB-ID : 0x701

t : 1

s 7F

The value 7F means that the CAN-8423 is in the NMT pre_operational

state.

Step 6. Since the life time is equal to 1000 ms (guard time * life time factor

=250*4=1000), users will transmit the node guarding protocol again.

Step 7. If the transmission is not available, an error event will be triggered, and

an EMCY message for guarding failure will be received. Moreover, all values

from the output channels will be changed according to index 0x6206, index

0x6207, index 0x6443, and index 0x6444.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 160

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 0 1 0 0 0 0 1 0 1 0 8 30 81 11 07 00 00 00 00

EMCY

consumer

 EMCY producer

(CAN-8x23)

EMCY-msg : 30 81 11 07 00 00 00 00

The first two bytes “30 81” are for the emergency error code. The

3rd byte “11” is for the error register. The last five bytes “07 00 00

00 00” are for the manufacturer specific error values. This

emergency message indicates a life guard error.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 161

5.5 Special Functions for CAN-8x23

Analog Modules Input/Output range Entry

The CAN-8x23 Manufacturer in the Specific Profile Area defines some

entries, which are useful for the analog input/output range. On the other hand,

the object with index 0x2004~0x200B will map to the input/output range for the

slot 0 to 8, and the entry is dynamic. For the entries information in the

Manufacturer Specific Profile Area, it will be described as follows. If users use

the CAN-8123, there is only one entry, “0x2004” provided. If users the use

CAN-8423, there are 4 entries, “0x2004”, “0x2005”, “0x2006” and “0x2007”

provided. And each index of these entries only has two subindex, such as

subindex 00, and subindex 01.

The subindex 00 is used to distinguish in which one slot the module

inserted. If there is no module or digital module inserted in the slot, the

subindex 00 will indicate a number 0. If a slot has been inserted by any module,

the subindex 00 will indicate a number more than one. Furthermore, if a slot

module supports 4 analog output channels, there should be 4 subindexes, “01”,

“02”, “03”, and “04”. They have different, but simply functions, for example the

subindex 01 records the channel 1 output range code. The subindex 02

records the channel 2 output range code, and so forth. If users use CAN-8x23

without any slot module, no entry will appear in the Manufacturer Specific

Profile Area.

For example, there are 4 slot modules inserted in the CAN-8423, such as

I-8057, I-8053, I-8024 and I-87017, and they are respectively inserted in the

slot 0, slot1, slot2 and slot3. Then, CAN-8423 will automatically create the

following 4 entries, index 0x2004, 0x2005, 0x2006 and 0x2007. The values of

the subindex 0 for the first two entries, 0x2004 & 0x2005, are 0 because the

first two slot modules belong to the digital I/O modules, and the values for the

last two entries, 0x2006 & 0x2007, are 1. Moreover, the values of subindex 1

for 0x2006 are 4 because of 4 analog output channels of I-8024. Under the

default situation, the values for the subindex 1 to 4 are 00. These values

indicate that all AO channel output ranges of the I-8024 are -10V~+10V. The

values of subindex 1 for 0x2007 are 8 because of 8 analog input channels of

I-87017. Under the default situation, the values for the subindex 1 to 8 are 00.

These values indicate that all AI channel input ranges of the I-87017 are

-10V~+10V. Users can refer to the appendix B for more detail information

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 162

about the input/output range of different analog I/O modules. In the following

paragraph, a simple example will be given. Please note that the hardware and

wire connection are the same as the situation used in the PDO example.

Step1: Users can send the NMT message to set the NMT operational state on

the CAN-8423.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0 0 0 0 8 01 01 00 00 00 00 00 00

NMT master
 NMT slave

(CAN-8x23)

cs : 1

Node ID : 1

Step 2. Users can send the SDO message to confirm the output range value of

the I-8024 AO channel 0.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 40 06 20 01 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 2

m : 06 20 01

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 163

Step 3. The CAN-8423 will reply with the output range. For example, when the

I-8024 is under the default situation, and the value is 0, the output range of the

I-8024 AO channel 0 will be -10V~+10V.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 4F 06 20 01 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 2

n : 3

e : 1

s : 1

m : 06 20 01

d : 00 00 00 00

Because of the n=3, only the 4th byte is valid. Therefore, the feedback

value is 00.

Step 4. Users can send the SDO message to confirm the input range value of

the I-87017 AI channel 0.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 40 07 20 01 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 2

m : 07 20 01

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 164

Step 5. The CAN-8423 will reply with the input range. For example when the

I-87017 is under the default situation, and the value is 0, the input range of the

I-87017 AI channel 0 is -10V~+10V.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 4F 07 20 01 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 2

n : 3

e : 1

s : 1

m : 07 20 01

d : 00 00 00 00

Because of the n=3, only the 4th byte is valid. Therefore, the feedback

value is 00.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 165

Step 6. In order to output 7V to the AO0 of the I-8024, users must send the

PDO message by using the 2nd RxPDO.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 1 1 0 0 0 0 0 0 0 1 0 8 98 59 00 00 00 00 00 00

PDO

producer

 PDO consumer

(CAN-8x23)

COB-ID : 0x301

L : 8

PDO-msg : 98 59 00 00 00 00 00 00

The first two bytes are valid for AO0. The other bytes are for AO1 to

AO3. And the output range of the I-8024 is -10V~10V. According to

the transformation table stored in the appendix table, the 7V is

mapped to the 0x5998 by applying following equation.

599802293675.22936

)32768()32768(32767
)10(10

)10(7

x

VV

VV
HexValue

The first two bytes of the PDO message will be filled in “98” and “59”.

For more details about how to transfer the value between the hex

and float, please refer to the section 6.3.

Step 7. Although the AI input value has been changed according the AO value,

the RxPDO will not automatically reply in the CAN-8423. Therefore, users

have to use the RTR message from the 2nd TxPDO to read back the AI value.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 1 0 1 0 0 0 0 0 0 1 1 0 00 00 00 00 00 00 00 00

PDO

consumer

 PDO consumer

(CAN-8x23)

COB-ID : 0x281

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 166

Step 8. The feedback value for AI is 6.992V.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 1 0 1 0 0 0 0 0 0 1 0 8 80 59 FD FF FD FF FD FF

PDO

consumer

 PDO consumer

(CAN-8x23)

COB-ID : 0x281

L : 8

PDO-msg : 80 59 FD FF FD FF FD FF

The feedback AI0 value is 0x5980. Users have to transfer this value

to be a float one with the input range from -10V to +10V, and a hex

one with the input range from 0x8000 (-32768) to 0x7FFF (32767).

The value 0x5980 (22912) can be transferred by using the following

equation.

V

VVVFloatValue

992.6

101010
32768-32767

3276822912

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 167

Step 9. Users can send the Rx SDO message to the CAN-8423 to access the

object entry with index 0x1400 and sub-index 02 stored in the communication

profile area. Here, users can also change the value of this object entry to 5. For

example, the node ID for the CAN-8423 is set to 1.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 2F 07 20 01 01 00 00 00

SDO client
 SDO server

(CAN-8x23)

ccs : 1

n : 3

e : 1

s : 1

m : 07 20 01

d : 01 00 00 00

Step 10. The CAN-8423 will reply with the message to finish the data download.

Then, users can use upload methods mentioned before to read back the value

for confirmation.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 60 07 20 01 00 00 00 00

SDO client
 SDO server

(CAN-8x23)

scs : 3

m : 07 20 01

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 168

Step 11. Although the AI input value has been changed according the AO value,

the RxPDO will not automatically reply in the CAN-8423. Therefore, users

have to use the RTR message from the 2nd TxPDO to read back the AI value.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 1 0 1 0 0 0 0 0 0 1 1 0 00 00 00 00 00 00 00 00

PDO

consumer

 PDO consumer

(CAN-8x23)

COB-ID : 0x281

Step 12. The feedback value for AI is 5V.

11-bit COB-ID (bit)

RTR
Data

Length

8-byte Data (byte)
Func Code Node ID

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 1 0 1 0 0 0 0 0 0 1 0 8 FF 7F FF FF FD FF FF FF

PDO

consumer

 PDO consumer

(CAN-8x23)

COB-ID : 0x281

L : 8

PDO-msg : FF 7F FF FF FD FF FF FF

The feedback AI0 value is 0x7FFF, i.e. this value is in max limit for

the range. The AI0 value will still be 5V, even the input 7V is over the

max input range,

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 169

6 Object Dictionary of CAN-8x23

6.1 Communication Profile Area

The following tables are regarding each entry of the communication profile

area is defined in CAN-8x23. For the convenient purpose, all communication

entries are divided into several tables. They are “General Communication

Entries”, “RxPDO Communication Entries”, “RxPDO Mapping Communication

Entries”, “TxPDO Communication Entries”, and “TxPDO Mapping Communication

Entries”.

Please note that In the table header with “Idx”, “Sidx” and “Attr” represent

“index”, “sub-index”, and “attribute” respectively. The sign “---” in the default field

means that the default is not defined or can be defined conditionally by the

firmware built in CAN-8x23. In the table, the number accompanying letter “h”

indicates that this value is in the hex format.

General Communication Entries

Idx Sidx Description Type Attr Default

1000h 0h device type UNSIGNED 32 RO ---

1001h 0h error register UNSIGNED 8 RO ---

1003h 0h largest sub-index supported for

“predefine error field”

UNSIGNED 8 RO 0h

 1h actual error (the newest one) UNSIGNED 32 RO ---

 ---

 5h actual error (the oldest one) UNSIGNED 32 RO ---

1005h 0h COB-ID of Sync message UNSIGNED 32 RW 80h

1008h 0h manufacturer device name VISIBLE_STRING RO CAN-8123/

CAN-8223/

CAN-8423/

CAN-8823/

1009h 0h manufacturer hardware version VISIBLE_STRING RO ---

100Ah 0h manufacturer software version VISIBLE_STRING RO ---

100Ch 0h guard time UNSIGNED 16 RW 0

100Dh 0h life time factor UNSIGNED 8 RW 0

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 170

1010h 0h largest sub-index supported for

“store parameters”

UNSIGNED 8 RO 3h

 1h Save all parameter UNSIGNED 32 RW ---

 2h Save communication parameter UNSIGNED 32 RW ---

 3h Save application parameter UNSIGNED 32 RW ---

1011h 0h largest sub-index supported for

“restore parameters”

UNSIGNED 8 RO 3h

 1h Restore all default parameters UNSIGNED 32 RW ---

 2h Restore communication default

parameters

UNSIGNED 32 RW ---

 3h Restore application default

parameters

UNSIGNED 32 RW ---

1014h 0h COB-ID of EMCY UNSIGNED 32 RW 80h+Node-ID

1015h 0h Inhibit time of EMCY UNSIGNED 16 RW 0

1018h 0h largest sub-index supported for

“identity object”

UNSIGNED 8 RO 1

 1h Vendor ID UNSIGNED 32 RO 0x0000013C

 2h Product code UNSIGNED 32 RO ---

 3h Revision number UNSIGNED 32 RO ---

 4h Serial number UNSIGNED 32 RO ---

Note: 1. The object with index 0x1000 has the following data format:

Additional information General Information

bit 31~ bit 24 bit 23 ~ bit16 bit 15 ~ bit 0

Specific functionality I/O functionality Device profile number

For CAN-8x23, the specific function is always in 0. The I/O function defines what kind of

device the CAN-8x23 is. Bit 16, 17, 18, 19 present the DI, DO, AI, AO respectively. For

example, if bit 16 is 1, it means that the CAN-8x23 has DI channels. If both bit 16 and 17

are 1, the CAN-8x23 will have both DI and DO channels. Bit 23 ~ bit 19 is always in 0.

The general information is 0x191 (0x191=401), it means that the CAN-8x23 complies

with the CANopen spec DS401.

2. About the objects with index 0x1001 and 0x1003, please refer to the section 5.3.2.

3. The object with index 0x1005 stores the SYNC COB-ID. In the CAN-8x23, this object is

used to receive the SYNC COB-ID. The following table shows the data format of the

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 171

SYNC.

Bit Number Value Meaning

31 (MSB) x do not care

30 0 Device does not generate SYNC message

 1 Device generates SYNC message

29 0 11-bit ID (CAN 2.0A)

 1 29-bit ID (CAN 2.0B)

28-11 0 If bit 29=0

 x If bit 29=1: 28-11 bits of 29-bit COB-ID

10-0 (LSB) x 10-0 bits of COB-ID

The CAN-8x23 doesn’t support the SYNC generation, therefore 29-bit ID, bit 30 and bit

31 are always in 0.

4. The object with index 0x1008, 0x1009 and 0x100A records the CAN-8423 product

information. When interpreting these objects, the ASCII table will be needed.

5. The range of the 0x100c is from 0 to 32767 in CAN-8x23. For more information of the

object with index 0x100C and 0x100D, please refer to the section 5.4.2.

6. The object 0x1010/0x1011 supports the saving/restoring of parameters in EEPROM.

There 3 parameter groups are distinguished:

 Subindex 1 saves/restores all PDO communication and I/O application parameters.

 Subindex 2 saves/restores all PDO communication parameters.

 Subindex 3 saves/restores all I/O application parameters (ex: safe value, AI inverter,

PWM setting, and so on).

7. For the object with index 0x1014, please refer to the section 5.3.1.

8. The object with index 0x1015 stores the inhibit time period between two EMCY message.

The function of this object is similar to the PDO communication object with sub-index 04.

It is valid for avoiding the large loading on the CAN bus when transmitting a lot of EMCY

messages. This parameter range is from 0 to 32767 for the CAN-8x23, and the unit of

EMCY inhibit time is ms.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 172

SDO Communication Entries

Idx Sidx Description Type Attr Default

1200h 0h largest sub-index supported for

“server SDO parameter”

UNSIGNED 8 RO 2

 1h COB-ID form client to server

(RxSDO)

UNSIGNED 32 RO 600h+Node-ID

 2h COB-ID form server to client

(TxSDO)

UNSIGNED 32 RO 580h+Node-ID

RxPDO Communication Entries

Idx Sidx Description Type Attr Default

1400h 0h largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 2

 1h COB-ID used by PDO (Rx) UNSIGNED 32 RW 200h+Node-ID

 2h transmission type UNSIGNED 8 RW FFh

1401h 0h largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 5

 1h COB-ID used by PDO (Rx) UNSIGNED 32 RW 300h+Node-ID

 2h transmission type UNSIGNED 8 RW FFh

1402h 0h largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 5

 1h COB-ID used by PDO (Rx) UNSIGNED 32 RW 400h+Node-ID

 2h transmission type UNSIGNED 8 RW FFh

1403h 0h largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 5

 1h COB-ID used by PDO (Rx) UNSIGNED 32 RW 500h+Node-ID

 2h transmission type UNSIGNED 8 RW FFh

1404h 0h largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 5

 1h COB-ID used by PDO (Rx) UNSIGNED 32 RW 80000000h

 2h transmission type UNSIGNED 8 RW FFh

...

141Fh 0h largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 5

 1h COB-ID used by PDO (Rx) UNSIGNED 32 RW 8000 0000h

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 173

 2h transmission type UNSIGNED 8 RW FFh

RxPDO Mapping Communication Entries

Idx Sidx Description Type Attr Default

1600h 0h largest sub-index supported for

“receive PDO mapping”

UNSIGNED 8 RO 8

 1h write digital output 1h to 8h UNSIGNED 8 RW 6200 0108h

 2h write digital output 9h to 10h UNSIGNED 8 RW 6200 0208h

 3h write digital output 11h to 18h UNSIGNED 8 RW 6200 0308h

 4h write digital output 19h to 20h UNSIGNED 8 RW 6200 0408h

 5h write digital output 11h to 28h UNSIGNED 8 RW 6200 0508h

 6h write digital output 19h to 30h UNSIGNED 8 RW 6200 0608h

 7h write digital output 11h to 40h UNSIGNED 8 RW 6200 0708h

 8h write digital output 19h to 48h UNSIGNED 8 RW 6200 0808h

1601h 0h largest sub-index supported for

“receive PDO mapping”

UNSIGNED 8 RO 4

 1h write analog output 1h UNSIGNED 16 RW 6411 0110h

 2h write analog output 2h UNSIGNED 16 RW 6411 0210h

 3h write analog output 3h UNSIGNED 16 RW 6411 0310h

 4h write analog output 4h UNSIGNED 16 RW 6411 0410h

1602h 0h largest sub-index supported for

“receive PDO mapping”

UNSIGNED 8 RO 4

 1h write analog output 5h UNSIGNED 16 RW 6411 0510h

 2h write analog output 6h UNSIGNED 16 RW 6411 0610h

 3h write analog output 7h UNSIGNED 16 RW 6411 0710h

 4h write analog output 8h UNSIGNED 16 RW 6411 0810h

1603h 0h largest sub-index supported for

“receive PDO mapping”

UNSIGNED 8 RO 4

 1h write analog output 9h UNSIGNED 16 RW 6411 0910h

 2h write analog output Ah UNSIGNED 16 RW 6411 0A10h

 3h write analog output Bh UNSIGNED 16 RW 6411 0B10h

 4h write analog output Ch UNSIGNED 16 RW 6411 0C10h

1604h 0h largest sub-index supported for

“receive PDO mapping”

UNSIGNED 8 RO ---

 1h --- --- RW ---

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 174

 --- --- --- RW ---

...

161Fh 0h largest sub-index supported for

“receive PDO mapping”

UNSIGNED 8 RO ---

 1h --- --- RW ---

 --- --- --- RW ---

TxPDO Communication Entries

Idx Sidx Description Type Attr Default

1800h 0 largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 5

 1 COB-ID used by PDO (Tx) UNSIGNED 32 RW 180h+Node-ID

 2 transmission type UNSIGNED 8 RW FFh

 3 inhibit time UNSIGNED 16 RW 0

 4 reversed --- --- ---

 5 event timer UNSIGNED 16 RW 0

1801h 0 largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 5

 1 COB-ID used by PDO (Tx) UNSIGNED 32 RW 280h+Node-ID

 2 transmission type UNSIGNED 8 RW FFh

 3 inhibit time UNSIGNED 16 RW 0

 4 reversed --- --- ---

 5 event timer UNSIGNED 16 RW 0

1802h 0 largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 5

 1 COB-ID used by PDO (Tx) UNSIGNED 32 RW 380h+Node-ID

 2 transmission type UNSIGNED 8 RW FFh

 3 inhibit time UNSIGNED 16 RW 0

 4 reversed --- --- ---

 5 event timer UNSIGNED 16 RW 0

1803h 0 largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 5

 1 COB-ID used by PDO (Tx) UNSIGNED 32 RW 480h+Node-ID

 2 transmission type UNSIGNED 8 RW FFh

 3 inhibit time UNSIGNED 16 RW 0

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 175

 4 reversed --- --- ---

 5 event timer UNSIGNED 16 RW 0

1804h 0 largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 5

 1 COB-ID used by PDO (Tx) UNSIGNED 32 RW 80000000h

 2 transmission type UNSIGNED 8 RW FFh

 3 inhibit time UNSIGNED 16 RW 0

 4 reversed --- --- ---

 5 event timer UNSIGNED 16 RW 0

...

181Fh 0 largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 5

 1 COB-ID used by PDO (Tx) UNSIGNED 32 RW 80000000h

 2 transmission type UNSIGNED 8 RW FFh

 3 inhibit time UNSIGNED 16 RW 0

 4 reversed --- --- ---

 5 event timer UNSIGNED 16 RW 0

TxPDO Mapping Communication Entries

Idx Sidx Description Type Attr Default

1A00h 0h largest sub-index supported for

“transmit PDO mapping”

UNSIGNED 8 RO 8

 1h read digital input 1h to 8h UNSIGNED 8 RW 6000 0108h

 2h read digital input 9h to 10h UNSIGNED 8 RW 6000 0208h

 3h read digital input 11h to 18h UNSIGNED 8 RW 6000 0308h

 4h read digital input 19h to 20h UNSIGNED 8 RW 6000 0408h

 5h read digital input 11h to 28h UNSIGNED 8 RW 6000 0508h

 6h read digital input 19h to 30h UNSIGNED 8 RW 6000 0608h

 7h read digital input 11h to 40h UNSIGNED 8 RW 6000 0708h

 8h read digital input 19h to 48h UNSIGNED 8 RW 6000 0808h

1A01h 0h largest sub-index supported for

“transmit PDO mapping”

UNSIGNED 8 RO 4

 1h read analog input 1h UNSIGNED 16 RW 6401 0110h

 2h read analog input 2h UNSIGNED 16 RW 6401 0210h

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 176

 3h read analog input 3h UNSIGNED 16 RW 6401 0310h

 4h read analog input 4h UNSIGNED 16 RW 6401 0410h

1A02h 0h largest sub-index supported for

“transmit PDO mapping”

UNSIGNED 8 RO 4

 1h read analog input 5h UNSIGNED 16 RW 6401 0510h

 2h read analog input 6h UNSIGNED 16 RW 6401 0610h

 3h read analog input 7h UNSIGNED 16 RW 6401 0710h

 4h read analog input 8h UNSIGNED 16 RW 6401 0810h

1A03h 0h largest sub-index supported for

“transmit PDO mapping”

UNSIGNED 8 RO 4

 1h read analog input 9h UNSIGNED 16 RW 6401 0910h

 2h read analog input Ah UNSIGNED 16 RW 6401 0A10h

 3h read analog input Bh UNSIGNED 16 RW 6401 0B10h

 4h read analog input Ch UNSIGNED 16 RW 6401 0C10h

1A04h 0h largest sub-index supported for

“transmit PDO mapping”

UNSIGNED 8 RO ---

 1h --- --- RW ---

 --- --- --- RW ---

...

1A1Fh 0h largest sub-index supported for

“transmit PDO mapping”

UNSIGNED 8 RO ---

 1h --- --- RW ---

 --- --- --- RW ---

6.2 Manufacturer Specific Profile Area

In the following table, there is information about some special functions for

the CAN-8x23. The index from 0x2004 to 0x200B records the analog input/output

range parameters. The number of these entries will be automatically confirmed

when the CAN-8x23 boot up. For example. If the CAN-8423 is used and at least

one module is inserted, there are only 4 entries created by CAN-8423

automatically. They are 0x2004, 0x2005, 0x2006, and 0x2007. For more detail

about these objects, please refer to the section 5.5.

Analog Modules Input/Output range Entry

Idx Sidx Description Type Attr Default

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 177

2004h 0h largest sub-index supported for

“Analog Modules Input/Output

Range Control”

UNSIGNED 8 RO According to

AI/AO channel

number in the

slot 0 module

 1h Input/Output range of the AI/AO

channel 0

UNSIGNED 8 RW ---

2005h 0h largest sub-index supported for

“Analog Modules Input/Output

Range Control”

UNSIGNED 8 RO According to

AI/AO channel

number in the

slot 1 module

 1h Input/Output range of the AI/AO

channel 0

UNSIGNED 8 RW ---

...

200Bh 0h largest sub-index supported for

“Analog Modules Input/Output

Range Control”

UNSIGNED 8 RO According to

AI/AO channel

number in the

slot 8 module

 1h Input/Output range of the AI/AO

channel 0

UNSIGNED 8 RW ---

...

2014h 0h largest sub-index supported for

“Analog Input Max/Min Inverter”

UNSIGNED 8 RO According to

AI channel

number in the

slot 1 module

 1h Input value of the AI channel 0

0: normal

1: 0x7FFF 0x8000

2: 0x8000 0x7FFF

UNSIGNED 8 RW ---

...

…

201Bh 0h largest sub-index supported for

“Analog Input Max/Min Inverter”

UNSIGNED 8 RO According to

AI channel

number in the

slot 8 module

 1h Input value of the AI channel 0

0: normal

1: 0x7FFF 0x8000

UNSIGNED 8 RW ---

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 178

2: 0x8000 0x7FFF

6.3 Standardized Device Profile Area

When the CAN-8x23 is powered on, all of device profile entries are

automatically generated by the firmware built inside the CAN-8x23. These device

entries will match the channel types and numbers of the slot modules inserted

into the CAN-8x23. For the convenient purpose, these entries are divided into

four tables, “Digital Input Devices Entries”, “Digital Output Devices Entries”,

“Analog Input Devices Entries” and “Analog Output Devices Entries”. They are as

follows.

Digital Input Devices Entries

Idx Sidx Description Type Attr Default

6000h 0h largest sub-index supported for

“read digital input 8-bit”

UNSIGNED 8 RO 8

 1h read digital input 1h to 8h UNSIGNED 8 RO ---

Digital Output Devices Entries

Idx Sidx Description Type Attr Default

6200h 0h largest sub-index supported for

“write digital output 8-bit”

UNSIGNED 8 RO ---

 1h write digital output 1h to 8h UNSIGNED 8 RW ---

6206 0h largest sub-index supported for

“error mode digital output 8-bit”

UNSIGNED 8 RW ---

 1h error mode digital output 1h to

8h

UNSIGNED 8 RW 0

 ---

6207 0h largest sub-index supported for

“error value digital output 8-bit”

UNSIGNED 8 RW ---

 1h error value digital output 1h to

8h

UNSIGNED 8 RW 0

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 179

 ---

Note: When the bus-off is detected or the node guarding fails, the CAN-8x23 will check the value

of the object with index 0x6206. If the bit of this value is set to 1, the CAN-8x23 will output

the error mode digital output value to the corresponding DO channel. For example, if the

sub-index 01 in the object with index 0x6206 and 0x6207 are 0x31 and 0xF8 respectively,

and when the error events occurs, only the DO5, DO4, DO0 will be changed to error mode

output value because the bit 5, bit 4 and bit 1 of the value 0x31 is 1. So, the DO5, DO4, and

DO0 will be change to 1, 1, and 0 respectively. Other channels except DO5, DO4, and DO0

will do nothing.

Analog Input Devices Entries

Idx Sidx Description Type Attr Default

6401h 0h largest sub-index supported for

“read analog input 16-bit”

UNSIGNED 8 RO 8

 1h read analog input 1h UNSIGNED 16 RO ---

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 180

Note: 1. Because the CAN-8x23 only supports the hex format, all AI channels have to transfer to

the hex format when storing into this object. The transformation equation is shown below.

 minminmax
minmax

min
FFF

HH

HHexValue
FloatValue

The Float Value is the result after transformation. The Hex Value is the value which wants

to be transferred. The Hmax and Hmin is the maximum and minimum values of the 2's

complement hex range. The Fmax and Fmin is the maximum and minimum value of the

float range. User can find out the Hmax, Hmin, Fmax, and Fmin in the appendix B. For

example, The input range of the module I-87017 is set to -10V ~ +10V. According to the

table in the appendix B, we can find out the range for hex format is from 0x7FFF (+36767)

to 0x8000 (-32768). Therefore, if the value got from the AI channel of the I-87017 is

0x1234(+4660), the AI value with float format will be calculated as follows.

 VVVV 1.422101010
3276832767

327684660

By the way, any AI value which is great than the maximum value of the input range will be

automatically set to the maximum value of the input range. And, the AI value which is less

than the minimum value of the input range will be automatically set to the minimum value

of the input range.

Analog Output Devices Entries

Idx Sidx Description Type Attr Default

6411h 0h largest sub-index supported for

“write analog output 16-bit”

UNSIGNED 8 RO ---

 1h write analog output 1h UNSIGNED 16 RW ---

6443 0h largest sub-index supported for

“error mode analog output

16-bit”

UNSIGNED 8 RW ---

 1h error mode analog output 1h UNSIGNED 16 RW 0

 ---

6444 0h largest sub-index supported for

“error value analog output

16-bit”

UNSIGNED 8 RW ---

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 181

 1h error value analog output 1h UNSIGNED 16 RW 0

 ---

Note: 1. Because the CAN-8x23 doesn’t support float format, users have to transfer the AO value

from the float format to hex format. It is similar to the AI situation. The transformation

equation is as follows.

 minminmax
minmax

min
HHH

FF

FFloatValue
HexValue

The Hex Value is the result after transformation. The Float Value is the value which wants

to be transferred. The Fmax and Fmin is the maximum and minimum values of the float

range. The Hmax and Hmin is the maximum and minimum value of the 2's complement

hex range. User can find out the Fmax, Fmin, Hmax, and Hmin in the appendix B.

2. When the bus-off is detected or the node guarding fails, the CAN-8x23 will check the

value of the object with index 0x6443. If this value is set to 1, the CAN-8x23 will output

the error mode analog output value to the corresponding AO channel. For example, if the

sub-index 01 in the object with index 0x6443 and 0x6444 are 1 and 0x0000 respectively,

and when the error events occurs, this AO will be output to error mode output because

the value of the object with index 0x6443 and sub-index 01 is 1. The AO output value is 0

because of the value in the object with index 0x6444 and sub-index 01.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 182

6.4 Object of Counter/Frequency Modules

(Only for I-8080 and I-8084W)

Idx S-idx Description Type Attr PDO mapping Default

3000h 0h largest sub-index supported for

“read counter / frequency 32-bit”

UNSIGNED 8 RO No ---

 1h Read counter / frequency with ch1 UNSIGNED 32 RO Yes ---

3001h 0h largest sub-index supported for

“read counter overflow 16-bit”

UNSIGNED 8 RO No ---

 1h Read counter overflow with ch1 UNSIGNED 16 RO Yes ---

 ---

3002h 0h largest sub-index supported for

“reset counter value with writing 0”

UNSIGNED 8 RO No ---

 1h Reset ch1 counter value UNSIGNED 8 WO Yes ---

 ---

3003h 0h largest sub-index supported for “set

XorRegister with 0 or 1”

UNSIGNED 8 RO No ---

 1h XorRegister value of ch1 UNSIGNED 8 RW No ---

 ---

3004h 0h largest sub-index supported for “set

frequency mode with 0, 1, or 2”

UNSIGNED 8 RO No ---

 1h Frequency mode of ch1 UNSIGNED 8 RW No ---

 ---

3005h 0h largest sub-index supported for “set

frequency update time (unit – ms)”

UNSIGNED 8 RO No ---

 1h Frequency update time of ch1 UNSIGNED 16 RW No ---

 ---

3006h 0h largest sub-index supported for

“enable/disable low pass filter”

UNSIGNED 8 RO No ---

 1h Low pass filter status of ch1 UNSIGNED 8 RW No ---

 ---

3007h 0h largest sub-index supported for “set

low pass filter time (unit - us)”

UNSIGNED 8 RO No ---

 1h Low pass filter time of ch1 UNSIGNED 16 RW No ---

 ---

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 183

Owing to the configuration of object index 0x3000 to 0x3007, you may

parameterize the counter modules. The object index 0x3000 records the counter

value of each channel. Each sub-index is corresponding to each channel. Users can

use object index 0x2004~2007 to decide the counting method. Please refer to the

appendix A for more detail information. If users select Dir/Pulse, Up/Down or AB

phase counting, the counter value may be negative value. Therefore, users need to

transfer the UNSIGNED 32 to SIGNED32 by themselves. Object index 0x3001

records the overflow times of object index 0x3000. Therefore, the total counter value

of one channel is the combination of the value of object index 0x3000 and 0x3001.

For example, if users select Dir/Pulse, Up/Down or AB phase counting, there are two

situations. If the object index 0x3000 with sub-index 1 is 16384 and the object index

0x3001 with sub-index 1 is 1, the total counter is 1*0x80000000+16384=2147500032.

If the object index 0x3000 with sub-index 1 is -8192 and the object index 0x3001 with

sub-index 1 is -1, the total counter is (-1)*0x80000000-8192=-2147491840. If users

select Frequency or Up counting, there is only one situation. If the object index

0x3000 with sub-index 1 is 16384 and the object index 0x3001 with sub-index 1 is 1,

the total counter is 1*0x100000000+16384=4294983680. Take a note that the

Frequency counting always has no overflow value.

The object index 0x3002 can help users to clear the counter value. Write this

object to 0 once will clear the counter value store in object index 0x3000 and 0x3001.

The object index 0x3003 can set the count mode to high active with value 1 or low

active with value 0. The object index 0x3004 is used to set the frequency mode of

counter module. Value 0 is auto mode, value 1 is low frequency and value 2 is high

frequency. These three frequency modes are decided by the object “update time of

frequency” with index 0x3005. If users want to set the update time of frequency

measurement, use object 0x3005 to reach this purpose. The object index 0x3006

decide if users want to use low-pass filter or not, set the value 1 to enable the

low-pass filter, or value 0 to disable the low-pass filter. The object index 0x3007 is

used to set the pulse width which will be used in the low-pass filter. If the pulse width

of the signal is less than this value, this signal will be taken into account.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 184

6.5 Object of PWM Module (Only for I-8088W)

Idx S-idx Description Type Attr PDO mapping Default

3100h 0h largest sub-index supported for

“start to output pulse”

UNSIGNED 8 RO No ---

 1h Start to output pulse with ch1 UNSIGNED 8 RW Yes ---

3101h 0h largest sub-index supported for “set

burst count 16-bit”

UNSIGNED 8 RO No ---

 1h Set burst count with ch1 UNSIGNED 16 RW No ---

 ---

3102h 0h largest sub-index supported for “set

frequency of output pulse 32-bit”

UNSIGNED 8 RO No ---

 1h Set frequency of output pulse UNSIGNED 32 RW No ---

 ---

3103h 0h largest sub-index supported for “set

pulse duty with 1 ~ 999 (‰)”

UNSIGNED 8 RO No ---

 1h Set pulse duty of ch1 UNSIGNED 16 RW No ---

 ---

3104h 0h largest sub-index supported for

“enable/disable hardware trig”

UNSIGNED 8 RO No ---

 1h Set hardware trig of ch1 UNSIGNED 8 RW No ---

 ---

3105h 0h largest sub-index supported for

“enable/disable sync channel”

UNSIGNED 8 RO No ---

 1h Set sync channel of ch1 UNSIGNED 8 RW No ---

 ---

3106h 0h largest sub-index supported for

“start the synchronous pulse”

UNSIGNED 8 RO No ---

 1h Start the synchronous pulse of the

first PWM module which has lower

slot No.

UNSIGNED 8 RW Yes ---

 ---

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 185

Owing to the configuration of object index 0x3100 to 0x3106, you may

parameterize the PWM modules. The object index 0x3100 can control the module to

start or stop the pulse output of each channel. Each sub-index is corresponding to

each channel. Users can use object index 0x2004~2007 to decide the PWM method

of each slot. Please refer to the appendix A for more details. If users select Burst

Counting mode, the object index 0x3101 must be set to decide how many pulse users

want to output. Users can set 1 ~ 65535 to the object 0x3101 and use object 0x3100

to start or stop the pulse output. Every time when set the object 0x3100 to 1, the

channel will output the specific pulses with one burst cyclic. For example, user set

channel 0 to Burst Counting mode and set object index 0x3101 with sub-index 1 to

100. When user set the object 0x3100 with sub-index 1 to 1, the channel 0 will output

100 pulses. Or if users select Continue Counting mode, the object 0x3101 will useless.

When users set the object 0x3100 to 1, the channel will start to output the pulse

cyclically until the object is set to 0.If you want to change the frequency of pulse, you

can set the value 100 ~ 5000000 with the base 0.1Hz (that is 10Hz ~ 500kHz) to

object 0x3102.

Object index 0x3103 is pulse duty per mille (‰). If set the object to value 300, it

means that the high duty is 300‰ and the low duty is 700‰ in one pulse width. The

object 0x3104 can set the DI pin of the PWM module as hardware trigger channel.

When set the value of object 0x3104 with sub-index 2 to 1, it means the DI channel 2

will loss the DI functions and become a hardware trigger pin. In this case, if there is a

signal (5V~30V) into the DI channel 2, the channel 2 will start to output until the signal

is clear.

 Object 0x3105 and 0x3106 can control all of the channels of the PWM module to

output synchronous. If user wish channel 0 ~ 3 of the PWM module output the pulse

synchronously. Set the object 0x3105 with sub-index 1 ~ 4 to 1, and set the others to 0.

Then, set the object 0x3106 with sub-index 1 to 1. These 4 channels (channel 0 ~ 3)

will start to output pulse at the same time (their first low-to-high edge will be triggered

at the same time, but the period may be different because of different pulse width).

Take a note that the different sub-index of the object 0x3106 indicates the different

PWM module in different slot. If there are two PWM modules on the CAN-8x23, the

maximum sub-index number of the object 0x3106 is 2. The sub-index 1 is for the

PWM module with lower slot No. and the sub-index 2 is for the one with higher slot

No.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 186

Appendix A: Type Code Table

In order to look up the configuration parameters of each slot module more

quickly, the transformation table has separated into several parts according to

the name of slot module. They are given below.

I-87K module I-8K module

I-87013 I-8017HS/I-8017HW

I-87015/I-87015P I-8024/I-8024W

I-87017/I-87017R/I-87017W/I-87017RW/

I-87017ZW/ I-87017ZW/ I-87017W-RMS

I-8050

I-87017RC I-8080/I-8084W

I-87018/I-87018RW/I-87018W/I-87018Z

/I-87018PW

I-8088W

I-87019RW/I-87019PW/I-87019ZW

Thermocouple of I-87018/I-87019 Series

I-87022

I-87024/I-87024W

I-87026

I-87024C/I-87028C

I-87028UW/ I-87028VW/I-87024UW

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 187

I-87013/ I-87015 RTD Type Definition Back to table

Range Code

(Hex)
RTD Type Data Format Max Value Min Value

20

(default)

Platinum 100

a = 0.00385

Input Range +100.00℃ -100.00℃

2's complement

HEX
7FFF 8000

21
Platinum 100

a = 0.00385

Input Range +100.00℃ +000.00℃

2's complement

HEX
7FFF 0000

22
Platinum 100

a = 0.00385

Input Range +200.00℃ +000.00℃

2's complement

HEX
7FFF 0000

23
Platinum 100

a = 0.00385

Input Range +600.00℃ +000.00℃

2's complement

HEX
7FFF 0000

24
Platinum 100

a = 0.003916

Input Range +100.00℃ -100.00℃

2's complement

HEX
7FFF 8000

25
Platinum 100

a = 0.003916

Input Range +100.00℃ +000.00℃

2's complement

HEX
7FFF 0000

26
Platinum 100

a = 0.003916

Input Range +200.00℃ +000.00℃

2's complement

HEX
7FFF 0000

27
Platinum 100

a = 0.003916

Input Range +600.00℃ +000.00℃

2's complement

HEX
7FFF 0000

28 Nickel 120

Input Range +100.00℃ -080.00℃

2's complement

HEX
7FFF 999A

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 188

29 Nickel 120

Input Range +100.00℃ +000.00℃

2's complement

HEX
7FFF 0000

2A
Platinum 1000

a = 0.00385

Input Range +600.00℃ -200.00℃

2's complement

HEX
7FFF D556

2B*1
Cu 100

a = 0.00421

Input Range +150.00℃ -020.00℃

2's complement

HEX
7FFF EEEF

2C*1

Cu 100

a = 0.00421

Input Range +200.00℃ -000.00℃

2's complement

HEX
7FFF 0000

2D*1

Cu 1000

a = 0.00421

Input Range +150.00℃ -020.00℃

2's complement

HEX
7FFF EEEF

2E*2
Pt 100

a = 0.00385

Input Range +200.00℃ -200.00℃

2's complement

HEX
7FFF 8000

2F*2
Pt 100

a = 0.003916

Input Range +200.00℃ -200.00℃

2's complement

HEX
7FFF 8000

80*2
Pt 100

a = 0.00385

Input Range +600.00℃ -200.00℃

2's complement

HEX
7FFF D556

81*2
Pt 100

a = 0.003916

Input Range +600.00℃ -200.00℃

2's complement

HEX
7FFF D556

Note :

* 1: Type 2B, 2C and 2D are only available with I-87015.

* 2: Type 2E, 2F, 80 and 81 are only available with the I-87015 firmware version A1.10

 and later, I-87013 firmware version B1.3 and later.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 189

I-87017 Series Type 08 to 0D Definition (not for I-87017RC) Back to table

Range Code

(Hex)
Input Range Data Format Full Scale

Negative

Full Scale

08

(default)
-10V to +10V

Input Range +10.000 V -10.000 V

2's Complement HEX 7FFF 8000

09 -5V to +5V
Input Range +5.0000 V -5.0000 V

2's Complement HEX 7FFF 8000

0A -1V to +1V
Input Range +1.0000 V -1.0000 V

2's Complement HEX 7FFF 8000

0B -500mV to +500mV
Input Range +500.00 mV -500.00 mV

2's Complement HEX 7FFF 8000

0C -150mV to +150mV
Input Range +150.00 mV -150.00 mV

2's Complement HEX 7FFF 8000

0D*1
 -20mA to +20mA

Input Range +20.000 mA -20.000 mA

2's Complement HEX 7FFF 8000

Note:

*1: When I-87017 and I-87017R are connecting to a current source set to OD type code,

an optional external 125 Ohms resistor is required.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 190

I-87017RC Type 07 to 1A Definition Back to table

Range Code

(Hex)
Input Range Data Format Full Scale

Negative

Full Scale

07 -4mA to +20mA
Input Range +04.000 mA +20.000 mA

2's Complement HEX 7FFF 8000

0D

(default)
-20mA to +20mA

Input Range +20.000 mA -20.000 mA

2's Complement HEX 7FFF 8000

1A +0A to +20mA
Input Range +00.000 mA +20.000 mA

2's Complement HEX 7FFF 8000

Note:

1. I-87017RC has built-in 125 Ohms resistors for each channels. When

connecting to a current source, no add any external resistors required.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 191

I-87018 Series Type 00 to 06 Definition Back to table

Range Code

(Hex)
Input Range Data Format Full Scale

Negative

Full Scale

00 -15mV to +15mV
Input Range +15.000 mV -15.000 mV

2's Complement HEX 7FFF 8000

01 -50mV to +50mV
Input Range +50.000 mV -50.000 mV

2's Complement HEX 7FFF 8000

02 -100mV to +100mV
Input Range +100.00 mV -100.00 mV

2's Complement HEX 7FFF 8000

03 -500mV to +500mV
Input Range +500.00 mV -500.00 mV

2's Complement HEX 7FFF 8000

04 -1V to +1V
Input Range +1.0000 V -1.0000 V

2's Complement HEX 7FFF 8000

05

(default)
-2.5V to +2.5V

Input Range +2.5000 V -2.5000 V

2's Complement HEX 7FFF 8000

06*1

-20mA to +20mA

with 125Ω resistor

Input Range +20.000 mA -20.000 mA

2's Complement HEX 7FFF 8000

Note:

*1: When I-87018 and I-87018R are connecting to a current source set to 06 type code,

an optional external 125 Ohms resistor is required.

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 192

I-87019R Type 00 to 19 Definition Back to table

Range

Code (Hex)
Input Range Data Format Full Scale

Negative

Full Scale

00 -15mV to +15mV

Input Range +15.000 mV -15.000 mV

2's Complement HEX 7FFF 8000

01 -50mV to +50mV

Input Range +50.000 mV -50.000 mV

2's Complement HEX 7FFF 8000

02 -100mV to +100mV

Input Range +100.00 mV -100.00 mV

2's Complement HEX 7FFF 8000

03 -500mV to +500mV

Input Range +500.00 mV -500.00 mV

2's Complement HEX 7FFF 8000

04 -1V to +1V

Input Range +1.0000 V -1.0000 V

2's Complement HEX 7FFF 8000

05 -2.5V to +2.5V

Input Range +2.5000 V -2.5000 V

2's Complement HEX 7FFF 8000

06
-20mA to +20mA

with 125Ω resistor

Input Range +20.000 mA -20.000 mA

2's Complement HEX 7FFF 8000

08

(default)
-10V to +10V

Input Range +10.000 V -10.000 V

2's Complement HEX 7FFF 8000

09 -5V to +5V

Input Range +5.0000 V -5.0000 V

2's Complement HEX 7FFF 8000

0A -1V to +1V

Input Range +1.0000 V -1.0000 V

2's Complement HEX 7FFF 8000

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 193

0B -500mV to +500mV

Input Range +500.00 mV -500.00 mV

2's Complement HEX 7FFF 8000

0C -150mV to +150mV

Input Range +150.00 mV -150.00 mV

2's Complement HEX 7FFF 8000

0D
-20mA to +20mA

with 125Ω resistor

Input Range +20.000 mA -20.000 mA

2's Complement HEX 7FFF 8000

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 194

I-87018/ 87018R/ 87019R Thermocouple Type Definition Back to table

Range Code

(Hex)

Thermocouple

Type
Data Format Max Value Min Value

0E J Type
Input Range +760.00℃ -210.00℃

2's Complement HEX 7FFF DCA2

0F K Type
Input Range +1372.0℃ -0270.0℃

2's Complement HEX 7FFF E6D0

10 T Type
Input Range +400.00℃ -270.00℃

2's Complement HEX 7FFF A99A

11 E Type
Input Range +1000.0℃ -0270.0℃

2's Complement HEX 7FFF DD71

12 R Type
Input Range +1768.0℃ +0000.0℃

2's Complement HEX 7FFF 0000

13 S Type
Input Range +1768.0℃ +0000.0℃

2's Complement HEX 7FFF 0000

14 B Type
Input Range +1820.0℃ +0000.0℃

2's Complement HEX 7FFF 0000

15 N Type
Input Range +1300.0℃ -0270.0℃

2's Complement HEX 7FFF E56B

16 C Type
Input Range +2320.0℃ +0000.0℃

2's Complement HEX 7FFF 0000

17 L Type
Input Range +800.00℃ -200.00℃

2's Complement HEX 7FFF E000

18 M Type
Input Range +100.00℃ -200.00℃

2's Complement HEX 4000 8000

19
L Type

DIN43710

Input Range +900.00℃ -200.00℃

2's Complement HEX 7FFF E38F

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 195

I-87022 Analog Output Type Definition Back to table

Range Code

(Hex)
Output Range Data Format Max Value Min Value

0 0 to 20mA
Input Range 20.000 mA 00.000 mA

Hexadecimal FFF 000

1 4 to 20mA
Input Range 20.000 mA 04.000 mA

Hexadecimal FFF 000

2

(default)
0 to 10V

Input Range 10.000 V 00.000 V

Hexadecimal FFF 000

I-87024 Analog Output Type Definition Back to table

Range Code

(Hex)
Output Range Data Format Max Value Min Value

30 0 to 20mA
Output Range +20.000 mA +00.000 mA

2's Complement HEX 0x7FFF 0

31 4 to 20mA
Output Range +20.000 mA +04.000 mA

2's Complement HEX 0x7FFF 0

32 0 to 10V
Output Range +10.000 V +00.000 V

2's Complement HEX 0x7FFF 0

33

(default)
-10 to 10V

Output Range +10.000 V -10.000 V

2's Complement HEX 0x7FFF 0x8000

34 0 to 5V
Output Range +05.000 V +00.000 V

2's Complement HEX 0x7FFF 0

35 -5 to 5V
Output Range +05.000 V -05.000 V

2's Complement HEX 0x7FFF 0x8000

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 196

I-87026 Analog Output Type Definition Back to table

Range Code

(Hex)
Output Range Data Format Max Value Min Value

0 0 to 20mA
Output Range 20.000 mA 00.000 mA

Hexadecimal FFFF 0000

1 4 to 20mA
Output Range 20.000 mA 04.000 mA

Hexadecimal FFFF 0000

2

(default)
0 to 10V

Output Range 10.000 V 00.000 V

Hexadecimal FFFF 0000

I-87024C/I-87028C Analog Output Type Definition Back to table

Range Code

(Hex)
Output Range Data Format Max Value Min Value

0

(default)
0 to 20mA

Output Range +20.000 mA +00.000 mA

Hexadecimal FFF 000

1 4 to 20mA
Output Range +20.000 mA +04.000 mA

Hexadecimal FFF 000

I-87028UW/I-87028VW/I-87024UW

 Analog Output Type Definition
Back to table

Range Code

(Hex)
Output Range Data Format Max Value Min Value

0 0 to 20mA
Output Range +20.000 mA +00.000 mA

Hexadecimal 0xFFFF 0

1 4 to 20mA
Output Range +20.000 mA +04.000 mA

Hexadecimal 0xFFFF 0

2

(default)
0 to 10V

Output Range +10.000 V +00.000 V

Hexadecimal 0xFFFF 0

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 197

3 -10 to 10V
Output Range +10.000 V -10.000 V

Hexadecimal 0x7FFF 0x8000

4 0 to 5V
Output Range +05.000 V +00.000 V

Hexadecimal 0xFFFF 0

5 -5 to 5V
Output Range +05.000 V -05.000 V

Hexadecimal 0x7FFF 0x8000

I-8024/I-8024W Analog Output Type Definition Back to table

Range Code

(Hex)
Output Range Data Format Max Value Min Value

0

(default)
-10 to 10V

Output Range +10.000 V -100.000 V

Hexadecimal 7FFF 8000

1 0 to 20mA
Output Range +20.000 mA +00.000 mA

Hexadecimal 7FFF 8000

I-8017HS/I-8017HW Analog Input Type Definition Back to table

Range Code

(Hex)
Output Range Data Format Max Value Min Value

0

(default)
-10 to 10V

Input Range +10.000 V -10.000 V

Hexadecimal 1FFF 2000

1 -5 to 5V
Input Range +5.000 V -5.000 V

Hexadecimal 1FFF 2000

2 -2.5V to +2.5V
Input Range +2.500 V -2.5000 V

Hexadecimal 1FFF 2000

3 -1.25V to +1.25V
Input Range +1.250 V -1.250 V

Hexadecimal 1FFF 2000

4 -20 mA to +20 mA Input Range +20.000 mA -20.000 mA

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 198

Hexadecimal 1FFF 2000

I-8080/ 8084W Counter Input Type Definition Back to table

Range Code

(Hex)
Counter Type

Channel

 number
Max Value Min Value

0 *1 Dir/Pulse Counter 4
2147483647 -2147483648

1FFFFFFF 80000000

1 *1 Up/Down Counter 4
2147483647 -2147483648

1FFFFFFF 80000000

2 Frequency 8
- -

- -

3

(default)
Up Counter 8

4294967295 0

FFFFFFFF 00000000

4 *1

(for I-8084W)
AB Phase 4

2147483647 -2147483648

1FFFFFFF 80000000

Note:

*1: The sub-index of all parameters and input channels are still 8, but the sub-index 1 is

equal to sub-index 2, and sub-index 3 is equal to sub-index 4, and so on.

I-8088W PWM Output Type Definition Back to table

Range Code

(Hex)
Counter Type

Channel

 number
Max Value Min Value

0 Burst Counter 8
65535 1

FFFF 1

1

(default)
Continue Counter 8

--- ---

--- ---

CAN-8x23 user’s manual (Revision 3.31, Jan/31/2020) ------ 199

Appendix B: DIO Type Define of I-8050 Modules

I-8050 is a selectable 16-channel DIO module. User can decide which channel

will be DI and which channel will be DO. In CAN-8x23, users can achieve this purpose

by setting the type code in the object index 0x2004~0x2007. The object index 0x2004,

0x2005, 0x2006 and 0x2007 are for the module plugged in slot 0, slot 1, slot 2 and slot

3 respectively.

 For example, if the I-8050 module is plugged on the slot 0 of CAN-8423, user can

set the object index 0x2004 to decide the channel type of I-8050. The object index

0x2004 with sub-index 1 controls the channel type of ch-0 to ch-7 of I-8050, and

sub-index 2 controls the ch-8 to ch-15. If one bit of the object data is set to 1, it means

that the corresponding channel will be set to DI. So if users set the sub-index 1 to

0x77, it means that only the ch-3 and ch-7 are DO channels and the others are DI

channels. In default, all the channels of I-8050 are DI channels.

 Back to table

