

PISO-CAN Series

(PISO-CAN / PEX-CAN / PCM-CAN)

CANopen Master Library

User’s Manual

Warranty

All products manufactured by ICP DAS are warranted
against defective materials for a period of one year from
the date of delivery to the original purchaser.

Warning

ICP DAS assume no liability for damages consequent
to the use of this product. ICP DAS reserves the right to
change this manual at any time without notice. The
information furnished by ICP DAS is believed to be
accurate and reliable. However, no responsibility is
assumed by ICP DAS for its use, nor for any infringements
of patents or other rights of third parties resulting from its
use.

Copyright

Copyright 2005 by ICP DAS. All rights are reserved.

Trademark

The names used for identification only maybe

registered trademarks of their respective companies.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------1

Tables of Content

1 General Information..5

1.1 CANopen Introduction...5

1.2 CANopen Applications ..6

1.3 CANopen Master Library Characteristics7

1.4 Features..9

2 Software Installation...10

2.1 Installation Driver Step by Step .. 11

3 Function Description..19

3.1 DLL Function Definition and Description19

3.2 Function Return Code ...22

3.3 CANopen Master Library Application Flowchart.......................24

3.4 Communication Services Introduction26

3.5 Function Description...29

3.5.1 CPM_GetCANDriverVer...29

3.5.2 CPM_GetVersion ...30

3.5.3 CPM_TotalBoard..31

3.5.4 CPM_GetCardPortNum ...32

3.5.5 CPM_GetBoardInf..33

3.5.6 CPM_GetCANStatus..34

3.5.7 CPM_SetFunctionTimeout..35

3.5.8 CPM_InitMaster ...36

3.5.9 CPM_ShutdownMaster..37

3.5.10 CPM_MasterSendBootupMsg ..38

3.5.11 CPM_SetMasterMode..39

3.5.12 CPM_GetMasterMode ...40

3.5.13 CPM_EDS_Load ..41

3.5.14 CPM_AddNode ..43

3.5.15 CPM_RemoveNode ...45

3.5.16 CPM_RemoveAndResetNode...46

3.5.17 CPM_DelayAndResponseTimeout.................................47

3.5.18 CPM_ScanNode...48

3.5.19 CPM_GetNodeList ...49

3.5.20 CPM_NMTChangeState...50

3.5.21 CPM_NMTGetState ..51

3.5.22 CPM_NMTGuarding...52

3.5.23 CPM_NMTHeartbeat ..54

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------2

3.5.24 CPM_SDOReadData ..56

3.5.25 CPM_SDOReadFile..57

3.5.26 CPM_SDOWriteData ..58

3.5.27 CPM_SDOAbortTransmit ..60

3.5.28 CPM_PDOWrite..61

3.5.29 CPM_PDOWrite_Fast ..62

3.5.30 CPM_PDORemote ...63

3.5.31 CPM_PDORemote_Fast ..64

3.5.32 CPM_SetPDORemotePolling..65

3.5.33 CPM_GetPDOLastData..66

3.5.34 CPM_GetMultiPDOData...67

3.5.35 CPM_GetRxPDOID ..68

3.5.36 CPM_GetTxPDOID...69

3.5.37 CPM_InstallPDO ..70

3.5.38 CPM_DynamicPDO..71

3.5.39 CPM_RemovePDO...73

3.5.40 CPM_ChangePDOID..74

3.5.41 CPM_GetPDOMapInfo...75

3.5.42 CPM_InstallPDO_List ..76

3.5.43 CPM_RemovePDO_List ..78

3.5.44 CPM_PDOUseEntry...79

3.5.45 CPM_PDOTxType ..80

3.5.46 CPM_PDOEventTimer ...81

3.5.47 CPM_PDOInhibitTime..82

3.5.48 CPM_ChangeSYNCID..83

3.5.49 CPM_SetSYNC_List ..84

3.5.50 CPM_GetSYNCID...85

3.5.51 CPM_SendSYNCMsg ..86

3.5.52 CPM_GetCyclicSYNCInfo ...87

3.5.53 CPM_ChangeEMCYID ...88

3.5.54 CPM_SetEMCY_List ..89

3.5.55 CPM_GetEMCYID ..90

3.5.56 CPM_ReadLastEMCY..91

3.5.57 CPM_GetBootUpNodeAfterAdd92

3.5.58 CPM_GetEMCYData ..93

3.5.59 CPM_GetNMTError..94

3.5.60 CPM_InstallBootUpISR ...95

3.5.61 CPM_RemoveBootUpISR ...96

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------3

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------4

3.5.62 CPM_InstallEMCYISR..97

3.5.63 CPM_RemoveEMCYISR ..98

3.5.64 CPM_InstallNMTErrISR ...99

3.5.65 CPM_RemoveNMTErrISR ...100

3.5.66 CPM_GetMasterReadSDOEvent...................................101

3.5.67 CPM_GetMasterWriteSDOEvent102

3.5.68 CPM_ResponseMasterSDO..103

3.5.69 CPM_InstallReadSDOISR..104

3.5.70 CPM_RemoveReadSDOISR..105

3.5.71 CPM_InstallWriteSDOISR ...106

3.5.72 CPM_RemoveWriteSDOISR..107

3.5.73 CPM_GetMasterRemotePDOEvent108

3.5.74 CPM_GetMasterRxPDOEvent.......................................109

3.5.75 CPM_ResponseMasterPDO.. 110

3.5.76 CPM_InstallRxPDOISR.. 111

3.5.77 CPM_RemoveRxPDOISR .. 112

3.5.78 CPM_InstallRemotePDOISR ... 113

3.5.79 CPM_RemoveRemotePDOISR...................................... 114

4 Demo Programs.. 115

4.1 Brief of the demo programs.. 115

4.1.1 Listen_Mode .. 116

4.1.2 NMT_Protocol .. 117

4.1.3 PDO_Parameter ... 118

4.1.4 PDO_Protocol .. 119

4.1.5 Scan_Node...120

4.1.6 SDO_PDO_ISR...121

4.1.7 SDO_Read..122

4.1.8 SDO_Write..123

4.1.9 SYNC_Protocol..124

4.1.10 PDO_MultiData ..125

1 General Information

1.1 CANopen Introduction

The CAN (Controller Area Network) is a kind of serial communication

protocols, which efficiently supports distributed real-time control with a very

high level of security. It is an especially suited for networking intelligent devices

as well as sensors and actuators within a system or sub-system. In CAN

networks, there is no addressing of subscribers or stations in the conventional

sense, but instead, prioritized messages are transmitted. CANopen is one kind

of the network protocols based on the CAN bus and it is applied in a low level

network that provides the connections between simple industrial devices

(sensors, actuators) and higher-level devices (controllers), as shown in the

Figure 1.1.

Figure 1.1 Example of the CANopen network

CANopen was developed as a standardized embedded network with

highly flexible configuration capabilities. It provides standardized

communication objects for real-time data (Process Data Objects, PDO),

configuration data (Service Data Objects, SDO), network management data

(NMT message, and Error Control), and special functions (Time Stamp, Sync

message, and Emergency message). Nowadays, CANopen is used in many

various application fields, such as medical equipment, off-road vehicles,

maritime electronics, public transportation, building automation and so on.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------5

1.2 CANopen Applications

CANopen is the standardized network application layer optimized for

embedded networks. Its specifications cover the standardized application layer,

frameworks for the various applications (e.g. general I/O, motion control

system, maritime electronics and so forth) as well as device, interface, and

application profiles.

The main CANopen protocol and products are generally applied in the

low-volume and mid-volume embedded systems. The following examples

show some parts of the CANopen application fields. (For more information,

please refer to the web site, http://www.can-cia.org):

 Truck-based superstructure control systems

 Off-highway and off-road vehicles

 Passenger and cargo trains

 Maritime electronics

 Factory automation

 Industrial machine control

 Lifts and escalators

 Building automation

 Medical equipment and devices

 Non-industrial control

 Non-industrial equipment

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------6

http://www.can-cia.org/

1.3 CANopen Master Library Characteristics

ICP DAS CANopen Master DLL Library provides users to establish

CANopen communication network rapidly. It is special for ICPDAS PISO-CAN,

PEX-CAN and PCM-CAN series PCI interface cards (hereinafter referred to

as the PISO-CAN series cards). Using the library, most of the CANopen

communication protocols will be handled by the library function automatically.

Therefore, it can help users reduce the complexity of developing a CANopen

master interface, and let users to ignore the CANopen protocol detail

technology information. The library mainly supports the predefined

master-slave connection set, which include some useful functions to control

the CANopen slave device in the CANopen network. The general application

architecture is demonstrated as the Figure 1.2.

Figure 1.2 Application architecture

The CANopen Master Library follows the CiA CANopen specification

DS-301 V4.02, and supports the several CANopen features. The CANopen

communication general concept is shown as Figure 1.3.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------7

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------8

Figure 1.3 CANopen communication general concept

 Node Manager (NMT Master)

- Provide function to change the slave device state

- Node Guarding Protocol for error control

- Support Emergency (EMCY) message

 SDO Manager

- Expedited, segmented and block methods for SDO download and

upload

 PDO Manager

- Support transmission type and event timer

 SYNC Manager

- SYNC messages production

- SYNC cycles of 1ms resolution

 EMCY Manager

- EMCY messages consumer

For more information about the CANopen functions described above,

please refer to the function descriptions and demo programs shown in the

chapter 3 and chapter 4.

1.4 Features

 Driver supported for Windows 2K/XP/Vista/Win7

 Follow CiA DS-301 V4.02.

 Support 8 kinds baud: 10 kbps, 20 kbps, 50 kbps, 125 kbps, 250 kbps,

500 kbps, 800 kbps, and 1 Mbps.

 Support Node Guarding protocol

 Support the node id range from 1 ~ 127.

 Support upload and download SDO Segment.

 Support Node Guarding protocol and Heartbeat protocol.

 Provide 5 sets of SYNC cyclic transmission.

 Support EDS file.

 Support EMCY protocol.

 Provide Listen Mode to listen the slave status of the CANopen

network.

 Block-function and non-block-function selected.

 Demos and utility are provided.

 Library provides VC++, C#.Net2005, and VB.Net2005 developments.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------9

2 Software Installation

The CANopen DLL driver is the CANopen specification function

collections for the PISO-CAN series cards used in Windows 2000/XP/Vista/7

systems. The application structure is presented in the following figure. The

users’ CANopen master application programs can be developed by the

following program development tools: VB, VC++, VB.net, and C#. When users

use these program development tools to develop the CANopen master

interface, the PISOCANCPM.DLL must be used. Because the

PISOCANCPM.DLL calls the function of PISO-CAN driver, the PISO-CAN

driver must be installed before using the PISOCANCPM.DLL driver. The driver

architecture is shown in the following Figure.

Figure 2.1 Driver concept of CANopen library

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------10

2.1 Installation Driver Step by Step

When users want to use the CANopen specification DLL driver, the

PISO-CAN series CAN card driver must be installed firstly. Afterwards, users

should install the CANopen Master Library. After finishing the installation

process, the demo programs may be a good reference for users to build their

CANopen master interface by using VC++, C# and VB.Net. The demo

programs also give a simple interface to show the basic functions of

master/slave connection and CANopen master program architectures. It is

very helpful for users to understand how to use these functions and how to

develop their CANopen master application. The following description displays

the step-by-step procedures about how to install the PISO-CAN driver and

PISOCANCPM.DLL driver.

Install and Remove the PISO-CAN series CAN card driver

Please refer to the manual piso-can_user_manual.pdf. It can be found in the

web path

http://ftp.icpdas.com/pub/cd/fieldbus_cd/can/pci/pcm_piso-can_series/ and the

CD path \CAN\PCI\PCM_PISO-CAN_Series\.

Install the CANopen Master Library

Step 1: Insert the product CD into the CD-ROM and find the path

\CANopen\Master\PISO-CAN_Series. Then execute the

setup.exe to install the CANopen Master Library.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------11

http://ftp.icpdas.com/pub/cd/fieldbus_cd/can/pci/pcm_piso-can_series/

Step 2: Wait until the install wizard has prepared.

Step 3: Click “Next” to start the CANopen Master Library installation.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------12

Step 4: Select the folder where the CANopen Master Library setup will

be installed and click “Next” button to continue.

Figure 2.5

 Step 5: Click the button “Install” to continue.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------13

 Step 6: Wait for the CANopen Master Library installation.

Step 7: After finishing the process, click “Finish” button to complete the

installation.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------14

When finishing the CANopen Master Library installation. The CANopen

folder will be found at the Start menu shown as below.

Remove the CANopen Master Library

Step 1: Click “Start” in the task bar. Select the Setting/Control Panel as

shown in the following figure.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------15

Step 2: Click the “Add/Remove Programs” icon to open the dialog.

Step 3: Find out the CANopen Master Library, and click the button

“Change/Remove”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------16

Step 4: Choose “Remove” option and click the button “Next” to remove the

software.

 Step 5: Click the button “Yes” to remove the software.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------17

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------18

Step 6: Finally, click the button “Finish” to finish the uninstall process.

3 Function Description

3.1 DLL Function Definition and Description

All the functions provided by the PISOCANCPM.dll are listed in the

following table. The detail information for each function is presented in the

section 3.5. In order to make the descriptions more simply and clear, the

attributes for the both input and output parameter functions are given as [input]

and [output] respectively. They are shown in the table 3.1.

Keyword
Set parameter by user before

calling this function?

Get the data from this parameter

after calling this function?

[input] Yes No

[output] No Yes

Table 3.1

Functions Table
Listen
Mode Function Name Description

O CPM_GetCANDriverVer Get the version of the PISO-CAN driver

O CPM_GetVersion Get the version of the CPM library

O CPM_TotalBoard Get the total number of PISO-CAN series card

O CPM_GetCardPortNum Get the CAN port number of the board

O CPM_GetBoardInf Get board information of the PISO-CAN card

O CPM_GetCANStatus Obtain the status of the CAN controller

O CPM_SetFunctionTimeout Set the max. timeout value of all functions

O CPM_InitMaster Activate the CAN port of the PISO-CAN card

O CPM_ShutdownMaster Remove all nodes and stop the CAN port master

X CPM_MasterSendBootupMsg Let the Master sent a boot up message

O CPM_SetMasterMode Set the master to normal mode or listen mode

O CPM_GetMasterMode Get operation (normal/listen) mode of the master

O CPM_EDS_Load Add a slave node from the EDS file

O CPM_AddNode Add a slave node into the master manager

O CPM_RemoveNode Remove a node from the master manager

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------19

X CPM_RemoveAndResetNode
Remove a node from the master manager and then

reset it

O CPM_DelayAndResponseTimeout
Change minimum time interval and response timeout

value of CAN messages

X CPM_ScanNode Scan all nodes on the CANopen network

O CPM_GetNodeList Get the node list of the master manager

X CPM_NMTChangeState Change the CANopen node state

O CPM_NMTGetState Get the CANopen node state

O CPM_NMTGuarding Start to the node guarding function

O CPM_NMTHeartbeat Start to the node heartbeat function

X CPM_SDOReadData Read data by using the upload SDO protocol

X CPM_SDOReadFile Read the huge SDO data for specific slave node

X CPM_SDOWriteData Write data by using the download SDO protocol

X CPM_SDOAbortTransmit Send the SDO abort message

X CPM_PDOWrite Use the PDO to write data to the CANopen node

X CPM_PDOWrite_Fast Only send out the RxPDO but not do any check

X CPM_PDORemote Use the PDO to get data from the CANopen node

X CPM_PDORemote_Fast Only send the Rtr message but don’t check response

X CPM_SetPDORemotePolling Set PDO polling list table and poll them

O CPM_GetPDOLastData Get the last input or output PDO data

O CPM_GetMultiPDOData Get the several input or output PDO data once

O CPM_GetRxPDOID Get all COB-ID of the RxPDO of the specific slave

O CPM_GetTxPDOID Get all COB-ID of the TxPDO of the specific slave

X CPM_InstallPDO Install and enable a specific PDO

X CPM_DynamicPDO New or change a PDO mapping to the slave

X CPM_RemovePDO Remove a specific PDO mapping entry or object

X CPM_ChangePDOID Change the PDO COB-ID of a specific slave

O CPM_GetPDOMapInfo Obtain all the PDO-related information

O CPM_InstallPDO_List Install a PDO manually without check if it exists

O CPM_RemovePDO_List Remove PDO object without check real states

X CPM_PDOUseEntry Change the valid entry number of the PDO objects

X CPM_PDOTxType Set transmission type of the specific TxPDO

X CPM_PDOEventTimer Set event timer of the specific TxPDO

X CPM_PDOInhibitTime Set inhibit time of the specific TxPDO

X CPM_ChangeSYNCID Change the SYNC COB-ID

O CPM_SetSYNC_List Set the SYNC COB-ID without check if it exists

O CPM_GetSYNCID Get the SYNC COB-ID

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------20

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------21

X CPM_SendSYNCMsg Send the SYNC message

X CPM_GetCyclicSYNCInfo Get all the cyclic sending SYNC information

X CPM_ChangeEMCYID Change the EMCY COB-ID

O CPM_SetEMCY_List Set the EMCY COB-ID and don’t check if it exists

O CPM_GetEMCYID Get the EMCY COB-ID

O CPM_ReadLastEMCY Get the last EMCY message of the slave

O CPM_GetBootupNodeAfterAdd
Get boot up message of node slave that had added in

node list of the Master.

O CPM_GetEMCYData Get the EMCY message from the EMCY buffer

O CPM_GetNMTError Get the NMT Error event from the NMT event buffer

O CPM_InstallBootUpISR Install user-defined slave boot up process

O CPM_RemoveBootUpISR Remove the slave boot up process

O CPM_InstallEMCYISR Install user-defined EMCY process

O CPM_RemoveEMCYISR Remove the EMCY process

O CPM_InstallNMTErrISR Install user-defined Guarding/Heartbeat event process

O CPM_RemoveNMTErrISR Remove the Guarding/Heartbeat event process

O CPM_GetMasterReadSDOEvent Get the read SDO message sent to the Master

O CPM_GetMasterWriteSDOEvent Get the write SDO message sent to the Master

X CPM_ResponseMasterSDO Response the SDO message to the SDO sender

O CPM_GetMasterRemotePDOEvent Get the remote PDO message send to the Master

O CPM_GetMasterRxPDOEvent Get the RxPDO RTR sent to the Master

X CPM_ResponseMasterPDO Response the RxPDO RTR to the RTR sender

O CPM_InstallRxSDOISR Install the user-defined Master SDO process

O CPM_RemoveRxSDOISR Remove the master SDO process

O CPM_InstallRxPDOISR Install the user-defined Write Master PDO process

O CPM_RemoveRxPDOISR Remove the Write Master PDO process

O CPM_InstallTxPDOISR Install the user-defined Remote Master PDO process

O CPM_RemoveTxPDOISR Remove the Remote Master PDO process

Table 3.2 Description of functions

3.2 Function Return Code

The following table interprets all the return code returned by the CANopne

Master Library function.

Return

Code
Error ID Description

0 CPM_NoError OK

1 CPM_DriverError Kernel driver is not opened

3 CPM_BoardNumberErr There is no PISO-CAN on the specific board No

4 CPM_PortNumberErr The CAN port number is over the range

5 CPM_ConfigErr The PISO-CAN hasn’t been configured successfully

6 CPM_MasterInitErr The Master (CAN port) initialization error

7 CPM_MasterNotInit The Master (CAN port) hasn’t been initialized

8 CPM_ListenMode The Master is in listen mode now

9 CPM_NodeErr Set node number error

10 CPM_NodeExist The node had been added to the Master

11 CPM_AddModeErr The mode of AddNode function is invalid

12 CPM_TxBusy Tx buffer is busy, please wait a minute to send again

15 CPM_DataEmpty There is no data to receive

16 CPM_MemAllocErr Driver has not enough memory

17 CPM_SendCycMsgErr Cyclic message send error

18 CPM_StatusErr NMT state of CANopen slave is error

20 CPM_SetGuardErr Set Guarding and LifeTime parameter error

21 CPM_SetHbeatErr Set Heartbeat parameter error

22 CPM_SegLenErr SDO Segment receive error length

23 CPM_SegToggleErr SDO Segment receive error toggle

24 CPM_SegWriteErr SDO write segment error

25 CPM_Abort The return message is an Abort message

26 CPM_PDOLenErr PDO output data error

27 CPM_COBIDErr The COB-ID isn’t exist or isn’t correct one

28 CPM_PDOInstErr Install the PDO object error

29 CPM_PDODynaErr The PDO mapping data is setting error

30 CPM_PDONumErr The PDO number and COB-ID is not match

31 CPM_PDOSetErr PDO parameter is setting error

32 CPM_PDOEntryErr The PDO entry parameter is more then useful entry

33 CPM_SetCobIdErr The EMCY or SYNC COB-ID is setting error

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------22

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------23

34 CPM_CycFullErr There are already 5 cyclic message running

35 CPM_Timeout Message response timeout

36 CPM_DataLenErr Data length setting error

40 CPM_Wait Command is uncompleted (only for non-block mode)

41 CPM_Processing Command is running (only for non-block mode)

50 CPM_LoadEDSErr Loading the EDS file fails

51 CPM_EDSFormatErr The format of the EDS file is incorrect

Table 3.3 Description of return code

3.3 CANopen Master Library Application Flowchart

In this section, it describes that the operation procedure about how to use

the CANopen Master Library to build users applications. This information is

helpful for users to apply the CANopen Master Library easily. Besides, the

CANopen operation principles must be obeyed when build a CANopen master

application. For example, if the CANopen node is in the pre-operational status,

the PDO communication object is not allowed to use. For more detail

information, please refer to the demo programs in the section 4.

When users’ programs apply the CANopen Master Library functions, the

function CPM_InitMaster must be called first. The functions is used to initialize

PISO-CAN card and configure the CAN port.

After initializing the CAN interface successfully, users need to use the

function CPM_AddNode or CPM_EDS_Load to install at least one CANopen

device into the node list. The function CPM_AddNode can install slave node

automatically or manually. When the user applies the function to install node

manually, the PDO ID, SYNC ID, and EMCY ID of the node must be added

manually by the functions CPM_InstallPDO_List, CP_SetSYNC_List, and

CPM_SetEMCY_List.

If the function CPM_InitMaster and CPM_AddNode/ CPM_EDS_Load

have been executed, the communication services (NMT, SYNC, EMCY, SDO,

and PDO services) can be used at any time before calling the functions

CPM_ShutdownMaster, because the CPM_ShutdownMaster would stop all

process created by the function CPM_InitMaster.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------24

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------25

Figure 3.1 Main programming sequences

3.4 Communication Services Introduction

NMT Services

The CANopen Master Library provides several NMT services functions,

such as the functions CPM_AddNode, CPM_EDS_Load, CPM_RemoveNode,

CPM_NMTChangeState, CPM_NMTGetState, CPM_NMTHeartbeat, and

CPM_NMTGuarding. As the prerequisite for the master, the slave nodes have

to be registered by the function CPM_AddNode or CPM_EDS_Load with

providing its Node-ID. The registered slave nodes can be individually removed

from the node list by the function CPM_RemoveNode. Through NMT services,

the NMT Master controls the state of the slaves. Table 3.4 is the command

value and corresponding NMT command for the input parameters of the

CPM_NMTChangeState function. When using the function

CPM_NMTGetState, the slave status value and their descriptions are shown in

the table 3.5. The Node Guarding and Heartbeat protocol are implemented via

the function CPM_NMTGuarding and the function CPM_NMTHeartbeat. If the

slave nodes are in the node list, users can change the node guarding or

heartbeat parameters defined in the slave nodes by calling the function

CPM_NMTGuarding or CPM_NMTHeartbeat.

Table 3.4 NMT Command Specifier

Table 3.5 State of the Slave

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------26

SDO Services

“Initiate SDO download protocol” or “Initiate SDO upload protocol” is used

when the object data length ≦ 4 bytes. If the object data length ＞ 4 bytes,

“Download SDO segment protocol” or “Upload SDO segment protocol” will be

used. Calling these two functions, CPM_SDOReadData and

CPM_SDOWriteData, the initial protocol and segment protocol will be selected

automatically according to the object data length.

CPM_SDOAbortTransmit function can abort a pending SDO transfer at

any time. Applying the abort service will have no confirmation from the slave.

PDO Services

After using the CPM_AddNode to add a slave, the default TxPDOs and

RxPDOs (TxPDO 1 ~ 10, RxPDO 1 ~ 10) will also be added to the Master’s

control list. If there are PDOs other than the default setting, the function

CPM_InstallPDO is used for enabling these TxPDOs or RxPDOs object. After

installing the PDOs, the function CPM_DynamicPDO can add or change the

PDOs’ mapping objects. Each PDO object supports 0~8 application objects.

These application objects defined in the CANopen specification CiA401, and

they are mapped to the relative parameters of the DI/DO/AI/AO channels. After

calling the function CPM_InstallPDO and CPM_DynamicPDO, the PDO

communication object will be mapped and activated. If the PDO

communication object is not needed no more, use the function

CPM_RemovePDO to remove it.

When you want to output data via PDO, the function CPM_PDOWriteData

is useful. This function can write all PDO 8-byte data or write some parts of

PDO 8-byte data. Calling this function will send the specific data to the

corresponding node via PDO protocol, and put the output data into PDO buffer

at the same time. Therefore, you can check the output history of the PDO. But,

if the connection between the Master and the slave is lost, the history output

information may be not the same with the real status on the slave.

In CANopen specification, you can get the TxPDOs data by applying the

remote transmit request CAN frame. The function CPM_PDORemote is

needed in this case. Or you can use CPM_GetPDOLastData to get the last

RxPDO and TxPDO data from the PDO buffer.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------27

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------28

SYNC Services

Calling the function CPM_SendSYNCMsg starts the SYNC object

transmission. This function supports single SYNC message transmission and

cyclic SYNC message transmission. The parameter “Timer” of the function

CPM_SendSYNCMsg can adjust the cyclic period of the SYNC COB-ID sent

by master. And the parameter “Times” can set the sending times of the SYNC

message. If the timer parameter is set to 0, the SYNC object transmission will

be stopped. When the times parameter is set to non-zero value, the function

will send the SYNC message until the timer is set to 0 or the parameter “Times”

is achieved.

EMCY Services

The Emergency messages are triggered by the occurrence of a device

internal error situation. Users can call the function CPM_ReadLastEMCY to

receive the EMCY message or the function CPM_InstallEMCYISR to install

user-defined EMCY interrupt process. In this case, if there are CAN slaves

sending the EMCY, these EMCY messages will be processed by the

user-defined EMCY interrupt process.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------29

3.5 Function Description

3.5.1 CPM_GetCANDriverVer

 Description:

This function is used to obtain the version information of the

PISO-CAN driver.

 Syntax:

WORD CPM_GetCANDriverVer (void)

 Parameter:

None

 Return:

PISO-CAN driver version information.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------30

3.5.2 CPM_GetVersion

 Description:

This function is used to obtain the version information of the

PISOCANCPM.dll library.

 Syntax:

WORD CPM_GetVersion(void)

 Parameter:

None

 Return:

LIB library version information.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------31

3.5.3 CPM_TotalBoard

 Description:

Obtain the total board number of PISO-CAN series plugged in the PCI

bus.

 Syntax:

WORD CPM_TotalBoard(void)

 Parameter:

None

 Return:

Return the scanned total board number of PISO-CAN series.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------32

3.5.4 CPM_GetCardPortNum

 Description:

Obtain the CAN port number of the PISO-CAN card.

 Syntax:

WORD CPM_GetCardPortNum(BYTE BoardNo, BYTE *GetPortNum)

 Parameter:

BoardNo: [input] PISO-CAN board No.

*GetPortNum: [output] To get the CAN port number of the PISO-CAN

board.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------33

3.5.5 CPM_GetBoardInf

 Description:

Obtain the information of PISO-CAN board, which includes vendor ID,

device ID and the interrupt number.

 Syntax:

WORD CPM_GetBoardInf(BYTE BoardNo, DWORD *dwVID,

DWORD *dwDID, DWORD *dwSVID,

DWORD *dwSDID, DWORD *dwSAuxID,

DWORD *dwIrqNo)

 Parameter:

BoardNo: [input] PISO-CAN board No.

*dwVID: [output] The address of a variable which is used to receive the

vendor ID.

*dwDID: [output] The address of a variable used to receive device ID.

*dwSVID: [output] The address of variable applied to receive

sub-vendor ID.

*dwSDID: [output] The address of variable applied to receive

sub-device ID.

*dwSAuxID: [output] The address of a variable used to receive

sub-auxiliary ID.

*dwIrqNo: [output] The address of a variable used to receive logical

interrupt number.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------34

3.5.6 CPM_GetCANStatus

 Description:

Obtain the status of the CAN controller of the specific CAN board.

 Syntax:

int CPM_GetCANStatus(BYTE BoardNo, BYTE Port, BYTE *bStatus)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

*bStatus: [output] The address of a variable is applied to get the status

value of CAN controller. The bit interpretation of the bStatus

parameter is as below.

Bit Name Value Status

1 Bus-off
Bit 7 Bus Status

0 Bus-on

1 Error
Bit 6 Error Status

0 OK

1 Transmit
Bit 5 Transmit Status

0 Idle

1 Receive
Bit 4 Receive Status

0 Idle

1 Complete
Bit 3 Transmission Complete Status

0 Incomplete

1 Release
Bit 2 Transmit Buffer Status

0 Locked

1 Overrun
Bit 1 Data Overrun Status

0 Absent

1 Not Empty
Bit 0 Receive Buffer Status

0 Empty

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------35

3.5.7 CPM_SetFunctionTimeout

 Description:

Sometimes, some function cost more time to complete its task, such

as CPM_ScanNode. If some API of the CPM library never gets the

feedback until timeout value goes by, the error code “CPM_Timeout” will

be returned. Through this function, the user can adjust the suitable

maximum timeout value of all functions for application. The default

timeout value is 1 second.

 Syntax:

void CPM_SetFunctionTimeout(BYTE BoardNo, BYTE Port,

WORD Timeout)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Timeout: [input] Maximum timeout value of all functions (ms).

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------36

3.5.8 CPM_InitMaster

 Description:

The function must be applied when configuring the CAN controller

and initialize the CAN board. It must be called once before using other

functions of the CPM library.

 Syntax:

WORD CPM_InitMaster(BYTE BoardNo, BYTE Port, BYTE Node,

BYTE BaudRate, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Master’s node ID. If the parameter is 0, the master will be

a normal master, and no other master can control it. If the

parameter is 1 ~ 127 (different from other slave), other master

can do some control to it through some ISR function.

BaudRate: [input] The baud rate of the CAN port.

Value 0 1 2 3 4 5 6 7

Baud rate (bps) 10k 20k 50k 125l 250k 500k 800k 1M

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------37

3.5.9 CPM_ShutdownMaster

 Description:

The function CPM_ShutdownMaster removes all the slaves that had

added to master and stop all the functions of the CAN port. The function

must be called before exit the users’ application programs.

 Syntax:

WORD CPM_ShutdownMaster (BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------38

3.5.10 CPM_MasterSendBootupMsg

 Description:

To use the function CPM_MasterSendBootupMsg can let the Master

sends a boot up message after CPM_InitMaster is called.

Note: The function is valid while the Node parameter of the

function CPM_InitMaster is > 0.

 Syntax:

WORD CPM_MasterSendBootupMsg (BYTE BoardNo, BYTE Port,

 BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” again. If the

procedure is still not complete, it will return “CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------39

3.5.11 CPM_SetMasterMode

 Description:

This function can configure if the master is into listen mode or normal

mode (default mode). In listen mode, the Master can’t send any

CANopen message, and some functions will be useless in this mode.

User can select normal mode or listen mode at any time after calling

function CPM_InitMaster.

 Syntax:

WORD CPM_SetMasterMode(BYTE BoardNo, BYTE Port,

BYTE Mode, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Mode: [input] 1 is listen mode, and others are normal mode (default

mode).

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” again. If the

procedure is still not complete, it will return “CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------40

3.5.12 CPM_GetMasterMode

 Description:

If user want to know what operation mode of the master is, call the

function to get it.

 Syntax:

WORD CPM_GetMasterMode(BYTE BoardNo, BYTE Port,

BYTE *Mode, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

*Mode: [output] 0 is normal mode (default mode), and 1 is listen mode.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” again. If the

procedure is still not complete, it will return “CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------41

3.5.13 CPM_EDS_Load

 Description:

The function CPM_EDS_Load can let users load EDS file for adding

a CANopen slave with specified Node ID into the master node list.

Using this function will not send any message to check if the slave is

existent or not.

 Syntax:

WORD CPM_EDS_Load (BYTE BoardNo, BYTE Port, BYTE Node,

char *FilePath, WORD DelayTime,

WORD ResTimeout, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

*FilePath: [input] Absolute or relative file path of the EDS file.

DelayTime: [input] The parameter defines the time interval between

sending two messages from the PISO-CAN. It can avoid the

master frequently sending messages that may overrun the buffer

of the slave. Too large value of this parameter reduces the

performance of the PISO-CAN. The unit of the parameter is ms.

This parameter will be applied to the specified slave after

finishing the ESD loading.

ResTimeout: [input] The timeout value of the response of the CANopen

slaves. When the master sends a CANopen message to the

slave, it will wait the response until timeout if there is a response.

The unit of this parameter is millisecond. This parameter will be

applied to the specified slave after finishing the ESD loading.

BlockMode: [input] 0 means this function is non-block-function, and 1 is

block-function. If set this parameter to 1, the running procedure of

the users’ application is held until finishing this function. If 0, this

function returns “CPM_ Processing” directly. While users apply it

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------42

with the same “BoardNo”, “Port” again, it returns the process status.

If the procedure is still not complete, it returns “CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------43

3.5.14 CPM_AddNode

 Description:

The function CPM_AddNode can add a CANopen slave with

specified Node ID into the master node list. There are three mode of the

function. Mode 1 is adding node automatically, mode 2 is adding node

manually, and mode 3 is allowing the automatic adding the node while it

boots up. In the automatic mode, after calling this function to add a

slave, the slave will be into the operational state directly. And master will

scan the TxPDO1 ~ TxPDO10 and RxPDO1 ~ RxPDO10 and install

them into the Master if the slave supports these PDO objects. In the

manual mode, this function will add a CANopen slave into the master

node list only, and will not send any message to check if the slave is

existent or not. Besides, the manual mode doesn’t install the SYNC ID,

EMCY ID, and any PDO object into the Master. Users must call

CPM_SetSYNC_List, CPM_SetEMCY_List, and CPM_InstallPDO_List

to complete the object installation to finish the adding node process.

The added node can be removed from the master node list by the

function CPM_RemoveNode.

 Syntax:

WORD CPM_AddNode(BYTE BoardNo, BYTE Port, BYTE Node,

BYTE AddMode, WORD DelayTime,

WORD ResTimeout, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

AddMode: [input] 1: Automatic mode. 2: Manual mode. 3: Wait Boot-up

mode.

DelayTime: [input] The parameter is the shortest time interval between

sending two messages from the PISO-CAN. It can avoid

the master to send too much CANopen messages in a

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------44

short time that may let some slaves occur the errors. But if

the delay time is too long, the performance of the

PISO-CAN is down. The unit of the parameter is ms.

ResTimeout: [input] The timeout value of the responded messages

from the CANopen slaves. When the master sends a

CANopen message to the slave, it will wait the

feedback until timeout if there is a feedback. The unit of

this parameter is millisecond.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------45

3.5.15 CPM_RemoveNode

 Description:

The function CPM_RemoveNode removes the slave with the

specified Node-ID from node list of the master. It requires a valid

Node-ID, which has installed by the function CPM_AddNode before.

 Syntax:

WORD CPM_RemoveNode(BYTE BoardNo, BYTE Port, BYTE Node,

BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------46

3.5.16 CPM_RemoveAndResetNode

 Description:

The function CPM_RemoveAndResetNode removes the slave with

the specified Node-ID from node list of the master and reset the slave. It

requires a valid Node-ID, which has installed by the function

CPM_AddNode before.

 Syntax:

WORD CPM_RemoveAndResetNode (BYTE BoardNo, BYTE Port,

BYTE Node, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------47

3.5.17 CPM_DelayAndResponseTimeout

 Description:

Call the function to change CAN message minimum interval time and

response timeout value of the slave node at any time.

 Syntax:

WORD CPM_DelayAndResponseTimeout (BYTE BoardNo, BYTE Port,

BYTE Node, WORD DelayTime,

WORD ResTimeout, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

DelayTime: [input] The parameter is the same as “DelayTime” of the

function CPM_AddNode.

ResTimeout: [input] The parameter is the same as “ResTimeout” of the

function CPM_AddNode.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------48

3.5.18 CPM_ScanNode

 Description:

User can use the function CPM_ScanNode to know how many slave

nodes are on the CANopen network.

 Syntax:

WORD CPM_ScanNode(BYTE BoardNo, BYTE Port, BYTE S_Node,

BYTE E_Node, BYTE *NodeList, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

S_Node: [input] Start node ID.

E_Node: [input] End node ID. This function will scan node ID from

S_Node to E_Node. If S_Node >= E_Node, it will scan

all slave node ID (1 ~ 127) on the CANopen network.

*NodeList: [output] This is a 16-byte array parameter. Each bit of the

parameter means a node ID, the bit is 0 means that the

node ID doesn’t exist and 1 means the node ID is on

the CANopen network. For example, if the NodeList[0]

is 0x16 (0001 0110), it means that the nodes with ID 1,

2, and 4 exist, and the nodes with ID 0, 3, 5, 6, and 7

don’t exist. If the NodeList[1] is 0x41 (0100 0001), it

means that the nodes with ID 8 and 14 exist, and the

nodes with ID 9, 10, 11, 12, 13, and 15 don’t exist.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” again. If the

procedure is still not complete, it will return “CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------49

3.5.19 CPM_GetNodeList

 Description:

User can use the function CPM_GetNodeList to know how many

slave nodes are added to the node list of the CAN Master.

 Syntax:

WORD CPM_GetNodeList(BYTE BoardNo, BYTE Port,

BYTE *NodeList, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

*NodeList: [output] This is a 16-byte array parameter. Each bit of the

parameter means a node ID, the bit is 0 means the

node ID not exist and 1 means the node ID now on the

CANopen bus. For example, if the NodeList[0] is 0x16

(0001 0110), it means that the nodes with ID 1, 2, and 4

have been added into node list, and the nodes with ID 0,

3, 5, 6, and 7 don’t. If the NodeList[1] is 0x41 (0100

0001), it means that the nodes with ID 8 and 14 have

been added into node list, and the nodes with ID 9, 10,

11, 12, 13, and 15 don’t.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” again. If the

procedure is still not complete, it will return “CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------50

3.5.20 CPM_NMTChangeState

 Description:

The function CPM_NMTChangeState is used to change the NMT

state of a slave. If the node parameter of this function is set to 0, the

state of all nodes on the same CANopen network will be changed.

 Syntax:

WORD CPM_NMTChangeState(BYTE BoardNo, BYTE Port,

BYTE Node, BYTE State, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127). Set this parameter to 0 to

indicate all slave devices.

State: [input] NMT command specifier.

 1: start

 2: stop

 128: enter PRE-OPERATIONAL

 129: Reset_Node

 130: Reset_Communication

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------51

3.5.21 CPM_NMTGetState

 Description:

The function CPM_NMTGetState can get the NMT state from slaves.

 Syntax:

WORD CPM_NMTGetState(BYTE BoardNo, BYTE Port, BYTE Node,

BYTE *State, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

*State: [output] The NMT state of the slave.

 4: STOPPED

 5: OPERATIONAL

 127: PRE-OPERATIONAL

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------52

3.5.22 CPM_NMTGuarding

 Description:

Use the function CPM_NMTGuarding to set guard time and life time

factor of the slave with the specified node ID. Then, the master will

automatically send the guarding message to slave device according to

the “GuardTime” parameters of this function. If the master doesn’t

receive the confirmation of guarding message from the salve, the CAN

Master will produce a Node_Guarding_Event event to users. Users may

use the function CPM_InstallNMTErrISR to install a user-defined

process to get the guarding fail event and process the guarding fail

procedure. However, if the slave doesn’t receive the guarding message

during the Node Life time period (Node Life time = “GuardTime” *

“LifeTime”), it will be triggered to send the EMCY message. It is

recommended that “LifeTime” value is set to more than 1.

Take a note that following the CANopen specification, it is not allowed

for one slave device to use both error control mechanisms Guarding

Protocol and Heartbeat Protocol at the same time.

 Syntax:

WORD CPM_NMGuarding(BYTE BoardNo, BYTE Port, BYTE Node,

WORD GuardTime, BYTE LifeTime, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

GuardTime: [input] Guard Time (1 ~ 65535 ms).

LifeTime: [input] Life Time Factor (1 ~ 255).

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------53

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------54

3.5.23 CPM_NMTHeartbeat

 Description:

Use the function CPM_NMTHeartbeat to set heartbeat time of the

slave with the specified node ID and consume time with the Master.

Then, the slave will automatically send the heartbeat message to

master according to the “ProduceTime” parameters of this function. If

the master doesn’t receive the heartbeat message from the slave until

the “ConsumeTime” time (unit is millisecond) is up, the Master will

produce a “Heartbeat_Event” event to users. Users may use the

function CPM_InstallNMTErrISR to install a user-defined process to get

the heartbeat fail event and process the heartbeat fail procedure. It is

recommended that “ConsumeTime” value is set to bigger than the

“ProduceTime” value.

Take a note that following the CANopen specification, it is not allowed

for one slave device to use both error control mechanisms Guarding

Protocol and Heartbeat Protocol at the same time.

 Syntax:

WORD CPM_NMHartbeat(BYTE BoardNo, BYTE Port, BYTE Node,

WORD ProduceTime, WORD ConsumeTime,

BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

ProduceTime: [input] Produce Time of slave device (1 ~ 65535 ms).

ConsumeTime: [input] Consume Time of master (1 ~ 65535 ms).

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------55

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------56

3.5.24 CPM_SDOReadData

 Description:

The function CPM_SDOReadData is useful to the SDO upload from a

specified slave. When users use this function, pass the slave device

node ID, object index and object subindex into this function. This

function supports both expedition mode (less then 4-byte data length)

and segment mode (more then 4-byte data length).

 Syntax:

WORD CPM_SDOReadData (BYTE BoardNo, BYTE Port,

BYTE Node, WORD Index, BYTE SubIndex,

DWORD *RDLen, BYTE *RData, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

Index: [input] Object index of object dictionary of slave devices.

SubIndex: [input] Object subindex of object dictionary of slave devices.

*RDLen: [output] Total data length.

*RData: [output] SDO data respond from the specified slave device.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------57

3.5.25 CPM_SDOReadFile

 Description:

The function CPM_SDOReadFile is useful as uploading the SDO

data more then 1024 bytes. While users use the CPM_ReadData to

read the SDO data and the return data length is more then 1024 byte.

The SDO data are stored in a file. Users can use the function

CPM_SDOReadFile for reading the SDO data from the file.

 Syntax:

WORD CPM_SDOReadFile (BYTE BoardNo, BYTE Port, BYTE Node,

WORD Index, BYTE SubIndex,

DWORD Start, DWORD Len,

DWORD *RLen, BYTE *RData)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

Index: [input] Object index of object dictionary of slave devices.

SubIndex: [input] Object subindex of object dictionary of slave devices.

Start: [input] Start position for reading the SDO data from file. The range

is from 0 to maximum length.

Len: [input] Data length for reading the SDO data.

*RDLen: [output] Returned data length in reality.

*RData: [output] The SDO data respond from the specified slave

device.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------58

3.5.26 CPM_SDOWriteData

 Description:

The function CPM_SDOWriteData can send out a SDO message to

the specified salve device. This procedure is also called download SDO

protocol. The parameter node of the function CPM_SDOWriteData is

used to point which slave device will receive this SDO message.

Because the data length of each object stored in object dictionary is

different, users need to know the data length when writing the object of

the object dictionary of the specified slave devices. This function

supports both expedition mode (less then 4-byte data length) and

segment mode (more then 4-byte data length)

 Syntax:

WORD CPM_SDOWriteData (BYTE BoardNo, BYTE Port, BYTE Node,

WORD Index, BYTE SubIndex, DWORD TDLen,

BYTE *TData, WORD *RDLen, BYTE *RData,

BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

Index: [input] The index value of object of the object dictionary.

SubIndex: [input] The subindex value of object of the object dictionary.

TDLen: [input] Total data size to be written.

*TData: [input] The SDO data written to slave device.

*RLen: [output] Total data size of responded data.

*RData: [output] SDO data responded from the specified slave device.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------59

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------60

3.5.27 CPM_SDOAbortTransmit

 Description:

Call the function CPM_SDOAbortTransmit to cancel the SDO

transmission. The parameter node of this function is used to specify

which SDO communication will be terminated between the master and

the specified salve device.

 Syntax:

WORD CPM_SDOAbortTransmit(BYTE BoardNo, BYTE Port,

BYTE Node, WORD Index, BYTE SubIndex,

DWORD *AData, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

Index: [input] The object index value of the object dictionary.

SubIndex: [input] The object subindex value of the object dictionary.

*AData: [input] Abort data to be send to slave.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------61

3.5.28 CPM_PDOWrite

 Description:

Call the function CPM_PDOWrite to send out a PDO message to the

specified slave device. Before using this function, users need to use the

function CPM_InstallPDO to install the PDO object into the Master if users

want to use non-default PDO. Then, change the NMT state of the target

slave device to operational mode by using the function

CPM_NMTChangeState if the slave is not in the operational mode. Use the

parameter offset to set the start position of the PDO data, and use the

parameters “*TData” and “DLen” to point the data and data length. Then, this

function will follow the data length to cover the slave PDO buffer of the

Master with the data from the specified start position, and send the data to

the specified slave via PDO protocol at the same time.

 Syntax:

WORD CPM_PDOWrite (BYTE BoardNo, BYTE Port, WORD Cobid,

BYTE Offset, BYTE DLlen, BYTE *TData, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Cobid: [input] COB-ID used by the PDO object.

Offset: [input] The start byte position of PDO data (0 ~ 7).

DLen: [input] data size (dlen + offset ≦ 8 (total length of the PDO).

*TData: [output] The data pointer point to the PDO data.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Cobid”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------62

3.5.29 CPM_PDOWrite_Fast

 Description:

The function is like CPM_PDOWrite but does not check whether the

PDO message really sends to CAN bus or not. So CPM_PDOWrite_Fast is

about twice as faster than CPM_PDOWrite at high speed baud rate (greater

than or equal to 250kbps).

 Syntax:

WORD CPM_PDOWrite_Fast (BYTE BoardNo, BYTE Port,

WORD Cobid, BYTE Offset, BYTE DLlen,

BYTE *TData)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Cobid: [input] COB-ID used by the PDO object.

Offset: [input] The start byte position of PDO data (0 ~ 7).

DLen: [input] data size (dlen + offset ≦ 8 (total length of the PDO).

*TData: [output] The data pointer point to the PDO data.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------63

3.5.30 CPM_PDORemote

 Description:

Use the function CPM_PDORemote to send a RTR (remote-transmit-

request) PDO message to the slave device.

 Syntax:

WORD CPM_PDORemote (BYTE BoardNo, BYTE Port, WORD Cobid,

BYTE *DLen, BYTE *TData,

BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Cobid: [input] COB-ID used by the PDO object.

*DLen: [output] The data length of the RTR PDO message.

*TData: [output] The PDO message received from the slave device.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Cobid”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------64

3.5.31 CPM_PDORemote_Fast

 Description:

Use the function CPM_PDORemote_Fast only to send a RTR

(remote-transmit-request) PDO message to the slave device but not

wait for the response message.

Note: This function usually is used with CPM_GetPDOLastData.

 Syntax:

WORD CPM_PDORemote_Fast (BYTE BoardNo, BYTE Port, WORD

Cobid)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Cobid: [input] COB-ID used by the PDO object.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------65

3.5.32 CPM_SetPDORemotePolling

 Description:

If the CANopen slaves do not support the event timer function of the

TxPDOs, using the function CPM_SetPDORemotePolling can config

the most 125 TxPDO objects into the remote polling list. Then, the

PISO-CAN will poll the configured TxPDOs and update the data into

buffer automatically. Users can use CPM_GetMultiPDOData to get

these TxPDOs data from the buffer faster and easily.

 Syntax:

WORD CPM_SetPDORemotePoling (BYTE BoardNo, BYTE Port,

BYTE PDOCnt, WORD *Cobid, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

PDOCnt: [input] The number of the *Cobid array.

*Cobid: [input] COB-ID array used by the TxPDO objects.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Cobid”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------66

3.5.33 CPM_GetPDOLastData

 Description:

Using the function CPM_GetPDOLastData can get the last data of the

RxPDO and TxPDO from the PDO data buffer. The last PDO data is

saved in PDO buffer, so it may not the same with the real situation.

 Syntax:

WORD CPM_GetPDOLastData (BYTE BoardNo, BYTE Port,

WORD Cobid, BYTE *IsNew, BYTE *DLen,

BYTE *RData, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Cobid: [input] COB-ID used by the PDO object.

*IsNew: [output] Check the data if had been read before. 0 is been read

before, and 1 is new one.

*DLen: [output] The data length of the PDO message.

*RData: [output] The PDO message gets from the PDO buffer.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Cobid”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------67

3.5.34 CPM_GetMultiPDOData

 Description:

This can get the last data of the RxPDO and TxPDO from the PDO

data buffer such as the function CPM_GetPDOLastData. But the

difference between these two functions is that user can use the

function CPM_GetMultiPDOData to get maximum 50 PDO data at the

same time.

 Syntax:

WORD CPM_GetMuliPDOData (BYTE BoardNo, BYTE Port,

BYTE PDOCnt, WORD *Cobid, BYTE *IsNew,

BYTE *DLen, BYTE *RData, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

PDOCnt: [input] Total PDO number that want to get.

*Cobid: [input] Maximum 50 COB-ID used by the PDO objects.

*IsNew: [output] Check these PDO data if they have been read before.

0 is to be read before, and 1 is new one.

*DLen: [output] The total data length obtained from the PDO buffer.

*RData: [output] The PDO messages get from the PDO buffer.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Cobid”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------68

3.5.35 CPM_GetRxPDOID

 Description:

Use the function CPM_GetRxPDOID to get all the RxPDO COB-IDs

of the specified slave, which have been installed to the master.

 Syntax:

WORD CPM_GetRxPDOID (BYTE BoardNo, BYTE Port, BYTE Node,

BYTE *PDO_Cnt, WORD *ID_List,

BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

*PDO_Cnt: [output] The number of installed RxPDO.

*ID_List: [output] The RxPDO COB-ID list.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------69

3.5.36 CPM_GetTxPDOID

 Description:

Use the function CPM_GetTxPDOID to get all the TxPDO COB-IDs of

the specified slave, which have been installed to the master.

 Syntax:

WORD CPM_GetTxPDOID (BYTE BoardNo, BYTE Port, BYTE Node,

BYTE *PDO_Cnt, WORD *ID_List,

BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

*PDO_Cnt: [output] The number of installed TxPDO.

*ID_List: [output] The TxPDO COB-ID list.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------70

3.5.37 CPM_InstallPDO

 Description:

After calling the CPM_InstallPDO function, a PDO COB-ID will be

installed in the PDO object list of the CANopen Master Library stack. If

the slave device has defined the default PDO object in RxPDO1 ~

RxPDO10 and TxPDO1 ~ TxPDO10, in this case, these default PDO

will be installed automatically while using the function CPM_AddNode

with automatic mode. Otherwise, the TxPDOs or RxPDOs need to be

installed manually by calling the function CPM_InstallPDO.

 Syntax:

WORD CPM_InstallPDO(BYTE BoardNo, BYTE Port, BYTE Node,

WORD Cobid, BYTE RxTx,

WORD PDO_No, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

Cobid: [input] COB-ID used by the PDO object.

RxTx: [input] PDO type (0: RxPDO, 1: TxPDO).

PDO_No: [input] PDO mapping object No (1 ~ 512).

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------71

3.5.38 CPM_DynamicPDO

 Description:

This function can modify the mapping data of PDO object in the PDO

object list of the CANopen Master Library stack. Take a note that before

calling this function user must check if the PDO had been installed in the

Master.

 Syntax:

WORD CPM_DynamicPDO(BYTE BoardNo, BYTE Port, BYTE Node,
WORD Cobid, BYTE RxTx, BYTE Entry,
DWORD EntryData, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

Cobid: [input] COB-ID used by the PDO object.

RxTx: [input] PDO type (0: RxPDO, 1: TxPDO).

Entry: [input] PDO mapping object subindex value (1 ~ 8).

EntryData: [input] A Double Word (4-byte) information of mapped

application object. Users need to look up the user manual of the

CANopen slave device to find the information of the application

object, and obey the following example format to fill this parameter.

For Example, EntryData = 0x64110310: Mapping to index 0x6411

and subindex 0x03 with data length 0x10 bit (2-byte).

If the function parameters are as following, Cobid = 0x333,

RxTx = 0, Entry = 2, EntryData = 0x64110310. This example will

map the 16-bit data of index 0x6411 and subindex 0x03 object to

the 2nd entry of COB-ID 0x333 RxPDO.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------72

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------73

3.5.39 CPM_RemovePDO

 Description:

The function CPM_RemovePDO can remove a TxPDO or RxPDO

object had installed by the CPM_InstallPDO or CPM_AddNode. This

function also can remove single object mapped in TxPDO or RxPDO.

 Syntax:

WORD CPM_RemovePDO(BYTE BoardNo, BYTE Port, BYTE Node,

WORD Cobid, BYTE Entry,

BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

Cobid: [input] COB-ID used by the PDO object.

Entry: [input] PDO mapping object subindex value (0 ~ 8). If this value

is set to 0, the specified PDO object will be removed. If

others (1 ~ 8), the specified subindex content of the PDO

will be removed.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------74

3.5.40 CPM_ChangePDOID

 Description:

Use the function CPM_ChangePDOID to change the PDO COB-ID

from old “Old_Cobid” to new “New_Cobid” of a slave device.

 Syntax:

WORD CPM_ChangePDOID (BYTE BoardNo, BYTE Port,

WORD Old_Cobid, WORD New_Cobid,

BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Old_Cobid: [input] Old COB-ID used by the PDO object.

New_Cobid: [input] New COB-ID used by the PDO object.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and

“Old_Cobid” again. If the procedure is still not complete, it will

return “CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------75

3.5.41 CPM_GetPDOMapInfo

 Description:

The function CPM_GetPDOMapInfo can get the mapping data

information of the PDO object.

 Syntax:

WORD CPM_GetPDOMapInfo (BYTE BoardNo, BYTE Port,

WORD Cobid, BYTE *RxTx, BYTE *Tx_Type,

WORD *Event_Timer, BYTE *Entry_Cnt,

DWORD *Map_Data, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Cobid: [input] COB-ID used by the PDO object.

*RxTx: [output] PDO type (0: RxPDO, 1: TxPDO).

*Tx_Type: [output] Transmission type.

*Event_Timer: [output] PDO event timer.

*Entry_Cnt: [output] Useful PDO entry number of the PDO object.

*Map_Data: [output] Double Word array parameter. Response the

mapping data of the PDO object’s every useful entry.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Cobid”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------76

3.5.42 CPM_InstallPDO_List

 Description:

This function is similar with the CPM_InstallPDO function. It can

install the old or new PDO object in the PDO object list of the Master. It

is the same as CPM_InstallPDO. But the CPM_InstallPDO_List doesn’t

send any message to check if the PDO object exists in the real slave. It

just changes the list in the memory of the Master. It means that user can

use this function to install PDO and change PDO mapping data

arbitrarily without disturbing the CANopen network. After using this

function, the Master will process the slave PDOs which have the same

IDs configured by the function CPM_InstallPDO_List. It is very useful

when the Master is running in listen mode. User can use the function

CPM_RemovePDO_List to remove the PDO object which is installed by

CPM_InstallPDO_List.

 Syntax:

WORD CPM_InstallPDO_List(BYTE BoardNo, BYTE Port, BYTE Node,

WORD Cobid, BYTE RxTx, WORD PDO_No,

BYTE EntryUse, DWORD *EntryData, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127). If the “Node” parameter is

the CPM100 Node-ID, the parameters, EntryUse & EntryData,

will be useless. In this case, users can use the function

CPM100_InstallRxPDOISR or CPM100_InstallRemotePDOISR

to install the users’ callback function to process the received

PDOs of the CPM100.

Cobid: [input] COB-ID used by the PDO object.

RxTx: [input] PDO type (0: RxPDO, 1: TxPDO).

PDO_No: [input] PDO mapping object No (1 ~ 512).

EntryUse: [input] Total entry of mapping object that will be installed.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------77

*EntryData: [input] Double Word array information of mapped application

object. For example:

If the configuration is “Cobid = 0x333, RxTx = 0, PDO_No

= 10, Entry = 2, EntryData[0] = 0x64110310, EntryData[1]

= 0x62000108”, it will map the RxPDO10 with COB-ID

0x333. The 1st entry is 16-bit data of index 0x6411 and

subindex 0x03 object and the 2nd entry is 8-bit data of index

0x6200 and subindex 0x01 object.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------78

3.5.43 CPM_RemovePDO_List

 Description:

The function CPM_RemovePDO_List can remove a TxPDO or

RxPDO object had installed by the CPM_InstallPDO_List. This function

also can remove single object mapped in the TxPDO or RxPDO.

 Syntax:

WORD CPM_RemovePDO_List(BYTE BoardNo, BYTE Port,

BYTE Node, WORD Cobid, BYTE Entry,

BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

Cobid: [input] COB-ID used by the PDO object.

Entry: [input] PDO mapping object subindex value (0 ~ 8). If this

parameter is set to 0, the specified PDO object will be

removed. If others (1 ~ 8), the specified subindex content

of the PDO will be removed.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------79

3.5.44 CPM_PDOUseEntry

 Description:

Use this function to change the useful object mapping entry of PDO

object. The useful entry starts from 1 to the parameter Entry. Therefore,

if the parameter Entry is 0, it means that the PDO have no useful object

mapping entry.

 Syntax:

WORD CPM_PDOUseEntry(BYTE BoardNo, BYTE Port,

WORD Cobid, BYTE Entry, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Cobid: [input] COB-ID used by the PDO object.

Entry: [input] Useful entry number of PDO mapping object.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Cobid”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------80

3.5.45 CPM_PDOTxType

 Description:

Use this function to change transmission type of TxPDO. The default

transmission type is 255.

 Syntax:

WORD CPM_PDOTxType(BYTE BoardNo, BYTE Port, WORD Cobid,

BYTE Tx_Type, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Cobid: [input] COB-ID used by the PDO object.

Tx_Type: [input] Transmission type of TxPDO (0 ~ 255).

 Description of transmission type

transmission type PDO transmission

 cyclic acyclic synchronous asynchronous RTR only

0 X X

1-240 X X

241-251 - reserved -

252 X X

253 X X

254 X

255 X

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Cobid”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------81

3.5.46 CPM_PDOEventTimer

 Description:

Use this function to change the event timer of the TxPDO. The default

event timer is 0. When the event timer of the PDO object of the slave is

more than 0, the PDO will be sent to master due to the parameter

“Timer” automatically.

 Syntax:

WORD CPM_PDOEventTimer(BYTE BoardNo, BYTE Port,

WORD Cobid, WORD Timer, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Cobid: [input] COB-ID used by the PDO object.

Timer: [input] Event timer of TxPDO. The unit is millisecond.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Cobid”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------82

3.5.47 CPM_PDOInhibitTime

 Description:

Use this function to set the inhibit time to the TxPDO. This time is a

minimum interval for PDO transmission.

 Syntax:

WORD CPM_PDOInhibitTime(BYTE BoardNo, BYTE Port,

WORD Cobid, WORD Time, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Cobid: [input] COB-ID used by the PDO object.

Time: [input] Inhibit time of TxPDO.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Cobid”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------83

3.5.48 CPM_ChangeSYNCID

 Description:

Use the function CPM_ChangeSYNCID to change the SYNC COB-ID

of a slave device.

 Syntax:

WORD CPM_ChangeSYNCID (BYTE BoardNo, BYTE Port,

BYTE Node, WORD Cobid,

BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

Cobid: [input] COB-ID used by the SYNC object.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Cobid”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------84

3.5.49 CPM_SetSYNC_List

 Description:

If the user uses CPM_AddNode function to add the slave with manual

mode, the function CPM_SetSYNC_List must be called while the SYNC

ID of the slave needs to be changed or be set. The function

CPM_SetSYNC_List can only change the SYNC COB-ID in the COB-ID

list of the CPM100, the real value stored in the slave device may be

different from the configuration which is set by the function

CPM_SetSYNC_List. The users need to confirm that by themselves.

 Syntax:

WORD CPM_SetSYNC_List (BYTE BoardNo, BYTE Port, BYTE Node,

 WORD Cobid, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

Cobid: [input] COB-ID used by the SYNC object.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------85

3.5.50 CPM_GetSYNCID

 Description:

This function can get the SYNC ID from the COB-ID list of the Master.

 Syntax:

WORD CPM_GetSYNCID (BYTE BoardNo, BYTE Port, BYTE Node,

WORD *Cobid, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

*Cobid: [output] Return the COB-ID used by the SYNC object.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------86

3.5.51 CPM_SendSYNCMsg

 Description:

Use the function CPM_SendSYNCMsg to send a SYNC message

with specified COB-ID cyclically. If the parameter “Timer” is 0, the SYNC

message will be stopped. If the parameter “Timer” is more than 0, the

function will send SYNC message per “Timer” millisecond until finish the

parameter “Times”. When the “Times” is set to 0, the function will send

SYNC message continuously until set “Timer” to 0. Users can set at

most 5 SYNC messages with different ID to be sent cyclically.

 Syntax:

WORD CPM_SendSYNCMsg(BYTE BoardNo, BYTE Port,

WORD Cobid, WORD Timer, DWORD Times,

BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Cobid: [input] COB-ID used by the SYNC object.

Timer: [input] SYNC message transmission period. If the timer is 0, the

SYNC message will be stopped.

Times: [input] SYNC message transmission times. If the time is 0, the

SYNC message will be sending until “Timer” is set to 0.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Cobid”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------87

3.5.52 CPM_GetCyclicSYNCInfo

 Description:

This function can get at most 5 SYNC messages information which

have been configured by the function CPM_SendSYNCMsg. User can

know what SYNC ID had been set.

 Syntax:

WORD CPM_GetCyclicSYNCInfo(BYTE BoardNo, BYTE Port,

WORD *Cobid, WORD *Timer,

DWORD *Times, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

*Cobid: [input] COB-ID array. Return most 5 SYNC ID.

*Timer: [input] 5 WORD array. Each value is the cyclic period of the

SYNC message.

*Times: [input] 5 Double WORD array. Each one is the SYNC message

sending times that set before.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” again. If the

procedure is still not complete, it will return “CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------88

3.5.53 CPM_ChangeEMCYID

 Description:

Use the function CPM_ChangeEMCYID to change the EMCY

COB-ID of a specific slave device.

 Syntax:

WORD CPM_ChangeEMCYID (BYTE BoardNo, BYTE Port,

BYTE Node, WORD Cobid,

BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

Cobid: [input] COB-ID used by the EMCY object.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------89

3.5.54 CPM_SetEMCY_List

 Description:

If the user uses CPM_AddNode function to add the slave with manual

mode, the function CPM_SetEMCY_List must be called while the EMCY

ID of the slave needs to be changed or be set. CPM_SetEMCY_List

only can change the EMCY COB-ID in the COB-ID list of the Master.

Afterwards, the Master processes the EMCY messages with the specific

EMCY COB-ID which is configured by the function

CPM_SetEMCY_List.

 Syntax:

WORD CPM_SetEMCY_List (BYTE BoardNo, BYTE Port, BYTE Node,

 WORD Cobid, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

Cobid: [input] COB-ID used by the EMCY object.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------90

3.5.55 CPM_GetEMCYID

 Description:

This function can get the EMCY ID from the COB-ID list of the Master.

 Syntax:

WORD CPM_GetEMCYID (BYTE BoardNo, BYTE Port, BYTE Node,

WORD *Cobid, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

*Cobid: [output] Return the COB-ID used by the EMCY object.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------91

3.5.56 CPM_ReadLastEMCY

 Description:

This function can check if one slave had produced EMCY. If yes, this

function will return the last EMCY message of the specific slave.

 Syntax:

WORD CPM_ReadLastEMCY (BYTE BoardNo, BYTE Port,

BYTE Node, BYTE *IsNew,

BYTE *RData, BYTE BlockMode)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

Node: [input] Slave device Node-ID (1~127).

*IsNew: [output] Check the data if had been read before. 0 is been read

before, and 1 is new one.

*RData: [output] 8-byte EMCY message gets from the EMCY buffer.

BlockMode: [input] 0 means this function is non-block-function, and 1

means this function is block-function. If set this parameter to 1, the

running procedure of the users’ application will be held in the

function until return. If set to 0, this function will return “CPM_

Processing” directly. This function will return its process status

while users apply it with the same “BoardNo”, “Port” and “Node”

again. If the procedure is still not complete, it will return

“CPM_Wait”.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------92

3.5.57 CPM_GetBootUpNodeAfterAdd

 Description:

If users don’t know which slave node occur the boot-up message and

which Master received it. Users can use the function

CPM_GetBootUpNodeAfterAdd. This function can get not only the slave

node ID but also the slot number of the PISO-CAN. The parameters,

BoardNo and Port, indicate the number of the PISO-CAN which

receives the boot-up message. The parameter, Node, is the ID of the

slave node which produces the boot-up message. The

CPM_GetBootUpNodeAfterAdd function is usually applied with the

function CPM_InstallBootUpISR. But note that, this function can only

get the slave node ID that has already been added (CPM_AddNode) to

the Master.

 Syntax:

WORD CPM_GetBootUpNodeAfterAdd (BYTE *BoardNo, BYTE *Port,

BYTE *Node)

 Parameter:

*BoardNo: [output] Get the board No. of the PISO-CAN which receives

the NMT Error Event.

*Port: [output] Get the CAN port No. of the PISO-CAN board.

Node: [input] Get the slave node ID of the received boot-up message.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------93

3.5.58 CPM_GetEMCYData

 Description:

If users don’t know that which slave node occurred the EMCY

message and which Master received it. Users can use the function

CPM_GetEMCYData. This function can get not only the EMCY

message with the slave node ID but also the board number of the

PISO-CAN. The parameters, BoardNo and Port, indicate the number of

the PISO-CAN which receives the EMCY message. The parameter,

Node, is the ID of the slave node which produces the EMCY. The

parameters, *RData, is the 8-bytes EMCY message data. The function

CPM_GetEMCYData is usually applied with the function

CPM_InstallEMCYISR. About the demo please refer to the section 4.1.2

NMT_Protocol.

 Syntax:

WORD CPM_GetEMCYData (BYTE *BoardNo, BYTE *Port,

BYTE *Node, BYTE *RData)

 Parameter:

*BoardNo: [output] Get the board No. of the PISO-CAN which receives

the NMT Error Event.

*Port: [output] Get the CAN port No. of the PISO-CAN board.

*Node: [output] Get the slave node ID of the received EMCY message.

*RData: [output] 8-byte EMCY message obtained from the EMCY

buffer.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------94

3.5.59 CPM_GetNMTError

 Description:

User can use the function CPM_GetNMTError to check if the Master

gets NMT Error Event for any slave node. The parameters of the

function indicate that which Master gets the NMT Error Event, which

node produces this event, and what kind of event it is. The parameters,

BoardNo and Port, indicate which Master indicates the Heartbeat_Event

or Node_Guarding_Event. The parameter, Node, is the ID of the slave

node which responds the heartbeat protocol or guarding protocol. The

parameter, NMTErr, is the NMTErr event mode. If the NMTErr event is

Node_Guarding_Event, the NMTErr parameter is

CPM_Node_Guarding_Event or else the CPM_ Heartbeat_Event is

obtained. The function CPM_GetNMTError is usually applied with the

function CPM_InstallNMTErrISR. About the demo please refer to the

section 4.1.2 NMT_Protocol.

 Syntax:

WORD CPM_GetNMTErr (BYTE *BoardNo, BYTE *Port,

BYTE *Node, BYTE *NMTErr)

 Parameter:

*BoardNo: [output] Get the board No. of the PISO-CAN which receives

the NMT Error Event.

*Port: [output] Get the CAN port No. of the PISO-CAN board.

*Node: [output] Get the slave node ID of the NMT Error Event.

*NMTErr: [output] The value CPM_Node_Guarding_Event indicates the

Node Guarding Event, and the

CPM_Heartbeat_Event is the Heartbeat Event.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------95

3.5.60 CPM_InstallBootUpISR

 Description:

This function allows the user to apply the slave boot-up IST (interrupt

service thread). When the user puts his boot-up process into this

function, all the boot-up triggered by the slaves will go to the boot-up IST.

If the boot-up message of a slave which has been added to the Master

is happen, the Master will go into the boot-up process to do some

specified mechanism which follows the user’s boot-up process.

 Syntax:

WORD CPM_InstallBooUpISR (BYTE BoardNo, BYTE Port,

void (*BOOTISR)())

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

(*BOOTISR)(): [input] The pointer which points a function with format

“void XXX()”. The XXX is the function name of the user’s

boot-up process. This process is usually applied with the

function CPM_GetBootUpNodeAfterAdd.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------96

3.5.61 CPM_RemoveBootUpISR

 Description:

When the user doesn’t need the boot-up IST function, call this

function to remove the user’s IST.

 Syntax:

WORD CPM_RemoveBootUpISR (BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------97

3.5.62 CPM_InstallEMCYISR

 Description:

This function allows the user to apply the EMCY IST (interrupt service

thread). When the user puts his EMCY process into this function, all the

EMCY triggered by the slaves will go to the EMCY IST. If the EMCY of a

slave is happen, the Master will go into the EMCY process to do some

security mechanism which follows the user’s EMCY process.

 Syntax:

WORD CPM_InstallEMCYISR(BYTE BoardNo, BYTE Port,

void (*EMCYISR)())

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

(*EMCYISR)(): [input] The pointer which points a function with format

“void XXX()”. The XXX is the function name of the user’s

EMCY process. This process is usually applied with the

function CPM_GetEMCYData.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------98

3.5.63 CPM_RemoveEMCYISR

 Description:

When the user doesn’t need the EMCY IST function, call this function

to remove the user’s IST.

 Syntax:

WORD CPM_RemoveEMCYISR(BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------99

3.5.64 CPM_InstallNMTErrISR

 Description:

This function allows the user to apply NMTErr IST (interrupt service

thread). When the user puts his NMTErr process into this function, all

the Heartbeat_Event and Node_Guarding_Event triggered by the

slaves will go to the IST. If the user had used the CPM_NMTGuarding to

enable the guarding protocol or had used the CPM_Heartbeat to enable

the heartbeat protocol, the Master will go into the NMTErr IST to do the

user’s NMTErr process while the guarding confirms or heartbeat

indicator doesn’t be received.

 Syntax:

WORD CPM_InstallNMTErrISR(BYTE BoardNo, BYTE Port,

void (*NMTERRISR)())

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

 (*NMTERRISR)(): [input] The pointer which points a function with

format “void XXX()”. The XXX is the function name of the

user’s process. This process is usually applied with the function

CPM_GetNMTError.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------100

3.5.65 CPM_RemoveNMTErrISR

 Description:

When the user doesn’t need the NMTErr IST function, call this

function to remove the user’s IST.

 Syntax:

WORD CPM_RemoveNMTErrISR(BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------101

3.5.66 CPM_GetMasterReadSDOEvent

 Description:

Using this function can get all the read SDO messages sent to the

specific node ID of the Master. For example, the Master is initialized

with node ID 2. If someone sends an SDO message with the COB-ID

0x602 to the Master for reading an object, users can use the function

CPM_GetMasterReadSDOEvent for obtaining this SDO message, and

respond some information to the SDO sender. The parameters,

BoardNo and Port, indicate which Master receives the read SDO

message. The parameters, Index and SubIndex, are the object indicator.

The function CPM_GetMasterReadSDOEvent is usually applied with

the function CPM_InstallReadSDOISR. About the demo please refer to

the section 4.1.6 SDO_PDO_ISR.

Note: The function is valid while the Node parameter of the

function CPM_InitMaster is > 0.

 Syntax:

WORD CPM_GetMasterReadSDOEvent(BYTE *BoardNo, BYTE *Port,

WORD *Index, BYTE *SubIndex)

 Parameter:

*BoardNo: [output] Get the board No. of the PISO-CAN which receives

the NMT Error Event.

*Port: [output] Get the CAN port No. of the PISO-CAN board.

*Index: [output] Get the object index of the SDO message.

*SubIndex: [output] Get the object subindex of the SDO message.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------102

3.5.67 CPM_GetMasterWriteSDOEvent

 Description:

Using this function can get all the write SDO messages sent to the

specific node ID of the Master. For example, the Master is initialized

with node ID 2. If someone sends an SDO message with the COB-ID

0x602 to the Master for writing an object, users can use the function

CPM_GetMasterWriteSDOEvent for obtaining this SDO message. The

parameters, BoardNo and Port, indicate which Master receives the write

SDO message. The parameters, Index and SubIndex, are the object

indicator. The parameter WLen is the data length of the parameter

*WData. The function CPM_GetMasterWriteSDOEvent is usually

applied with the function CPM_InstallWriteSDOISR. About the demo

please refer to the section 4.1.6 SDO_PDO_ISR.

Note: The function is valid while the Node parameter of the

function CPM_InitMaster is > 0.

 Syntax:

WORD CPM_GetMasterWriteSDOEvent(BYTE *BoardNo, BYTE *Port,

WORD *Index, BYTE *SubIndex,

BYTE *WLen, BYTE *WData)

 Parameter:

*BoardNo: [output] Get the board No. of the PISO-CAN which receives

the NMT Error Event.

*Port: [output] Get the CAN port No. of the PISO-CAN board.

*Index: [output] Get the object index of the SDO message.

*SubIndex: [output] Get the object subindex of the SDO message.

*WLen: [output] The data length of the write data.

*WData: [output] Return 0~4 bytes of the SDO write data.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------103

3.5.68 CPM_ResponseMasterSDO

 Description:

Using this function can reply the SDO messages to the SDO sender.

For example, the Master is initialized with node ID 2. If someone sends

a SDO message with the COB-ID 0x602 for reading or writing the object

of the Master, the Master need to reply the corresponding SDO

message, use the function CPM_ResponseMasterSDO to do it. When

users implement the function CPM_ResponseMasterSDO, the Master

will send a SDO message with COB-ID 0x582 to the CANopen network.

This function is usually applied with the SDO ISR series function .About

the demo please refer to the section 4.1.6 SDO_PDO_ISR.

Note1: The function is valid while the Node parameter of the

function CPM_InitMaster is > 0.

Note2: If the Master want to reply a SDO Abort message, please

use the function CPM_SDOAbortTransmit (section 3.5.20) to do it.

 Syntax:

WORD CPM_ResponseMasterSDO (BYTE BoardNo, BYTE Port,

BYTE ResType, WORD Index, BYTE SubIndex,

BYTE Len, BYTE *Data)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

ResType: [input] Response type of SDO message, 0 for replying the

read SDO message and 1 for the write SDO message.

Index: [input] Object index of object dictionary of slave devices.

SubIndex: [input] Object subindex of object dictionary of slave devices.

Len: [input] The data length of the response data. If the ResType is 1

(write type), the Len and *Data parameter is useless.

*Data: [input] Return 0~4 bytes of the SDO response data.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------104

3.5.69 CPM_InstallReadSDOISR

 Description:

This function allows the user to apply the ReadSDO IST (interrupt

service thread) of the Master. When the user puts his read SDO process

into this function, all the read SDO messages sent to the specified

Master will trigger the IST. For example, the Master is initialized with

node ID 2. If someone sends an SDO message with the COB-ID 0x602

for reading the object of the Master, the Master will go into the IST if the

user has installed it.

Note: The function is valid while the Node parameter of the

function CPM_InitMaster is > 0.

 Syntax:

WORD CPM_InstallReadSDOISR(BYTE BoardNo, BYTE Port,

void (*RSDOISR)())

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

 (*RSDOISR)(): [input] The pointer which points a function with format

“void XXX()”. The XXX is the function name of the user’s

process. This process is usually used with the function

CPM_GetMasterReadSDOEvent.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------105

3.5.70 CPM_RemoveReadSDOISR

 Description:

When the user doesn’t need the ReadSDO IST function, call this

function to remove the user IST.

 Syntax:

WORD CPM_RemoveReadSDOISR(BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------106

3.5.71 CPM_InstallWriteSDOISR

 Description:

This function allows the user to apply the WriteSDO IST (interrupt

service routine) of the Master. When the user puts the process into this

function, all the written SDO messages sent to the specified Master will

trigger the IST. For example, the Master is initialized with node ID 2. If

someone sends an SDO message with the COB-ID 0x602 to the Master

for writing an object, the Master will go into the IST if the user has

installed it.

Note: The function is valid while the Node parameter of the

function CPM_InitMaster is > 0.

 Syntax:

WORD CPM_InstallWriteSDOISR(BYTE BoardNo, BYTE Port,

void (*WSDOISR)())

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

(*WSDOISR)(): [input] The pointer which points a function with format

“void XXX()”. The XXX is the function name of user’s process.

This process is usually used with the function

CPM_GetMasterWriteSDOEvent.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------107

3.5.72 CPM_RemoveWriteSDOISR

 Description:

When the user doesn’t need the WriteSDO IST function, call this

function to remove the user IST.

 Syntax:

WORD CPM_RemoveWriteSDOISR(BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------108

3.5.73 CPM_GetMasterRemotePDOEvent

 Description:

Using this function can get all the Remote PDO messages sent to the

Master. For example, the Master has used the function

CPM_InstallPDO_List to install a TxPDO object with the COB-ID 0x444.

If someone sends a Remote PDO message with the COB-ID 0x444 to

the Master, users can use CPM_GetMasterRemotePDOEvent to get

this PDO message. The parameters, BoardNo and Port, indicate which

Master receives the Remote PDO message. The parameter, Cobid, is

the PDO COB-ID sent to the Master. This function is usually used with

the function CPM_InstallRemotePDOISR. About the demo please refer

to the section 4.1.6 SDO_PDO_ISR.

Note: The function is valid while the Node parameter of the

function CPM_InitMaster is > 0.

 Syntax:

WORD CPM_GetMasterRemotePDOEvent (BYTE *BoardNo,

BYTE *Port, WORD *CobId)

 Parameter:

*BoardNo: [output] Get the board No. of the PISO-CAN which receives

the NMT Error Event.

*Port: [output] Get the CAN port No. of the PISO-CAN board.

*CobId: [output] Return the COB-ID of the Remote PDO message.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------109

3.5.74 CPM_GetMasterRxPDOEvent

 Description:

Using this function can get all the RxPDO messages sent to the

Master. For example, the Master has used the function

CPM_InstallPDO_List to install an RxPDO object with the COB-ID

0x333. If someone sends an RxPDO message with the COB-ID 0x333

to the Master, users can use this function to get this RxPDO message.

The parameters, BoardNo and Port, indicate which Master receives the

RxPDO message. The parameter, Cobid, is the RxPDO COB-ID ID. The

two parameters, *WLen and *WData, are the data length and contents

of the RxPDO message. This function is usually applied with the

function CPM_InstallRxPDOISR. About the demo please refer to the

section 4.1.6 SDO_PDO_ISR.

Note: The function is valid while the Node parameter of the

function CPM_InitMaster is > 0.

 Syntax:

WORD CPM_GetMasterRxPDOEvent (BYTE *BoardNo, BYTE *Port,

WORD *CobId, BYTE *WLen, BYTE *WData)

 Parameter:

*BoardNo: [output] Get the board No. of the PISO-CAN which receives

the NMT Error Event.

*Port: [output] Get the CAN port No. of the PISO-CAN board.

*CobId: [output] Return the RxPDO COB-ID.

*WLen: [output] The data length of the RxPDO data.

*WData: [output] Return 0~4 bytes of the RxPDO data.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------110

3.5.75 CPM_ResponseMasterPDO

 Description:

Using this function can reply the Remote PDO messages to the

sender. For example, the Master has used CPM_InstallPDO_List to

install a TxPDO object with the COB-ID 0x444. If someone sends a

Remote PDO message with the COB-ID 0x444 to the Master, and the

Master needs to reply a TxPDO message, users can use this function to

do it. When users implement CPM_ResponseMasterPDO, the Master

will send a TxPDO message to the CANopen network. This function is

usually used with the CPM_InstallRemotePDOISR function .About the

demo please refer to the section 4.1.6 SDO_PDO_ISR.

Note: The function is valid while the Node parameter of the

function CPM_InitMaster is > 0.

 Syntax:

WORD CPM_ResponseMasterPDO (BYTE BoardNo, BYTE Port,

WORD CobId, BYTE Len, BYTE *Data)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

CobId: [input] TxPDO COB-ID for replying the PDO message.

Len: [input] The data length of the response data.

*Data: [input] Return the COB-ID of the TxPDO PDO message.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------111

3.5.76 CPM_InstallRxPDOISR

 Description:

This function allows the user to apply the RxPDO IST (interrupt

service routine) of the Master. When the user puts his process into this

function, all the RxPDO messages with the Master’s PDO objects will

trigger the IST. For example, the Master has used CPM_InstallPDO_List

to install a PDO object with the COB-ID 0x333 of the Master. If some

one sends a PDO message with the COB-ID 0x333 to the Master, the

Master will go into the IST if the user had installed it.

Note: The function will usefully when the Node parameter of the

function CPM_InitMaster is > 0.

 Syntax:

WORD CPM_InstallRxPDOISR(BYTE BoardNo, BYTE Port,

void (*RXPDOISR)())

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

 (*RXPDOISR)(): [input] The pointer which points a function with format

“void XXX()”. The XXX is the function name of user’s process.

This process is usually used with the function

CPM_GetMasterRxPDOEvent.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------112

3.5.77 CPM_RemoveRxPDOISR

 Description:

When the user doesn’t need the RxPDO IST function, call this

function to remove the user IST.

 Syntax:

WORD CPM_RemoveRxPDOISR(BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------113

3.5.78 CPM_InstallRemotePDOISR

 Description:

This function allows the user to apply the RemotePDO IST (interrupt

service routine) of the Master. When the user puts his process into this

function, all the Remote PDO messages of the Master’s PDO objects

will trigger the IST. For example, the Master has used

CPM_InstallPDO_List to install a TxPDO object with the COB-ID 0x444

of the Master. If some one sends a Remote PDO message with the

COB-ID 0x444 to the Master, the Master will go into the IST if the user

had installed it.

Note: The function will usefully when the Node parameter of the

function CPM_InitMaster is > 0.

 Syntax:

WORD CPM_InstallRemotePDOISR(BYTE BoardNo, BYTE Port,

void (*REMOTEPDOISR)())

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

 (*REMOTEPDOISR)(): [input] The pointer which points a function with

format “void XXX()”. The XXX is the function name of user’s

process. This process is usually used with the function

CPM_GetMasterRemotePDOEvent.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------114

3.5.79 CPM_RemoveRemotePDOISR

 Description:

When the user doesn’t need the RemotePDO IST function, call this

function to remove the user IST.

 Syntax:

WORD CPM_RemoveRemotePDOISR(BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] PISO-CAN board No.

Port: [input] CAN port No. of the PISO-CAN board.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------115

4 Demo Programs

The PISO-CAN CANopen Master Library provides 10 demos of the

various applications for NMT protocol, SDO protocol, PDO protocol, NMT Error

IST…etc. All these demos support VC++, VB.net 2005, and C# 2005. Users

can find these demos in the fieldbus CD or on the web site.

The path of CAN CD

fieldbus_cd://canopen/master/pcm_piso-can_series

The address of the web site is

 http://ftp.icpdas.com.tw/pub/cd/ canopen/master/pcm_piso-can_series/

4.1 Brief of the demo programs

These demo programs are developed for demonstrating how to use the

CANopen master library to apply the general CANopen communication

protocol. These demo programs provide the SDO, PDO, NMT, SYNC

communication applications. Each demo program includes some functions of

the CANopen master library. The relationship between CANopen master

library functions and demo programs are displayed in the following description.

http://ftp.icpdas.com.tw/pub/cd/%20canopen/master/pcm_piso-can_series/

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------116

4.1.1 Listen_Mode

Initialize the CANopen Master with the “listen mode” and add slave nodes

with the “manual mode” or EDS file, then the Master listens CANopen

messages only and does not send any message to the CANopen network. In

this demo, the Master will listen NMT state, 4 TxPDO messages (with the COB

ID 0x180+Node ID, 0x280+Node ID, 0x380+Node ID, and 0x480+Node ID), 4

RxPDO messages (with the COB ID 0x200+Node ID, 0x300+Node ID,

0x400+Node ID, and 0x500+Node ID), and the EMCY messages.

Applied function list:

CPM_InitMaster, CPM_Shutdown, CPM_AddNode, CPM_RemoveNode,

CPM_EDS_Load, CPM_SetMasterMode, CPM_NMTGetState,

CPM_InstallPDO_List, CPM_GetPDOLastData, CPM_GetRxPDOID,

CPM_GetTxPDOID, CPM_SetEMCY_List, CPM_GetEMCYID,

CPM_ReadLastEMCY.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------117

4.1.2 NMT_Protocol

This is a NMT network control demo. The demo not only tells users how to

control the NMT status of a specific slave node, but also how to protect the

slave through the “Guarding” and “Heartbeat” functions.

Applied function list:

CPM_InitMaster, CPM_Shutdown, CPM_AddNode, CPM_RemoveNode,

CPM_NMTChangeState, CPM_NMTGuarding, CPM_NMTHeartbeat,

CPM_GetEMCYData, CPM_GetNMTError, CPM_InstallNMTErrISR,

CPM_RemoveNMTErrISR, CPM_InstallEMCYISR, CPM_RemoveEMCYISR.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------118

4.1.3 PDO_Parameter

Sometimes, the default PDO configuration can’t satisfy users. Users need

to change the configuration of the PDO related parameters such as

transmission type, PDO ID, event timer, dynamic PDO, and so forth. This

demo will demonstrate how to change settings of these PDO parameters and

show the configuration result.

Applied function list:

CPM_InitMaster, CPM_Shutdown, CPM_AddNode, CPM_RemoveNode,

CPM_InstallPDO, CPM_RemovePDO, CPM_DynamicPDO,

CPM_ChangePDOID, CPM_PDOTxType, CPM_PDOUseEntry,

CPM_PDOEventTimer, CPM_GetTxPDOID, CPM_GetRxPDOID,

CPM_GetPDOMapInfo.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------119

4.1.4 PDO_Protocol

The PDO protocol is the main protocol to control the I/O of the specific

slave device in the CANopen network. This demo shows how to read and write

data to the slave device with the PDO functions.

Applied function list:

CPM_InitMaster, CPM_Shutdown, CPM_AddNode, CPM_RemoveNode,

CPM_PDOWrite, CPM_PDORemote, CPM_GetPDOLastData

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------120

4.1.5 Scan_Node

When users want to know which slave nodes exist on the CANopen

network or which slave nodes are under the control of the CPM100, this demo

will is useful.

Applied function list:

CPM_InitMaster, CPM_Shutdown, CPM_AddNode, CPM_RemoveNode,

CPM_SetFunctionTimeout, CPM_ScanNode, CPM_GetNodeList

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------121

4.1.6 SDO_PDO_ISR

In this demo, it is allowed to configure the PISO-CAN as a CANopen slave.

Users can use another CANopen master to read/write the users’ defined object

dictionary of the PISO-CAN by SDO protocol or to get/set the DIO status by

PDO protocol when the PISO-CAN, the I-8053W DI module, and the I-8057W

DO module are plugged in the same MCU. If the user has an application like

this, this demo may be a good reference.

Applied function list:

CPM_InitMaster, CPM_Shutdown, CPM_GetMasterReadSDOEvent,

CPM_GetMasterWriteSDOEvent, CPM_GetMasterRemotePDOEvent,

CPM_GetMasterRxPDOEvent, CPM_ResponseMasterSDO,

CPM_ResponseMasterPDO, CPM_InstallPDO_List,

CPM_InstallReadSDOISR, CPM_InstallWriteSDOISR,

CPM_InstallRxPDOISR, CPM_InstallRemotePDOISR.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------122

4.1.7 SDO_Read

SDO protocol is a kind of the communication functions used to read/write

CANopen object dictionary. You can read any object data of the object

dictionary through the object address (index and sub-index) by SDO protocol.

This demo is a good model to do that.

Applied function list:

CPM_InitMaster, CPM_Shutdown, CPM_AddNode, CPM_RemoveNode,

CPM_SDOReadData.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------123

4.1.8 SDO_Write

SDO protocol is a kind of the communication functions used to read/write

CANopen object dictionary. You can write any data to the specific object of the

object dictionary through the object address (index and sub-index) by SDO

protocol. This demo is a good model to do that.

Applied function list:

CPM_InitMaster, CPM_Shutdown, CPM_AddNode, CPM_RemoveNode,

CPM_SDOWriteData.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------124

4.1.9 SYNC_Protocol

SYNC protocol is a synchronous function of the PDO communication. It is

always used with the transmission type of the PDO communication. In this

demo, users can know how to use the SYNC related functions.

Applied function list:

CPM_InitMaster, CPM_Shutdown, CPM_AddNode, CPM_RemoveNode,

CPM_ChangeSYNCID, CPM_GetSYNCID, CPM_SendSYNCMsg,

CPM_GetCyclicSYNCInfo.

PISO-CAN Series CANopen master library user manual (ver. 2.00, Feb/16/2013) ------125

4.1.10 PDO_MultiData

Sometimes, users want to poll several PDO objects data at the same time

for increasing the performance. But it is slower that sending the Remote PDO

to poll each PDO data one by one. So users can set event timer or remote list

for these PDO. When the PDO data are polled by the Master or are replied

from slave automatically, then use the CPM_GetMultiPDOData function to

obtain these PDO data from the buffer at the same time.

Applied function list:

CPM_InitMaster, CPM_Shutdown, CPM_AddNode, CPM_RemoveNode,

CPM_GetTxPDOID, CPM_SetPDORemotePolling, CPM_PDOEventTimer,

CPM_GetMultiPDOData

	1 General Information
	1.1 CANopen Introduction
	1.2 CANopen Applications
	1.3 CANopen Master Library Characteristics
	1.4 Features

	2 Software Installation
	2.1 Installation Driver Step by Step

	3 Function Description
	3.1 DLL Function Definition and Description
	3.2 Function Return Code
	3.3 CANopen Master Library Application Flowchart
	3.4 Communication Services Introduction
	3.5 Function Description
	3.5.1 CPM_GetCANDriverVer
	3.5.2 CPM_GetVersion
	3.5.3 CPM_TotalBoard
	3.5.4 CPM_GetCardPortNum
	3.5.5 CPM_GetBoardInf
	3.5.6 CPM_GetCANStatus
	3.5.7 CPM_SetFunctionTimeout
	3.5.8 CPM_InitMaster
	3.5.9 CPM_ShutdownMaster
	3.5.10 CPM_MasterSendBootupMsg
	3.5.11 CPM_SetMasterMode
	3.5.12 CPM_GetMasterMode
	3.5.13 CPM_EDS_Load
	3.5.14 CPM_AddNode
	3.5.15 CPM_RemoveNode
	3.5.16 CPM_RemoveAndResetNode
	3.5.17 CPM_DelayAndResponseTimeout
	3.5.18 CPM_ScanNode
	3.5.19 CPM_GetNodeList
	3.5.20 CPM_NMTChangeState
	3.5.21 CPM_NMTGetState
	3.5.22 CPM_NMTGuarding
	3.5.23 CPM_NMTHeartbeat
	3.5.24 CPM_SDOReadData
	3.5.25 CPM_SDOReadFile
	3.5.26 CPM_SDOWriteData
	3.5.27 CPM_SDOAbortTransmit
	3.5.28 CPM_PDOWrite
	3.5.29 CPM_PDOWrite_Fast
	3.5.30 CPM_PDORemote
	3.5.31 CPM_PDORemote_Fast
	3.5.32 CPM_SetPDORemotePolling
	3.5.33 CPM_GetPDOLastData
	3.5.34 CPM_GetMultiPDOData
	3.5.35 CPM_GetRxPDOID
	3.5.36 CPM_GetTxPDOID
	3.5.37 CPM_InstallPDO
	3.5.38 CPM_DynamicPDO
	3.5.39 CPM_RemovePDO
	3.5.40 CPM_ChangePDOID
	3.5.41 CPM_GetPDOMapInfo
	3.5.42 CPM_InstallPDO_List
	3.5.43 CPM_RemovePDO_List
	3.5.44 CPM_PDOUseEntry
	3.5.45 CPM_PDOTxType
	3.5.46 CPM_PDOEventTimer
	3.5.47 CPM_PDOInhibitTime
	3.5.48 CPM_ChangeSYNCID
	3.5.49 CPM_SetSYNC_List
	3.5.50 CPM_GetSYNCID
	3.5.51 CPM_SendSYNCMsg
	3.5.52 CPM_GetCyclicSYNCInfo
	3.5.53 CPM_ChangeEMCYID
	3.5.54 CPM_SetEMCY_List
	3.5.55 CPM_GetEMCYID
	3.5.56 CPM_ReadLastEMCY
	3.5.57 CPM_GetBootUpNodeAfterAdd
	3.5.58 CPM_GetEMCYData
	3.5.59 CPM_GetNMTError
	3.5.60 CPM_InstallBootUpISR
	3.5.61 CPM_RemoveBootUpISR
	3.5.62 CPM_InstallEMCYISR
	3.5.63 CPM_RemoveEMCYISR
	3.5.64 CPM_InstallNMTErrISR
	3.5.65 CPM_RemoveNMTErrISR
	3.5.66 CPM_GetMasterReadSDOEvent
	3.5.67 CPM_GetMasterWriteSDOEvent
	3.5.68 CPM_ResponseMasterSDO
	3.5.69 CPM_InstallReadSDOISR
	3.5.70 CPM_RemoveReadSDOISR
	3.5.71 CPM_InstallWriteSDOISR
	3.5.72 CPM_RemoveWriteSDOISR
	3.5.73 CPM_GetMasterRemotePDOEvent
	3.5.74 CPM_GetMasterRxPDOEvent
	3.5.75 CPM_ResponseMasterPDO
	3.5.76 CPM_InstallRxPDOISR
	3.5.77 CPM_RemoveRxPDOISR
	3.5.78 CPM_InstallRemotePDOISR
	3.5.79 CPM_RemoveRemotePDOISR

	4 Demo Programs
	4.1 Brief of the demo programs
	4.1.1 Listen_Mode
	4.1.2 NMT_Protocol
	4.1.3 PDO_Parameter
	4.1.4 PDO_Protocol
	4.1.5 Scan_Node
	4.1.6 SDO_PDO_ISR
	4.1.7 SDO_Read
	4.1.8 SDO_Write
	4.1.9 SYNC_Protocol
	4.1.10 PDO_MultiData

