I-7231D CPS_DCON Gateway

User Manual

Warranty

All products manufactured by IPC DAS are warranted against defective materials for a period of one year from the date of delivery to the original purchaser.

Warning

ICP DAS assume no liability for damages consequent to the use of this product. ICP DAS reserves the right to change this manual at any time without notice. The information furnished by ICP DAS is believed to be accurate and reliable. However, no responsibility is assumed by ICP DAS for its use, nor for any infringements of patents or other rights of third parties resulting from its use.

Copyright

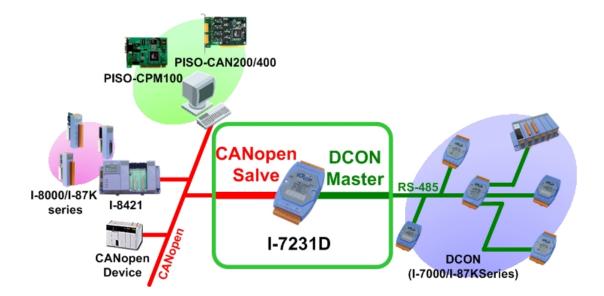
Copyright 2003 by ICP DAS. All rights are reserved.

Trademark

The names used for identification only maybe registered

trademarks of their respective companies.

Tables of Content


1	Intro	oductio	on	4
	1.1	Over	view	4
	1.2	Hard	ware Features	5
	1.3	I-723	1D Features	6
	1.4	Utilit	y Features	7
2	Haro	dware	Specification	8
	2.1	Hard	ware Structure	8
	2.2	Wire	Connection	9
	2.3		er LED	
	2.4	CAN	open Status LED	12
		2.4.1	RUN LED	13
		2.4.2	ERR LED	14
		2.4.3	Overrun LED	-
	2.5	-	gment LED	
	2.6		ule Support	
3		-	System	
	3.1		open Introduction	
	3.2		Introduction	
	3.3	_	Introduction	-
	3.4	_	Y Introduction	
	3.5		Introduction	
		3.5.1	Module Control Protocols	
		3.5.2	Error Control Protocols	
4		•	System	
	4.1		1D Configuration Flowchart	
	4.2		Gateway Utility Overview	
	4.3		iguration with the CAN gateway Utility	
F	4.4 Com		iguration with the CAN Gateway Utility	
5	5.1	-	tion & Getting Start	
		5.1.1	Upload SDO Protocol	
		5.1.2	•	
		5.1.2		
		5.1.3 5.1.4		
		5.1.5	Abort SDO Transfer Protocol	
	5.2		Communication Set	
	J.Z	100		

		5.2.1	PDO COB-ID Parameters	98
		5.2.2	Transmission Type	100
		5.2.3	PDO Communication Rule	101
	5.3	EMCY	Communication Set	135
		5.3.1	EMCY COB-ID Parameter	135
		5.3.2	EMCY Communication	136
	5.4	NMT C	communication Set	145
		5.4.1	Module Control Protocol	145
		5.4.2	Error Control Protocol	149
	5.5	Specia	I Functions for DCON modules	153
6	Obj	ect Dicti	onary of I-7231D	157
	6.1	Comm	unication Profile Area	157
	6.2	Manufa	acturer Specific Profile Area	167
	6.3	Standa	ardized Device Profile Area	169
Арр	bend	ix A: Din	nensions and Mounting	174
Арр	bend	ix B: An	alog I/O Transformation Table	176

1 Introduction

1.1 Overview

DCON protocol is the default protocol of ICPDAS's I-7000 and I-87K modules. The I-7231D is a CANopen slave to DCON master gateway. Using I-7231D gateway, the DCON I/O modules can be connected with the CAN bus. In CANopen protocol application, the I-7231D plays the role in a CANopen slave device. Hence, it can produce or consume the PDO messages, receive the SDO message from the SDO client, and deal with the NMT messages from NMT master. In the DCON protocol application, it is a DCON master device. The I-7231D will collect all I/O information of the I-7000 and I-87K series modules through the RS-485 port of I-7231D. As long as the I-7231D receiving the command form CAN bus, it will do the corresponding actions to DCON I/O channels. In addition, we also provide the utility tool for users to configure the communication parameters and build EDS file for the I-7231D. Therefore, users can easily apply I-7k and I-87K IO modules in any CANopen master interface with EDS file via the I-7231D.

1.2 Hardware Features

- CPU:80186, 80MHz
- Philip SJA1000 CAN controller
- Philip 82C250 CAN transceiver
- SRAM:512K bytes
- Flash Memory:512K bytes
- EEPROM:2k bytes
- Real Time Clock
- Built-in Dual-Watchdog
- 16-bit Timer
- 2500 Vrms isolation on CAN side
- Power Supply:3.0W
- Unregulated +10VDC to +30VDC
- Operating Temperature:-25°C to +75°C
- Storage Temperature:-30°C to +85°C
- Humidity:5%~95%
- NS, MS and IO Led directors

COM1

- RS-232: TXD,RXD,RTS,CTS,GND
- Communication speed: 115200 max.
- Configure tool connection

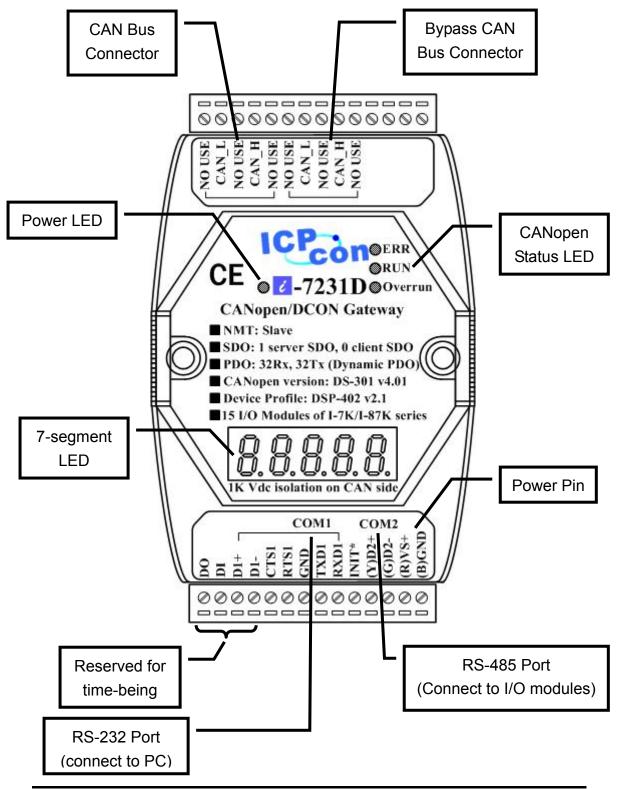
COM2

- RS-485: D2+, D2-
- Communication speed: 115200 max.
- Connect to DCON IO modules

Display

 7-segment LED to show operation mode, Node ID, CAN baud and RS-485 baud

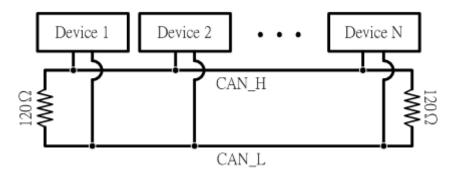
1.3 I-7231D Features


- NMT: Slave
- Error Control: Node Guarding
- Node ID: Setting by Utility
- No. of PDOs: 32 Rx, 32Tx
- PDO Modes: Event-triggered, remotely requested, cyclic and acyclic SYNC
- PDO Mapping: variable
- No of SDOs: 1 server, 0 client
- Emergency Message: Yes
- CANopen Version: DS-301 v4.01
- Device Profile: DSP-401 v2.0
- Produce EDS file dynamically
- Baud Rate setting by Utility : 10K, 20K, 50K, 125K, 250K, 500K, 800K and 1M bps
- CAN, ERR and Overrun LED indicators
- Support max 15 I-7000/I-87K I/O series modules
- Auto scan the input channel situations from the DCON modules
- Provide friendly Utility to configure
- Support the watchdog function of I-7000/87K I/O series modules
- 7-segment LED to show operation mode, Node ID, CAN baud and RS-485 baud

1.4 Utility Features

- Support CANopen node ID, baud rate setting, and com port parameters setting
- Support auto scan I-7k/I-87K modules
- Show I-7k/I-87K modules configuration
- Show Application and assembly objects configuration
- Support IO connection path setting
- Support EDS file creating

2 Hardware Specification


2.1 Hardware Structure

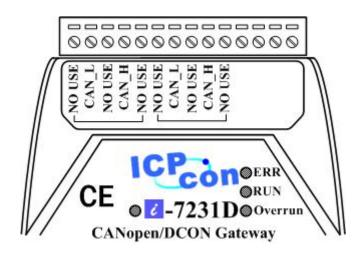
I-7231D CANopen/DCON Gateway user manual (ver. 1.04, Dec/14/2010) -----8

2.2 Wire Connection

In order to minimize the reflection effects on the CAN bus line, the CAN bus line has to be terminated at both ends by two terminal resistances as following figure. According to the ISO 11898-2 spec, each terminal resistance is 120 Ω (or between 108 Ω ~132 Ω). The length related resistance should have 70 m Ω /m. The user should check the resistances of CAN bus, before install a new CAN network.

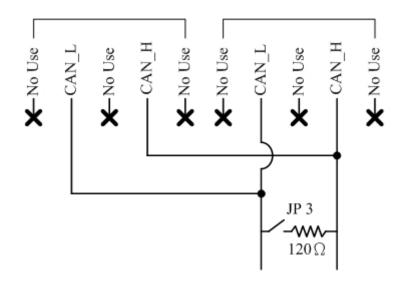
Moreover, to minimize the voltage drop on long distance, the terminal resistance should be higher than the value defined in the ISO 11898-2. The following table could be a reference.

	Bus Cable	Terminal	
Bus Length (meter)	Length Related Resistance (mΩ/m)	Cross Section (Type)	Resistance (Ω)
0~40	70	0.25(23AWG)~	124 (0.1%)
		0.34mm ² (22AWG)	
40~300	< 60	0.34(22AWG)~	127 (0.1%)
		0.6mm ² (20AWG)	
300~600	< 40	0.5~0.6mm ²	150~300
		(20AWG)	
600~1K	< 20	0.75~0.mm ²	150~300
		(18AWG)	


The CAN bus bard rate has the high relationship with the bus length. The following table indicates the corresponding bus length on every kind of baud rate.

Baud rate (bit/s)	Max. Bus length (m)
1 M	25
800 K	50
500 K	100
250 K	250
125 K	500
50 K	1000
20 K	2500
10 K	5000

Note: When the bus length is greater than 1000m, the

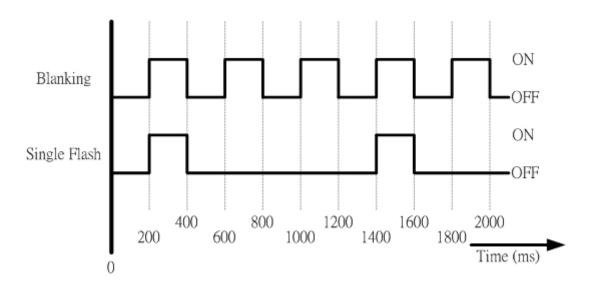

bridge or repeater devices may be needed.

In order to wiring conveniently, the I-7231D supplies two CAN bus connector. Each connecter built on the CPS_DCON gateway looks like as following figure.

Pin No.	Signal	Description	
2	CAN_L	CAN_L bus line (dominant low)	
3	CAN_SHLD	Optional CAN Shield	
4	CAN_H	CAN_H bus line (dominant high)	

Be careful that the bypass CAN bus connector can't not be regard as another CAN channel. It is just designed for connecting to another CANopen device conveniently. The structure of the internal electronic circuit is presented as follows.

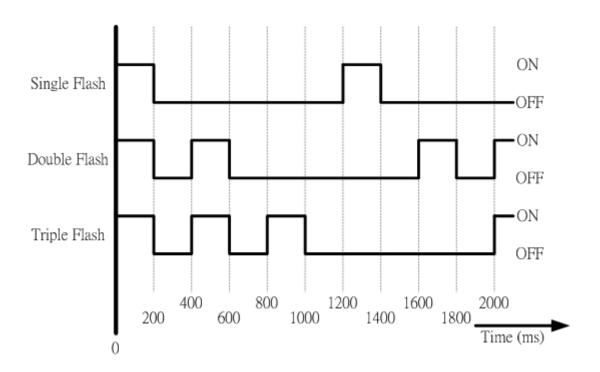
2.3 Power LED


The I-7231D needs 10~30 VDC power input and consumes 3.9W. The Power LED will be turn on after applying power.

2.4 CANopen Status LED

The I-7231D provides three CANopen LED indicators, such as Error LED (red), RUN LED (green), and Overrun LED (red). The Error LED and Run LED are defined in the CANopen spec. When the CANopen communication events occur, these indicators will be triggered to glitter with different period. The Overrun LED is defined by ICPDAS. When the software buffer of the I-7231D is overrun, the overrun LED will turn on. Before the I-7231D finishes the preparation for the function of the DCON master or when the I-7231D executes the command to reset itself, all CANopen Status LED will be turned off (but the Power LED is still turned on). The following descriptions interpret the twinkling signal meanings when these indicators are triggered.

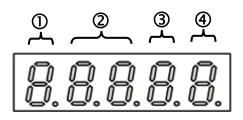
2.4.1 RUN LED


The RUN LED indicates the condition of the CANopen network state mechanism. About the information of CANopen state mechanism, please refer to the section 3.5.1. The different signal periods and related meanings are displayed respectively as following figure and table.

No.	CAN RUN LED	State	Description
1	Single Flash	Stopped	The Device is in Stopped state
2	Blinking	Pre-operational	The Device is in the
			pre-operational state
3	On	Operational	The Device is in the operational
			state

2.4.2 ERR LED

The ERR LED indicates the status of the CAN physical layer and indicates errors due to missing CAN messages (These messages may be SYNC or Guard messages). Each error event has different twinkling signal period, and the signal periods and related meanings are displayed respectively as following figure and table.


No.	Error LED	State	Description
_	_		· ·
1	Off	No error	The Device is in working
			condition.
2	Single Flash	Warning limit	At least one of the error counters
		reached	of the CAN controller has
			reached or exceeded the warning
			level (too many error frames).
3	Double Flash	Error Control	A guard event (NMT-Slave or
		Event	NMT-master) or a heartbeat
			event (Heartbeat consumer) has
			occurred.
4	Triple Flash	SYNC Error	The SYNC message has not
			been received within the
			configured communication cycle
			period time out (see Object
			Dictionary Entry 0x1006).
5	On	Bus Off	The CAN controller is bus off.

Note: If several errors are present at the same duration, the error with the highest number is indicated. For example, if NMT Error (No. =3) and Sync Error (No. =4) occur, the SYNC error is indicated.

2.4.3 Overrun LED

This LED is useless when the I-7231D works normally. When CAN message loading is heavy and cause software buffer overrun, the overrun LED will be turned on. At the same time, an emergency message will be transmitted to users automatically. In this case, some CAN message may be lost. After the buffer overrun condition disappears, the LED will be turned off. For further information of the emergency message, refer to the section 3.4.

2.5 7-segment LED

- ①: Show the operation state of the I-7231D. If it works normally, the LED displays the character 'n'.
- ②: These two LED indicate the CANopen node ID of the I-7231D by using hex format. For example, if the CANopen node ID of the I-7231D is 31, these two LED will show the characters "1F".
- ③: This LED displays the CAN bus baud rate of the I-7231D by number 0~7.
 The meanings of these numbers are described in the table below.

7-segment LED Number	Baud rate (K BPS)
0	10
1	20
2	50
3	125
4	250
5	500
6	800
7	1000

④: The RS-485 baud rate of the I-7231D is indicated on this LED. The mapping table between LED number and RS-485 baud rate is displayed on the following table.

7-segment LED Number	Baud rate (BPS)
0	1200
1	2400
2	4800
3	9600
4	19200
5	38400
6	57600
7	115200

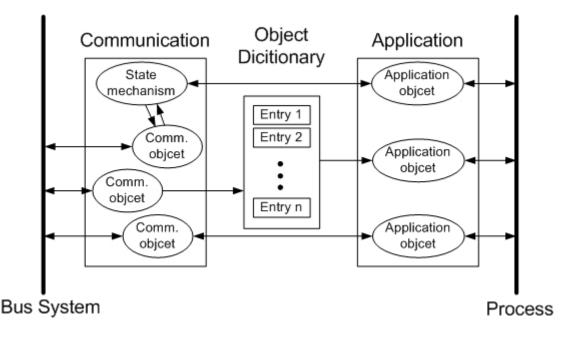
2.6 Module Support

The I-7231D supports many kinds of DI, DO, AI and AO modules of I-7K/I-87K series. When users want to use these modules on the CANopen network, they only connect these modules with the COM2 of the I-7231D. Then, the firmware built in the I-7231D will search them for organizing the corresponding CANopen entries automatically. The following table shows the modules name and basic information supported by the I-7231D.

Name	IO channel Number	Name	IO channel Number
I-7011 I-7011P	1 DI , 2 DO, 1 AI	I-87013	4 AI
I-7012 I-7012F	1 DI , 2 DO, 1 AI	I-87016	2 AI
I-7013	1 AI	I-87017 I-87017R	8 AI
I-7014	1 DI , 2 DO , 1 AI	I-87018 I-87018R	8 AI
I-7016	4 DO , 1 DI , 2 AI	I-87019	8 AI
I-7016P	4 DO , 1 DI , 1 AI	I-87022	2 AO
I-7017			
I-7017F		I-87024	4 AO
I-7017C	8 AI		
I-7017R			
I-7017RC			
I-7018			
I-7018P	8 AI	1 97026	2 AO
I-7018R	0 AI	I-87026	2 AU
I-7018BL			
I-7019R	8 AI	I-87040	32 DI
I-7021	1 AO	I-87041	32 DO
I-7022	2 AO	I-87051	16 DI
I-7024	4 AO	I-87052	8 DI
I-7033	3 AI	I-87053	16 DI
I-7041	14 DI	I-87054	8 DI , 8 DO
I-7042	13 DO	I-87055	8 DI , 8 DO
I-7043	16 DO	I-87057	16 DO

I-7231D CANopen/DCON Gateway user manual (ver. 1.04, Dec/14/2010) -----19

I-7044	4 DI , 8 DO	I-87058	8 DI
I-7045	14 DO	I-87063	4 DI , 4 DO
I-7050	7 DI , DO	I-87064	8 DO
I-7051	16 DI	I-87065	8 DO
I-7052	8 DI	I-87066	8 DO
I-7053	16 DI	I-87068	8 DO
I-7055	8 DI , 8 DO	I-87069	8 DO
I-7058	8 DI		
I-7060	4 DI , 4 DO		
I-7063			
I-7063A	8 DI , 3 DO		
I-7063B			
I-7065			
I-7065A	4 DI , 5 DO		
I-7065B			
I-7066	7 DO		
I-7067	7 DO		
I-7080	2 DO,2Count/2Frequency		

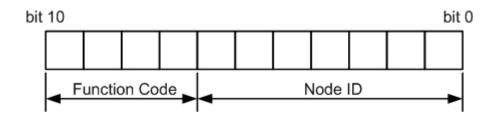

3 CANopen System

3.1 CANopen Introduction

CANopen is a kind of network protocol based on CAN bus and has been used in various applications, such as vehicles, industrial machines, building automation, medical devices, maritime applications, restaurant appliances, laboratory equipment & research. It allows for not only broadcasting but also peer to peer data exchange between every CANopen node. The network management functions specified in CANopen simplifies the project design. Besides, users also can implement and diagnose the CANopen network by standard mechanisms for network start-up and error management. By the device model, any CANopen device can effectively access or get the conditions relating to the I/O values and node states of other devices in the same network. Generally, a CANopen device can be modeled into three parts

- Communication
- Object Dictionary
- Application program

The functions and general concepts for each part are shown as follows.


Communication

The communication part provides several communication objects and appropriate functionalities to transmit CANopen messages via the underlying network structure. These objects may be PDO (Process Data Object), SDO (Service Data Object), NMT (Network Management Objects), SYNC Each (Synchronous Objects)...etc. communication object has its communication model and functionality. Take the PDO, SDO, and NMT for examples, the communication objects for accessing the device object dictionary entries is SDO, and SDO uses the Client/Server structure for its communication model (section 3.2). The real-time data or I/O value can be transmitted or received quickly without any protocol overhead by means of PDO communication objects. The PDOs communication model follows the Producer/Consumer structure. It is also named the Push/Pull model (section 3.3). NMT communication objects are used for controlling and supervising the state of the nodes in the CANopen network, and it follows a Master/Slave structure (section 3.5). No matter which kind of communication object is used, the transmitted message must obey the data frame defined in the CAN 2.0A spec. Generally, it looks like the following figure.

ID	RTR	Data Length	8-byte Data
----	-----	----------------	-------------

The ID field has 11-bit data. It is useful in the arbitration mechanism. The RTR filed has a one-bit value. If the RTR is set to 1, this message is used for remote-transmit requests. In this case, the 8-byte data is useless. The data length field is 4-bit data. It indicates that the valid data number stored in the 8-byte data field. The last field, 8-byte data, is applied to stores the message data.

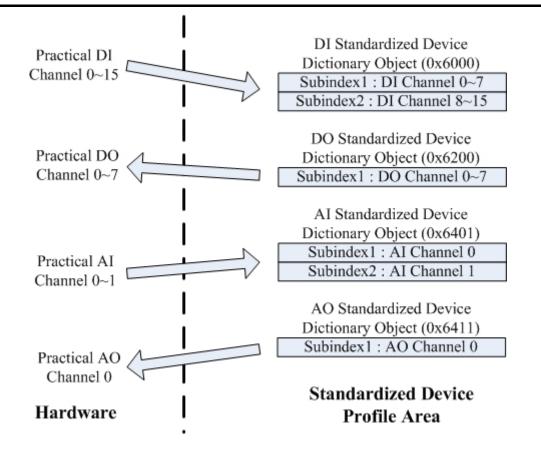
CANopen spec uses the 4-bit function code and 7-bit node ID to combine the 11-bit ID of CAN message, and call it communication object ID (COB-ID). The COB-ID structure is displayed below.

The COB-IDs are defined for recognizing where the message comes from or where the message must be sent to. Also, they are used to distinguish the functionality of the transmitted or received messages, and decide the priority of the message transmission for each node on the network. According to the arbitration mechanism of the CAN bus, the CAN message with the lower value COB-ID has the higher priority to be transmitted into the CAN bus. In the CANopen spec, some COB-IDs are reversed for specific communication objects and can't be defined arbitrarily by users. The following lists are these reversed COB-IDs.

Reversed COB-ID (Hex)	Used by object
0	NMT
1	Reserved
80	SYNC
81~FF	EMERGENCY
100	TIME STAMP
101~180	reversed
581~5FF	Default Transmit-SDO
601~67F	Default Receive-SDO
6E0	reversed
701~77F	NMT Error Control
780~7FF	reversed

Beside the COB-IDs described above, the other COB-IDs can be applied by users if need. All of the default COB-IDs used in the CANopen protocol are shown in the following table.

(Bit10~Bit7) (Function Code)	(Bit6~Bit0)	Communication object Name	
0000	0000000 NMT		
0001	0000000	SYNC	
0010	0000000	TIME STAMP	
0001	Node ID	EMERGENCY	
0011/0101/0111/1001	Node ID	TxPDO1/2/3/4	
0100/0110/1000/1010	Node ID	RxPDO1/2/3/4	
1011	Node ID	SDO for transmission (TxSDO)	
1100	Node ID	SDO for reception (RxSDO)	
1110	Node ID	NMT Error Control	


Note: For the I-7231D, we provide all communication objects except for the TIME STAMP.

Object Dictionary

The object dictionary collects a lot of important information. This information has an influence on the device's behavior, such as the data in the I/O channels, the communication parameters and the network states. The object dictionary is essentially a group of objects. It consists of a lot of object entries, and these entries can be accessible via the network in a pre-defined method. Each object entry within the object dictionary has their own functionality (ex. communication parameters, device profile ...), data type (ex. 8-bit Integer, 8-bit unsigned...), and access type (read only, write only ...). All of them are addressed by a 16-bit index and an 8-bit sub-index. The overall profile of the standard object dictionary is shown below.

Index (hex)	Object
0000	Reserved
0001-001F	Static Data Types
0020-003F	Complex Data Types
0040-005F	Manufacturer Specific Data Types
0060-007F	Device Profile Specific Static Data Types
0080-009F	Device Profile Specific Complex Data Types
00A0-0FFF	Reserved for further use
1000-1FFF	Communication Profile Area
2000-5FFF	Manufacturer Specific Profile Area
6000-9FFF	Standardized Device Profile Area
A000-BFFF	Standardized Interface Profile Area
C000-FFFF	Reserved for further use

Take the standardized device profile area for an example. Assume that a CANopen device has 16 DI, 8 DO, 2AI and 1AO channels. The values of these channels will be stored into several entries in the standardized device dictionary, such as the entries with indexes 0x6000, 0x6200, 0x6401, and 0x6411. When the CANopen device obtains the input value, these values are stored in the 0x6000 and 0x6401indexes. Furthermore, the values stored in the 0x6200 and 0x6411 indexes also output to the DO and AO channels. The basic concept is depicted as follows.

Take the I-7231D as another example. There are some DCON modules connecting to the COM 2 of the I-7231D. The related information for each module is shown below.

Module Name	Module Address	DO (ch)	AO (ch)	DI (ch)	AI (ch)
I-7011	0x 01	2	0	1	1
I-7053	0x 02	0	0	16	0
I-87053	0x 03	0	0	16	0
I-87024	0x 06	0	4	0	0
I-7017	0x 08	0	0	0	8
I-7053	0x 0A	0	0	16	0
I-7041	0x 0B	0	0	14	0

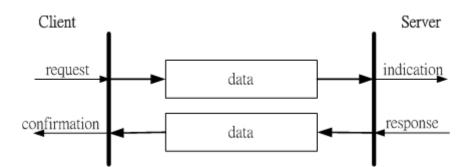
When the I-7231D boots up, all the channels of the modules connected with I-7231D will be scanned. Also, the I/O values of these channels are arranged into proper object entries one by one. So the minimum data unit is one byte, the DI and DO channels, which are not enough to fill up one byte, will be regarded as one byte automatically. The I-7231D uses objects with the index 0x6000 to store the input values of the DI channels. The I/O values of the DO, AI, and AO channels are put into the object with the indexes 0x6200, 0x6401, and 0x6411 respectively. When data come through these I/O values to the corresponding object, it will follow the rules below.

- The modules which are addressed from 0x1 to 0xF, will be taken into account. The modules with any other addresses will be regarded as useless.
- The I/O channel values of the DCON modules with lower addresses are first placed into the object dictionary. After the I-7231D has filled the all I/O channels in one module, then the I-7231D will go to the next address to continue.
- Each analog channel is stored by using 2 bytes.
- The number of digital channels for one module, which can't be divided by 8 with no remainder, is stored with 1 byte.

After using the rule described above, the result of the object filling is as follows.

<u> </u>				
Index	0x6000	0x6200	0x6401	0x6411
sub-index	(for DI)	(for DO)	(for AI)	(for AO)
0x00	9	1	9	4
0x01	DIO	DO0~DO1	AIO	AO0
	(MA:0x01)	(MA:0x01)	(MA:0x01)	(MA:0x06)
0x02	DI0~DI7		AIO	AO1
	(MA:0x02)		(MA:0x08)	(MA:0x06)
0x03	DI8~DI15		Al1	AO2
	(MA:0x02)		(MA:0x08)	(MA:0x06)
0x04	DI0~DI7		AI2	AO3
	(MA:0x03)		(MA:0x08)	(MA:0x06)
0x05	DI8~DI15		AI3	
	(MA:0x03)		(MA:0x08)	
0x06	DI0~DI7		Al4	
	(MA:0x0A)		(MA:0x08)	
0x07	DI8~DI15		AI5	
	(MA:0x0A)		(MA:0x08)	
0x08	DI0~DI7		Al6	
	(MA:0x0B)		(MA:0x08)	
0x09	DI8~DI13		AI7	
	(MA:0x0B)		(MA:0x08)	

Note: MA refers to the "RS-485 module address"

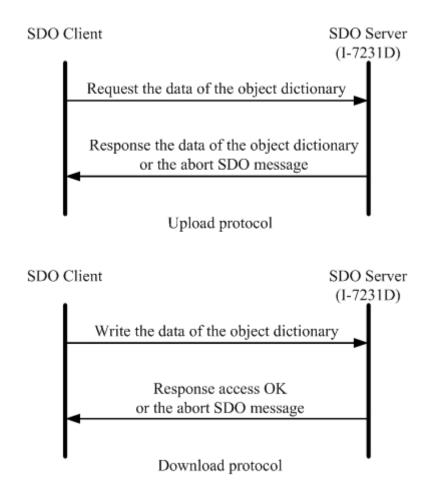

The information described above can also be viewed by using the CAN Gateway Utility. For more details about the object dictionary and how to use the CAN Gateway Utility, refer to both chapter 6 and chapter 4.

Application

The application part handles all of the device functionalities which respect to the interaction with the process environment. It is the bridge between the object dictionary and practical process, such as the analog I/O, digital I/O....

3.2 SDO Introduction

In order to access the entries in a device object dictionary, service data objects (SDOs) are provided. By means of the SDO communication method, a peer-to-peer communication bridge between two devices is established. The SDO transmission follows the client-server relationship. The general concept is shown in the figure below.

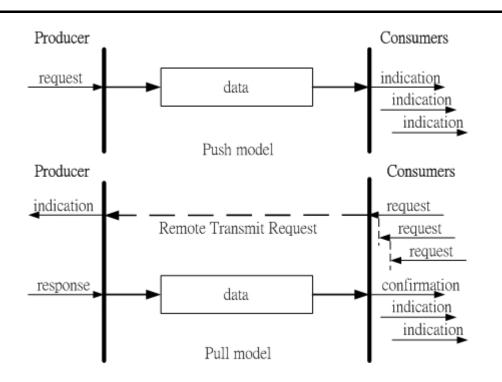

The SDO has two kinds of the COB-IDs, RxSDOs and TxSDOs. They are viewed at point in the CANopen device. For example, form the view of the I-7231D, if users want to send a SDO message, then the I-7231D needs to receive the SDO message transmitted from users. Hence, the receive SDO (RxSDO) COB-ID of the I-7231D will be used.

If the I-7231D wants to transmit a SDO message, then the TxSDO COB-ID of the I-7231D will need to be utilized. Before the SDO has been used, only the client can take the active requirement for a SDO transmission. When the SDO client starts to transmit a SDO, it is necessary to choose the proper protocol to transmit the SDO.

If the SDO client has to get the information from the device object dictionary and from the SDO server, the segment upload protocol or block upload protocol will be applied. The former protocol is used for transmitting fewer data; the latter protocol is used for transmitting larger data. Both the segment download protocol and block download protocol will be implemented when the SDO client wants to modify the object dictionary to the SDO server. The differences between the segment download protocol and the block download protocol and the block download protocol and the block upload protocol. Because of the different access types in the object dictionary, not all-accessing action of the object dictionary via the

SDO transmission is allowed. If the SDO client trends to modify the entries of the object dictionary of the SDO server using the read-only access type, then the abort SDO transfer protocol will be given and the SDO transmission will also stop.

The I-7231D only supports the SDO server. Therefore, it can only be passive and wait for the client requirements. The general concept of the upload and download protocol with the I-7231D indicated in the following figure.


3.3 PDO Introduction

Communication Modes For The PDO

Based on the transmission data format of the CAN bus, the PDO can transmit eight bytes of process data at any one time. Because of the PDO messages without overheads, it is more efficient than other communication objects within CANopen and is therefore used for real-time data transfer, such as DI, DO, AI, AO, etc.

PDO reception or transmission is implemented via the producer/consumer communication model (also called the push/pull model). When starting to communicate in the PDO push mode, it needs one CANopen device to play the role of PDO producer and zero or more than one device to play the role of PDO consumer.

The PDO producer sends out the PDO message after it has won the CAN bus arbitration. Afterwards, each PDO consumer receives this PDO message respectively, and therefore message checks need to be processed or need to be dropped. In the PDO pull mode, one of the PDO consumers need to send out a remote transmit request to the PDO producer. According to this remote request message, the PDO producer responds the corresponding PDO message for each PDO consumer in the CAN bus. The PDO communication structure figure is shown below.

From the view of the CANopen device, the TxPDO is used to transmit data from the CANopen device. Therefore, it is usually applied on DI/AI channels. The COB-ID of the PDO for receiving data is RxPDO COB-ID, and it is usually applied on DO/AO channels. Take the I-7231D for an example, if a PDO producer sends a PDO message to the I-7231D, it needs to use the RxPDO COB-ID of the I-7231D because it is a PDO reception action viewed from the I-7231D. Inversely, when some PDO consumers send remote transmit requests to the I-7231D, it must use the TxPDO COB-ID of the I-7231D because it is a PDO reception action viewed from the I-7231D.

Trigger Modes Of PDO

For PDO producers, PDO transmission messages can be trigged by three conditions. They are the event driven, timer driven and remote request conditions. All of them are described below.

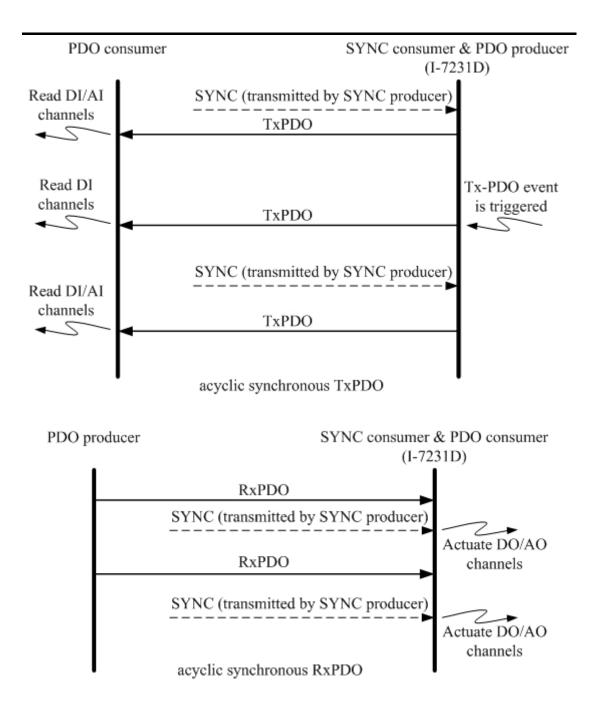
Event Driven

PDO transmission can be triggered by the occurrence of an object specific event. For PDOs of the cyclic synchronous transmission type, this is the expiration of the specified transmission period, which is synchronized by the exception of the SYNC message.

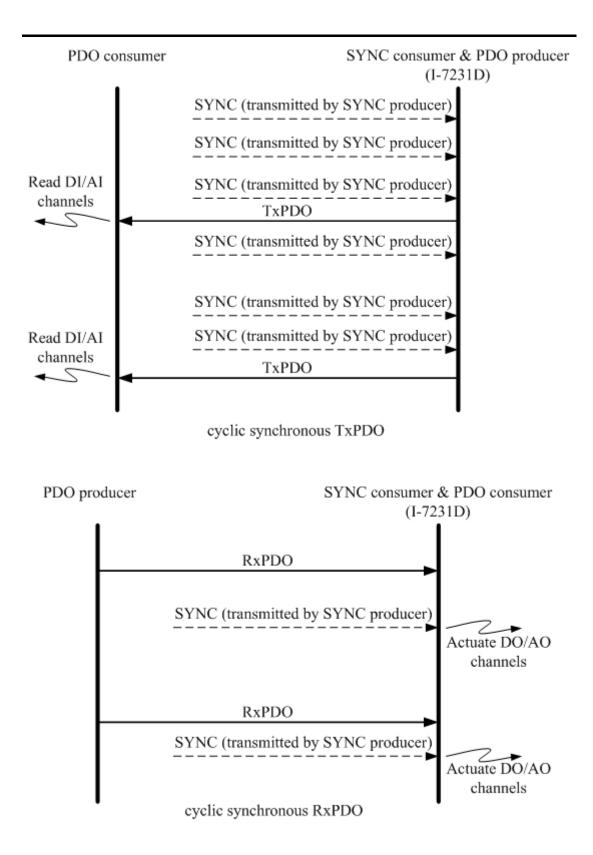
For PDOs of the acyclic synchronous or asynchronous transmission type, the triggering of a PDO transmission is device-specified in the CANopen spec DSP-401 v2.1. By following this spec, the PDO will be triggered by any change in the DI-channel states when the transmission type of this PDO is set to acyclic synchronous or asynchronous.

Timer Driven

PDO transmissions are also triggered by the occurrence of a specific event for the device or if a specified time has elapsed without the occurrence of an event. For example, the PDO transmission of the I-7231D can be triggered by the event timer of the PDO communication parameters, which is set by the user.

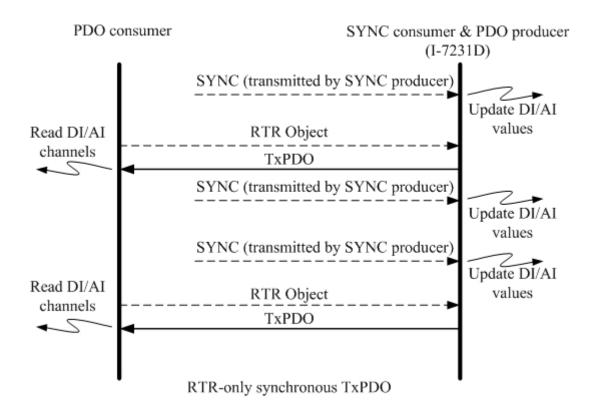

Remote Request

If the PDO transmission type is set to asynchronous or RTR only, the PDO transmission can only be triggered after receiving a remote transmit request from any other PDO consumer.

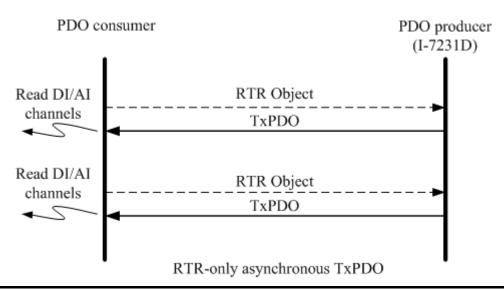

PDO Transmission Types

Generally speaking, there are two kinds of PDO transmission modes, synchronous and asynchronous. For the PDO in a synchronous mode, it must be triggered by the reception of a SYNC message. The synchronous mode can then be distinguished with more detail into three kinds of transmission.

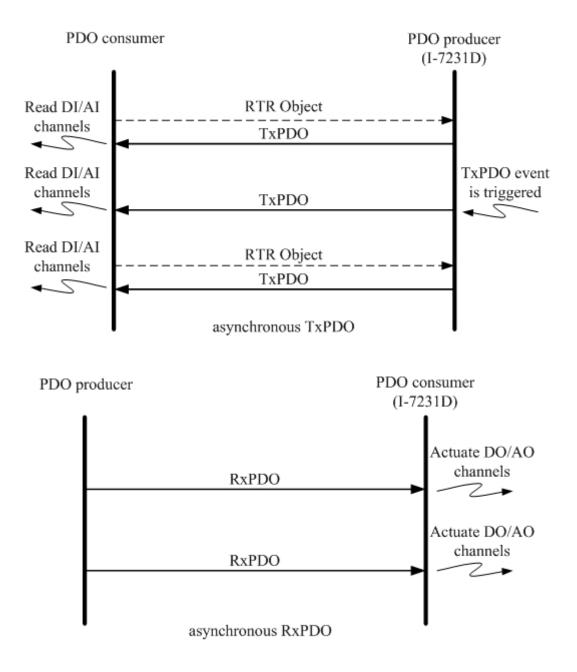
These are the acyclic synchronous, cyclic synchronous and RTR-only synchronous. The acyclic synchronous can be triggered by both the reception of a SYNC message and the occurrence of an event defined by an event driver mentioned above. For the TxPDO object, after receiving a SYNC object from SYNC producer, the I-7231D will respond with a predefined TxPDO message to the CANopen PDO consumers. For the RxPDO object, the I-7231D needs to receive the SYNC object to actuate the RxPDO object, which is received before the SYNC object. The following figures indicate how the acyclic synchronous transmission type works on the RxPDO and the TxPDO.



The cyclic synchronous transmission mode is triggered by the reception of an expected number of SYNC objects, and the max number of expected SYNC objects can be 240. For example, if the TxPDO is set to react when receiving 3 SYNC objects, the I-7231D will feedback the TxPDO object after receiving 3 SYNC object. For the RxPDO, actuating the DO/AO channels by the RxPDO is independent of the number of SYNC objects. These concepts are shown in the figures below.



The RTR-only synchronous mode is activated when receiving a remote-transmit-request message and SYNC objects. This transmission type is only useful for TxPDO. In this situation, the I-7231D will update the DI/AI value when receiving the SYNC object. And, if the RTR object is received, the


I-7231D will respond to the TxPDO object. The following figure shows the mechanism of this transmission type.

The asynchronous mode is independent on the SYNC object. This mode can also be divided into two parts for more detail. There are RTR-only asynchronous transmission type and asynchronous transmission type. The RTR-only transmission type is only for supporting TxPDO transmissions. For this transmission type, the TxPDO is only triggered by receiving the RTR object from the PDO consumer. This action is depicted below.

The other part of the asynchronous mode is the asynchronous transmission type. Under this transmission type, the TxPDO message can be triggered not only by receiving the RTR object but also by the occurrence of TxPDO events described in the event driver paragraph described above. Furthermore, the DO/AO channels can act directly by receiving the RxPDO object. This transmission type is the default value when the I-7231D boots up. The concept of the asynchronous type is illustrated as follows.

Inhibit Time

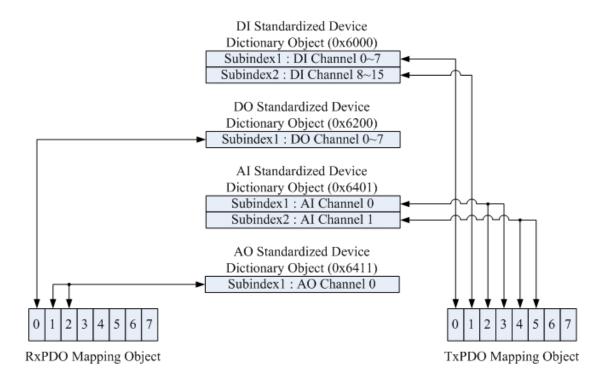
Because of the arbitration mechanism of the CAN bus, the smaller CANopen communication object ID has a higher transmission priority than the bigger one. For example, there are two nodes on the CAN bus, the one needs to transmit the CAN message with the COB-ID 0x181, and the other has to transmit the message with COB-ID 0x182. When these two nodes transmit the CAN message to the CAN bus simultaneously, only the message containing COB- ID 0x181 can be sent to the CAN bus successfully because of the higher transmission priority. The message with COB-ID 0x182 needs to hold the transmission until the message with COB-ID 0x181 is transmitted successfully. This arbitration mechanism can guarantee the successful transmission for one node when a transmission conflict occurs.

However, if the message with COB-ID 0x181 is transmitted again and again, the message with COB-ID 0x182 will never get a chance to be transmitted. Therefore, the disadvantage of this arbitration mechanism is that the lower priority of a CAN message is never transmitted successfully if the higher priority message is sent continuously. In order to avoid the occupation of the transmission privilege by the message with a lower COB-ID, the inhibit time parameters for each of the PDO objects define a minimum time interval between each PDO message transmission, which has a multiple of 100us. During this time interval, the PDO message will be inhibited from transmission.

Event Timer

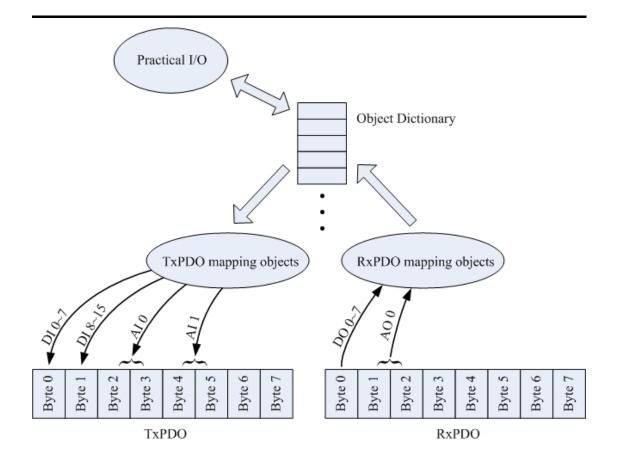
This parameter is only used for TxPDO. If the value of the event timer is not equal to 0 and the transmission type is in asynchronous mode, the expiration of this time value is considered to be an event. This event will cause the transmission of the TxPDO message. The event timer parameter is defined as a multiple of 1ms.

PDO Mapping Objects

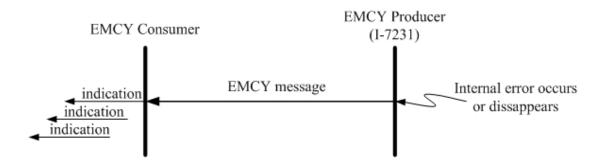

The PDO mapping objects provide the interface between PDO messages and real I/O data in the CANopen device. They define the meanings for each byte in the PDO message, and may be changed by using a SDO message. All of the PDO mapping objects are arranged in the Communication Profile Area. In the CANopen spec (CiA DS401), RxPDO and TxPDO default mapping objects may be specified as follows:

- There shall be up to 4 enabled TxPDO mapping objects and up to 4 RxPDO mapping objects with default mappings.
- 1st RxPDO and TxPDO mappings are used for digital outputs and inputs to each other.
- 2nd, 3rd, and 4th RxPDO and TxPDO mapping objects are assigned to record the value of analog outputs and inputs respectively.
- If a device supports too many digital input or output channels which exceed the 8 channels, the related analog default PDO mapping objects shall remain unused and the additional digital I/Os may use additional PDO mapping objects. This rule shall also be obeyed for the additional analog channels. Take the RxPDO for example; there are 11 DO object entries and 13 AI object entries in the object dictionary. In the default situation for the I-7231D, the first 8 DO object entries will be mapped to the first RxPDO mapping object because one DO object entry needs one byte space. The last 3 DO object entries will be assigned into the 5th RxPDO because of the 2nd and 3rd rule described above. One AO object entry needs 2 bytes of space. Therefore, the second RxPDO mapping object loads the first 4 AO object entries. The following 4 AO object entries are packed into the third RxPDO mapping object, and so is the 4th RxPDO mapping object. Because the 5th RxPDO mapping object has been occupied by the DO object entries, the last AO object entry shall be assigned into the 6th RxPDO mapping object.

Before applying the PDO communications, the PDO producer and the PDO consumers need to have their PDO mapping information for each other. On the one hand, the PDO producers need PDO mapping information to decide how to assign the expected practical I/O data into PDO messages. On the other hand, PDO consumers need the PDO mapping information to know the meaning of each byte of received PDO message.


That is to say that when a PDO producer transmits a PDO object to PDO consumers, the consumers contrast this PDO message with PDO mapping entries which are previously obtained from the PDO producer. Then, interpret the meanings of these values from the received PDO object. For example, if a CANopen device has 16 DI, 8 DO, 2 AI, and 1 AO channels. The input or output values of these channels will be stored into several specific entries for

each other. If the user-defined PDO mapping objects have been used, then general concept for these PDO mapping objects which have been depicted may be very useful.


According to the PDO mapping objects in the figure above, if this CANopen device gets the RxPDO message including three bytes, the first byte is interpreted as the output value of the DO channels 0~7 and the following two bytes are the analog output value.

After interpreting the data of the RxPDO message, the device will actuate the DO and AO channels with the received RxPDO message. This situation is the same for TxPDO. When the TxPDO trigger events occur, the CANopen device will send the TxPDO message to the PDO consumers. The values of the bytes assigned in the TxPDO message follow the TxPDO mapping object as in the above figure. The first two bytes of the TxPDO message are the values for the DI channels 0~7 and channel 8~15. The third and forth bytes of the TxPDO message refer to the AI channel 0 value. The fifth and sixth bytes are the values link to AI channel 1. The relationships among the object dictionary, the PDO mapping object and the PDO message are given below.

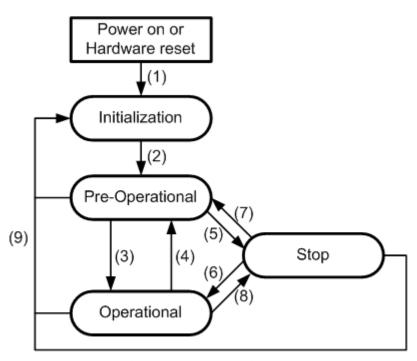
3.4 EMCY Introduction

EMCY messages are triggered by the occurrence of a device internal error. It follows the producer/consumer relationship. After a CANopen device detects the internal error, an emergency message is transmitted to the EMCY consumers only once per error event. No further emergency objects must be transmitted if no new errors occur on a device. Zero or more emergency consumers may receive the EMCY object. The I-7231D only supports the function of the emergency producer. The general concept behind the EMCY communications is shown below.

An emergency message contains 8-byte of data called emergency object data, and follows the structure provided bellow.

Byte	0	1	2	3	4	5	6	7
Content	Emergency	Error Code	Error register	Manufa	cturer s	pecific E	rror Field	

All the fields in the emergency object data will be described in section 5.3. Take the I-7231D for an example, if any errors occur in the I-7231D, the EMCY message will be sent out from the I-7231D. Afterwards, the EMCY message will not be transmitted again if the same error occurs repeatedly.


However, if any other different errors detected by the I-7231D occur, it will trigger the transmission of the EMCY message again. After one but not all error reasons are gone, an emergency message containing the emergency error code "00 00" may be responded to with the remaining errors in the error register and manufacturer specific error fields. Hence, by means of checking the EMCY message, users can understand what is happening in the I-7231D, and can then do something about the error event.

3.5 NMT Introduction

The Network Management (NMT) follows a node-oriented structure and also follows the master-server relationship. On the same CAN bus network, only one CANopen device can have the power to implement the function of NMT master. All the other CANopen nodes are regarded as NMT slaves. Each NMT slave is unique, and identified by its node ID from 1 to 127. The NMT service supplies two protocols, module control protocol and error control protocol, for different purposes. Through the NMT module control protocol, the nodes can be controlled into several kinds of status, such as installing, pre-operational, operational, and stopped. The NMT slave in different statuses has different privileges to implement the communication protocol. The error control protocol gives the user the way to detect the remote error in the network. It can confirm if the node still lives or not.

3.5.1 Module Control Protocols

Before introducing the modules control protocols, let's look at the architecture of the NMT state mechanism. The following figure displays the relationships among each NMT state and the mechanism for changing the NMT state of a NMT slave.

State Mechanism Diagram

(1)	At "Power on" the initialization state is entered autonomously	
(2)	(2) Initialization finished enter Pre-Operational automatically	
(3),(6)	"Start Remote Node" indication	
(4),(7)	7) "Enter Pre-Optional State" indication	
(5),(8)	"Stop Remote Node" indication	
(9) "Reset Node" or "Reset Communication" indication		

Devices enter the Pre-Operational state directly after finishing the device initialization. Then, the nodes can be switched into different states by receiving an indication. Each different NMT state allows for specific communication methods. For example, the PDO message can only transmit or receive in the operational state. In the following table, the relationship among each NMT state and communication objects is given.

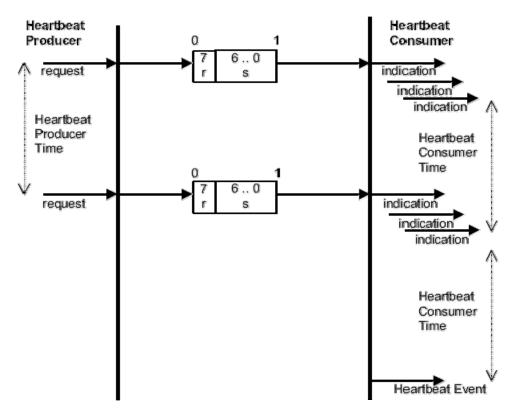
	Installing	Pre-operational	Operational	Stopped
PDO			0	
SDO		0	0	
SYNC Object		0	0	
Time Stamp Object		0	0	
EMCY Object		0	0	
Boot-Up Object	0			
NMT		0	0	0

3.5.2 Error Control Protocols

There are two kinds of protocols defined in the I-7231D's error control protocol. Note that, according to the CANopen spec, one device is not allowed to use both error control mechanisms, Guarding Protocol and Heartbeat Producer Protocol, at the same time. Therefore, users can only use one of these protocols for the I-7231D in practical application. The node guarding protocol and the heartbeat protocol of the error protocol is described below.

Node Guarding Protocol

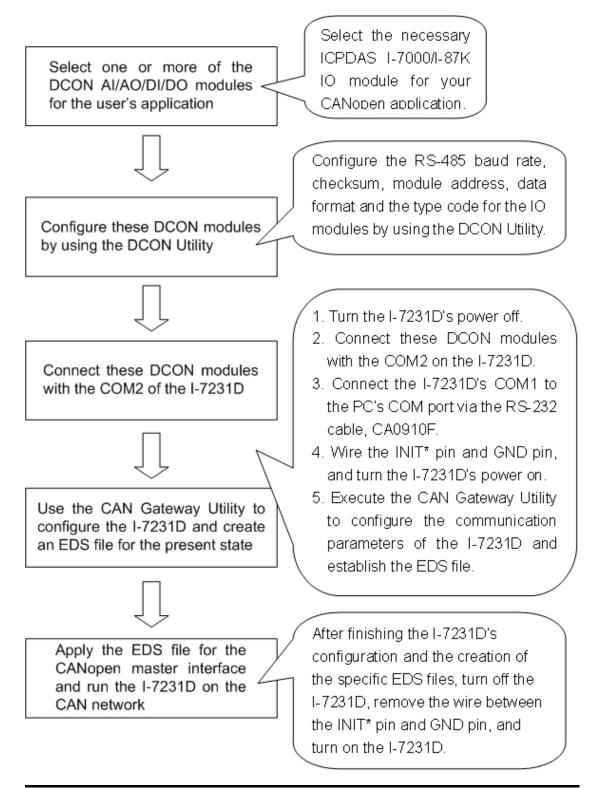
The Node Guarding Protocol follows the Master/Slave relationship. It provides a way to help uses monitor the node in the CAN bus. The communication method of node guarding protocol is defined as follows.



The NMT master polls each NMT slave at regular time intervals. This time-interval is called the guard time and may be different for each NMT slave. The response of the NMT slave contains the state of that NMT slave, which may be in a "stopped", "operational", or "pre-operational" state. The node life time is given by the "guard time * life time factor". The node life time factor can also be different for each NMT slave. If the NMT slave has not been polled during its life time, a remote node error is indicated through the "Life Guarding Event" service.

In addition, the reported NMT slave state, which does not match the expected state, also produces the "Life Guarding Event". This event may occurs in the DO and AO channels to output the error mode value recorded in the object with index 0x6207 and index 0x6444. The object with index 0x6026 and 0x6443 can control the error mode value of the DO or AO channels to enable or disable when the "Lift Guarding Event" has been indicated. For more information about objects with index 0x6206, 0x6207, 0x6443, and 0x6444, please refer to chapter 6.

Heartbeat Protocol


The Heartbeat Protocol follows the Producer/Consumer relationship. It provides a way to help uses monitor the node in the CAN bus. The communication method of heartbeat protocol is defined as follows.

The Heartbeat Protocol defines an Error Control Service without need for remote frames. A Heartbeat Producer transmits a Heartbeat message cyclically. One or more Heartbeat Consumer receive the indication. The relationship between producer and consumer is configurable via the object dictionary. The Heartbeat Consumer guards the reception of the Heartbeat within the Heartbeat Consumer Time. If the Heartbeat is not received within the Heartbeat Consumer Time a Heartbeat Event will be generated.

4 CANopen System

4.1 I-7231D Configuration Flowchart

4.2 CAN Gateway Utility Overview

The CAN Gateway Utility is designed for the I-7231D. It provides three functions.

- Set the communication parameters of the CANopen, CAN bus and RS-485. Such as Node ID, CAN bus baud rate, RS-485 baud rate, RS-485 checksum, and RS-485 timeout value.
- Scan the I-7000 or I-87K modules hanging on the COM2 of the I-7231D. Then, create the EDS file to match the scanning result of scanning.
- Show the important information which is useful in the CANopen network and the RS-485 network. Such as the PDO communication objects, I-7000/I-87K modules information, and the standardized device objects and manufacturer specific objects defined in the I-7231D.

Before users start to use the I-7231D, they must configure the I-7000/I-87K IO modules by using the DCON Utility. During the configuration, users need to give a unique ID (0x01~0x0F) for each I-7000/87K module in the RS-485 network. Also, if AI/AO modules are used, users need to choose the correct type of code for the proper input/output range of these AI and AO modules. The DCON Utility can be downloaded free from the following web site.

http://www.icpdas.com/download/7000/7000.htm

For more information about how to configure the I-7000/I-87K modules, please refer to the on-line help of the DCON Utility or the user manual for the I-7000/87K modules.

4.3 CAN gateway Utility Installation

Install CAN Gateway Utility

Step 1: Download the CAN Gateway Utility setup file from the web site http://ftp.icpdas.com/pub/cd/fieldbus_cd/canopen/gateway/i-7231d/utility or CD-ROM disk following the path of "
/Fieldbus_cd/CANopen/Gateway/I-7231D/Utility.

Step 2: Execute the setup.exe file to install the CAN Gateway Utility.

Step 3: A "Welcome" window pops up to prompt user to begin installation.

Step 4: Click the "Next" button and a "Choose Destination Location" window will pop up for deciding the installation path.

Choose Destination Location				
	Setup will install CAN_GW Utility in the following folder. To install to this folder, click Next. To install to a different folder, click Browse and select another folder. You can choose not to install CAN_GW Utility by clicking Cancel to exit Setup.			
~	Destination Folder C:\iCAN\CAN_Gateway Browse			
	< Back Next > Cancel			

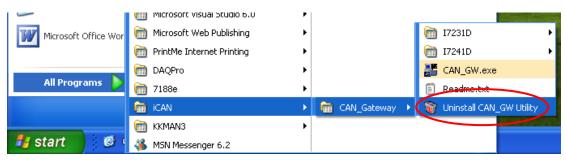
Step 5: Click the "Next" button. A "Select Program Folder" window will pop up. Here, we use the default setting for this field.

Select Program Folder 🛛 🔀					
	Setup will add program icons to the Program Folder listed below. You may type a new folder name, or select one from the existing Folders list. Click Next to continue. Program Folders: CANVCAN_Gateway Existing Folders: 7188e Accessories Administrative Tools Alcohol 120% CANopen Conformance Test DAQPro Dr.eye				
	Ethereal Games				
	< Back Next > Cancel				

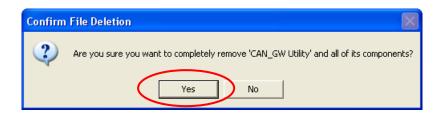
Step 6: Click the "Next" button and start to install the CAN Gateway Utility to the system. After finishing the process, the following figure will be displayed to prompts users upon the successful of the installation.

Install 🛛 🚺	
Installing CAN_GW Utility finished	
ОК	

Step 7: After finishing the installation of the CAN Gateway Utility, users can find the CAN_GW Utility as shown in the following screenshot.


Release Notes	🛅 Microsoft Office	•		
	🛅 Microsoft Visual Studio 6.0	•		
Microsoft Office Wor	🛅 Microsoft Web Publishing	•		🛅 17231D 🔹 🕨
	🛅 PrintMe Internet Printing	•		m 17241D
	🛅 DAQPro	•	(🚟 CAN_GW.exe
All Programs 👂	🛅 7188e	•		🗒 Readme.txt
	ican	• 6	CAN_Gateway 🔸	🍿 Uninstall CAN_GW Utility
	C KKMANI2	_		
📲 start 🔰 🙆 🤇	D 🗐 👋			

Uninstall CAN Gateway Utility

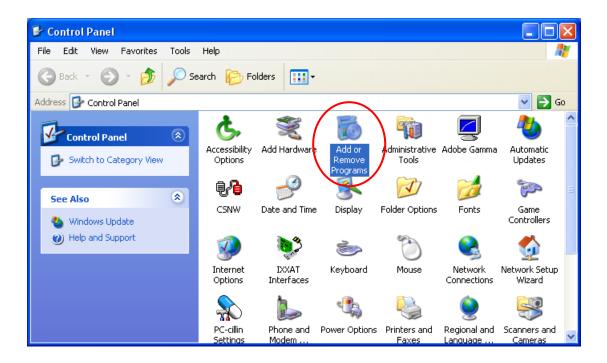

You can uninstall the CAN_GW Utility software by one means of any on of the methods described below.

Method 1

Step 1: Click Start in the task bar. Then, click "Uninstall CAN_GW Utility" to remove this software.

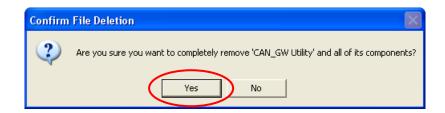
Step 2: Click the button "Yes" button to remove the software

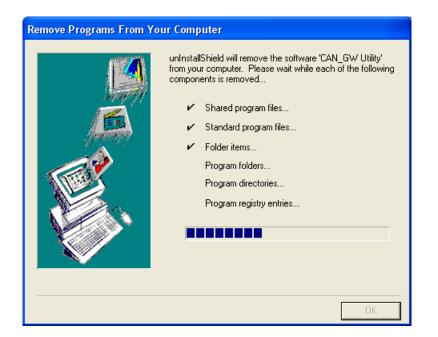
Step 3: Afterwards, click the button "OK" button to end the uninstall process.



• Method 2

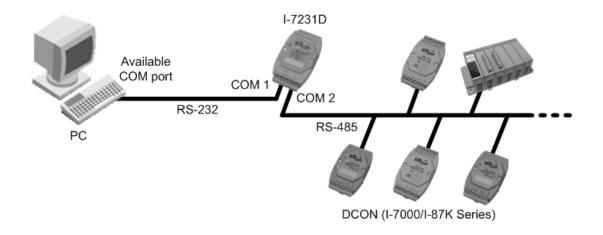
Step 1: Click "Start" in the task bar, then click Setting/Control Panel as shown in the following figure.


Step 2: Click the "Add/Remove" button Programs icon to open the dialog.

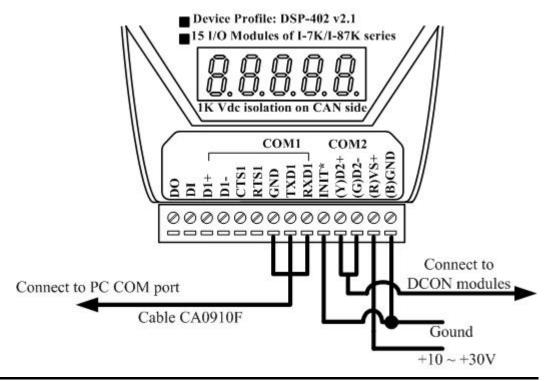

Step 3: Find out the CAN_GW Utility, and click the Change/Remove button.

🐻 Add or Re	move Programs		
5	Currently installed programs:	w up <u>d</u> ates <u>S</u> ort by: Na	me 💌
C <u>h</u> ange or Remove	🔁 Adobe Acrobat 6.0 Professional	<u>-</u>	ize 356.00MB 🔼
Programs	🚱 Adobe Photoshop 7.0	9	ize 136.00MB
	💑 Alcohol 120%	5	ize 3.53MB
Add New	🚟 CAN_GW Utility	2	iize <u>7.64MB</u>
Programs		Us	ed <u>rarely</u>
1			On 10/28/2004
Add/Demous	To change this program or remove it from your computer, click Change/R	emove. 🤇 🖸	hange/Remove
Add/Remove <u>W</u> indows	CANopen Node Manager V2.1.1		ize 1.18MB
Components	OCON Utility		
	侵 DCON_ActiveX	-	ize 15.45MB
Set Program	IL DCON_DLL	9	ize 43.15MB
Access and Defaults	💋 DFX for Winamp	9	ize 3.83MB
Doridano	🌀 Dr.eye 6.0 (Professional)	2	iize 578.00MB
	🌀 Dr.eye 6.0 Dict (Professional)	9	iize 91.46MB
	C Ethereal 0.9.16	<u> -</u>	iize 35.42MB
	🖁 HyperSnap-DX 4	4	ize 5.19MB
		<u>-</u>	ize 156.00MB
	🚯 Instrumentation ActiveX Library		~
			9. MOI

Step 4: Click the button "Yes" button to remove the software.



Step 5: Finally, click the button "OK" button to finish the uninstall process.



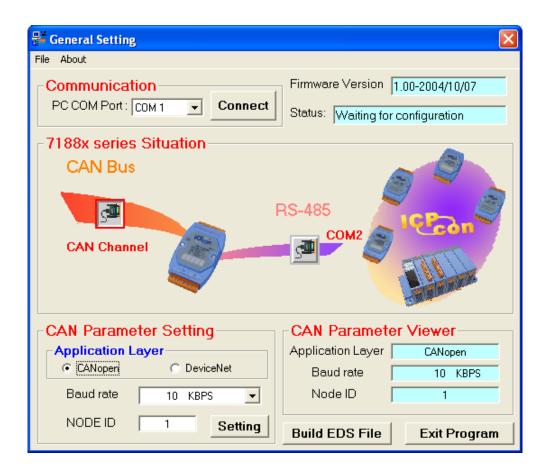
4.4 Configuration with the CAN Gateway Utility

Before using this software utility, please make sure that you have connected COM1 of the I-7231D with the available COM port on your PC. Also, connect the I-7000/87K modules with COM2 of the I-7231D. The architecture is displayed in the following figure.

Step 1: First turn off the I-7231D. Connect the INIT* pin and the GND pin on the I-7231D. Then, turn on the I-7231D.

I-7231D CANopen/DCON Gateway user manual (ver. 1.04, Dec/14/2010) -----57

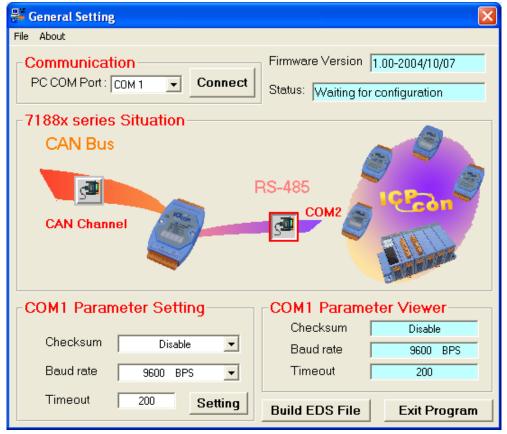
Step 2: Execute the CAN_GW101.exe file. The following software figure will be displayed.


📲 General Setting	×					
File About						
Communication PC COM Port: COM 1 Connect	Firmware Version Status:					
-7188x series Situation						
CAN Parameter Setting Application Layer © CANopen © DeviceNet	CAN Parameter Viewer Build EDS File Exit Program					

Step 3: Press the "Connect" button to connect the CANopen gateway. Then the "Com Port Scan Parameter Setting" dialog window will pop up as follows. Please set the proper value for the RS-485 communication parameters. These parameters need to match with the DCON modules parameters. Then, press the "OK" button to begin the modules scans.

着 General Setting	×
File About	
PC COM Port: COM 1 Connect	Firmware Version Status: Connecting
7188x series Situation	
Com Port Scan Parameters Setting	
COM2 Baudrate 9600 BPS Timeout	200 CheckSum Disable CheckSum Disable
CAN Parameter Setting Application Layer C CANopen © DeviceNet	CAN Parameter Viewer Build EDS File Exit Program

Step 4: When the DCON modules scan is finished, the result of the scan will be compared with the parameters stored in the EEPROM of the I-7231D. If any differences have been detected, a warning message will pop up as follows.


The default connected modules are I-7012, I-7021, I-7053 and I-7057. So if users connect the I-7231D with any different I/O module from the ones described above, then the "Some EEPROM Data is Error!" warning message may pop up. In this case, the default value will be shown on each parameter setting field. Otherwise, the last setting value will be displayed on each parameter setting field.

Step 5: Click the "CAN Channel" button so that the CAN bus configuration information will be given. Then, users can set the necessary CAN bus communication information. Afterwards, click the "Setting" button to finish the CAN parameter setting. The CAN Parameter Viewer frame on the right hand side indicates the parameter setting results. After clicking the "Setting" button, users can see that each field value on the CAN Parameter Viewer frame has changed to the value configured in the CAN Parameter Setting frame on the left hand side.

[CAN Parame	ter Setting	CAN Parameter Viewer		
	-Application L	ayer	Application Layer CANopen		
	CANopen	O DeviceNet	Baud rate 10 KBPS		
	Baud rate	1000 KBPS 💌	Node ID 1		
	NODE ID	5 Setting	Build EDS File Exit Program		

Step 6: Click the "COM2 2 button to configure the RS-485 parameters for the CPS_DCON gateway. After finishing the configuration, click the "Setting" button to save the setting results, and then click the "Build EDS File" button to continue.

Step 7: The two fields, "description" and "create by", can help users to do some notes in the EDS file. If these two fields are empty, the "ICPDAS CANopen slave/DCON master Gateway" and "ICPDAS" will be used as the default value when creating the EDS file.

💐 EDS File C	lonfigur	ation & Informatio	n Viewer		×
EDS File	e Info	rmation			
Description:					
Created By:					~
	1			[]	
PDO Informat	ion	Device Information	DCON Information	Eack	Finish

Step 8: Users can click on the "PDO Information", "Device Information ", and the "DCON Information button to view the PDO objects, device profile and I-7000/87K configuration information. These information dialogs are shown below.

PDO NO.	COB-ID (Hex)	Transmission Type	Inhibit Time	Event Timer	Mapping 0	Mapping 1
1	205	255	Reversed	Reversed	0x4-7011P:00~01	
2	305	255	Reversed	Reversed	;	
3	405	255	Reversed	Reversed		
4	505	255	Reversed	Reversed		

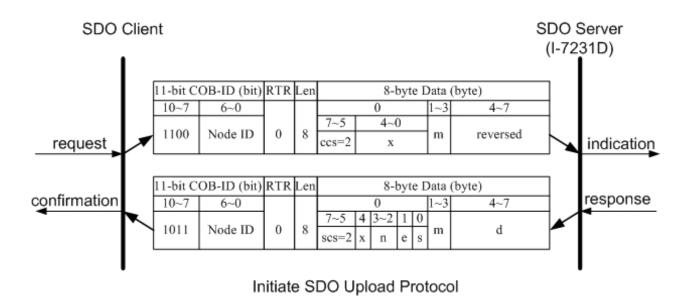
Manufacturer Specific/Standardized Device Object Dictionary

	0.0000	0.0001	0-2002	0.0000
Index	0x2000	0x2001	0x2002	0x2003
Description	Module W/R Error Count	Module WDT Enable/Disable	Module WDT Timer	Module WDT Status
Subindex0	6	6	6	6
Subindex1	0 (0x1-7017C)	0 (0x1-7017C)	0 (0x1-7017C)	0 (0x1-7017C)
Subindex2	0 (0x2-7013)	0 (0x2-7013)	0 (0x2-7013)	0 (0x2-7013)
Subindex3	0 (0x3-7058)	0 (0x3-7058)	0 (0x3-7058)	0 (0x3-7058)
Subindex4	0 (0x4-7011P)	0 (0x4-7011P)	0 (0x4-7011P)	0 (0x4-7011P)
Subindex5	0 (0x5-7013)	0 (0x5-7013)	0 (0x5-7013)	0 (0x5-7013)
Subindex6	0 (0x6-7033)	0 (0x6-7033)	0 (0x6-7033)	0 (0x6-7033)

No.	ON Info	Name		Data Format	DO Ch Num	AO Ch Num	DI Ch Num	Al Ch
1	0x01	7017C	OxOD	0x00		no cirriain	Di ciritain N	
2		7013	0x20			0	0	
3		7058	0x40	0x00	0	0	8	
4	0x04	7011P	0x05	0x00	2	0	1	
5	0x05	7013	0x20	0x00	0	0	0	
6	0x06	7033	0x27	0x00	0	0	0	

If everything is ok, click the "Finish" button to create the EDS file and save the related information into the EEPROM of the I-7231D.

💐 EDS File (Configur	ation & Informatio	n Viewer		×
EDS Fil	e Info	rmation			
Description:	This EDS 7058.	file is for the I-7231D wi	th I-7017C, I-7013D*2, I-	7033D, I-7011P	and I- 📐
Created By:	Li-Chiang	Liu			
	2	68			
PDO Informa		Device Information	DCON Information	Back	Finish


5 Configuration & Getting Start

5.1 SDO Communication Set

5.1.1 Upload SDO Protocol

Initiate SDO Upload Protocol

Before transferring the SDO segments, the client and server need to communicate with each other by using the initiate SDO upload protocol. During the initiate SDO upload protocol, the SDO client can tell the SDO server what object the SDO client wants to get. Also, the initiate SDO upload protocol is permitted to transfer up to four bytes of data. Therefore, if the data length of the object, which the SDO client wants to read, is equal to or less than the permitted data amount, the SDO communication can be finished by only using the initial SDO upload protocol. That is to say, if the data upload is less enough to be transmitted in the initiate SDO upload protocol, then the upload SDO segment protocol will not be used. The communication method of this protocol is shown as follows.

- ccs : client command specifier 2: initiate upload request
- scs : server command specifier 2: initiate upload response
- n : Only valid if e = 1 and s = 1, otherwise 0. If valid, it indicates the number of bytes in d that do not contain data. Bytes [8-n, 7] do not contain segment data.
- e : transfer type
 - 0: normal transfer
 - 1: expedited transfer

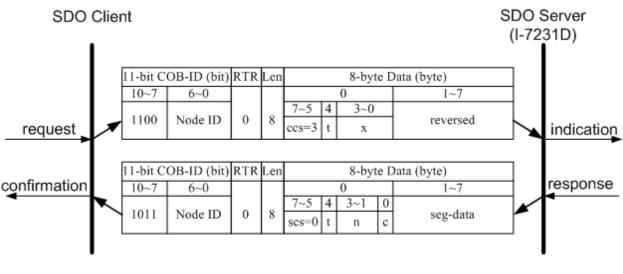
If the e=1, it means that the data of the object are equal or less than 4 bytes, and only initiate SDO upload protocol is needed. If e=0, the upload SDO protocol is necessary.

- s : size indicator
 - 0: Data set size is not indicated.
 - 1: Data set size is indicated.

m : multiplexer

It represents the index/sub-index of the data to be transfer by the SDO. The first two bytes are the index value and the last byte is the sub-index value.

d : data


e=0, **s**=0: **d** is reserved for further use.

- e=0, s=1: d contains the number of bytes to be uploaded, and byte 4 contains the least significant bit, and byte 7 contains the most significant bit.
- e=1, s=1: d contains the data of length 4-n to be uploaded, the encoding depends on the type of the data referenced by index and sub-index.
- e=1, s=0: d contains unspecified number of bytes to be uploaded.
- x : not used, always 0

reserved : reserved for further use , always 0

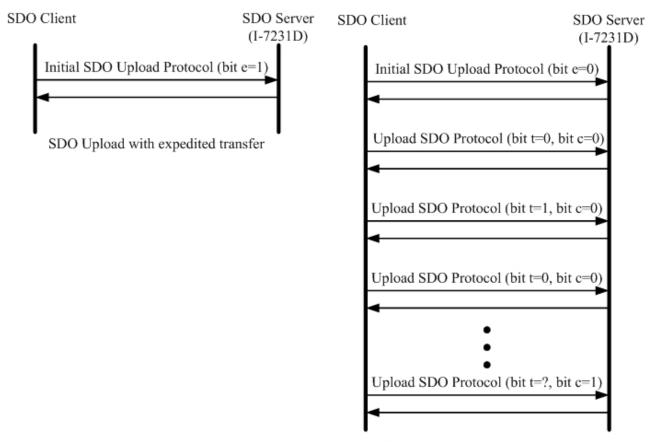
Upload SDO Segment Protocol

When the upload data length exceeds 4 bytes, the upload SDO segment protocol is needed. After finishing the transmission of the initiate SDO upload protocol, the SDO client starts to upload the data, and the upload segment protocol will follow the process shown below.

Upload SDO Segment Protocol

- ccs : client command specifier
 - 3: upload segment request
- scs : server command specifier 0: upload segment response
 - t : toggle bit

This bit must alternate for each subsequent segment that is uploaded. The first segment will have the toggle bit set to 0. The toggle bit will be equal for the request and the response message.


c : indicates whether there are still more segments to be uploaded
 0: more segments to be uploaded.

1: no more segments to be uploaded.

- **seg-data** : It is at most 7 bytes of segment data to be uploaded. The encoding depends on the type of the data referenced by index and sub-index.
 - n : It indicates the number of bytes in seg-data that do not contain segment data. Bytes [8-n, 7] do not contain segment data. n = 0 if no segment size is indicated.
 - **x** : not used, always 0
- **reserved** : reserved for further use , always 0

SDO Upload Example

The practical application of the SDO upload is illustrated as below.

SDO Upload with normal transfer

In the following paragraph, both expedited transfer and normal transfer are given according to the procedure described above. The method on how to get the value stored in the object dictionary is also presented. By means of the initiate SDO upload protocol, users can obtain how many sub-indexes the object with index 0x1400 can support. This information is located in the object with index 0x1400 with sub-index 00. Also, users can get the string located in the object with index 0x1008 by using the initiate SDO upload protocol.

• Example for expedited transfer

Step 1. Send the RxSDO message to the I-7231D to obtain the object entry with index 0x1400 and sub-index 00 stored in the communication profile area. The message structure is as follows. Assume that the node ID of the I-7231D is set to 1. Users can find the information about the object entry with index 0x1400 in chapter 6.

			11-b	it C	OB-	ID (bit)					Data			8 hu	/te Da	ata (h	wto)		
Fu	inc (Cod	е			No	ode	ID			RTR	Length			0-Dy			yte)		
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	40	00	14	00	00	00	00	00
S	DO	cli	onf	ŀ	SDO server											er				
U			CIII	L									(I-7231D))

ccs

: 2

m

: 00 14 00

Because low byte needs to transfer firstly, the first byte "00" is the low byte of 0x1400, the second byte "0x14" is the high byte of 0x1400, and the last byte "00" means the sub-index 00.

Step 2. The I-7231D will respond to the data stored in the object entry with index 0x1400 and sub-index 00.

		1	I1-b	it C	OB-	ID (bit)					Data			8-by	rto Da	ata (b	vto)		
Fu	inc (Cod	е			No	ode	ID			RTR	Length			0-Dy		מום (ט	yie)		
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	4F	00	14	00	02	00	00	00
S	DO) cli	ent	t	•													DO s [-72		

		(I-7231D)
SCS	:	2
n	:	3
е	:	1
S	:	1
m	:	00 14 00
d	:	02
		Because the first byte of data indicates that only the 4th byte is
		valid. Therefore, the feedback value is 02.

• Example for normal transfer

: 08 10 00

m

Step 1. Send the RxSDO message to the I-7231D to obtain the object entry with index 0x1008 and sub-index 00 stored in the communication profile area. The message structure is as follows. As mentioned above, the node ID for the I-7231D is set to 1, and the information about object entry with index 0x1008 is described in chapter 6.

Fu	unc (I1-b e	it C	OB-		bit) ode	ID			RTR	Data			8-by	∕te Da	ata (b	yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	40	08	10	00	00	00	00	00
_	DO	-	ent :		– 2											→		DO s 1-72		

Step 2. The I-7231D responds to the SDO message to indicate how many bytes users will upload from the I-7231D.

~ ,				•••••	~P		u	•…												
			11-b	it C	OB-	ID (bit)					Data			<u>8</u> by	rto Dr	ata (b	vto)		
Fu	inc (Cod	е			No	ode	ID			RTR				o-by		ala (D	yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	41	08	10	00	09	00	00	00
		- 13									•		•			•	S	DO s	serv	er
3	DO	CII	en	[•												((I-7 2	31D)
	scs	5	:	2	2															
	n		•	()															
	е		:	()															
	s		:		1															
	m		:	()0 [,]	18 (00													
	d			()9															
				I	Bec	au	se f	the	firs	t b	yte fro	m the 8-	-byte	e dat	a ind	dicat	es tl	hat d	only	the
				4	4th	by	te	is v	vali	d.	There	fore, the	e fe	edba	ack	valu	e is	09,	and	d it
				r	nea	ans	tha	at tł	here	e ai	re 9 by	ytes to b	e up	load	ed.					

Step 3. Request the I-7231D to start the data transmission.

			11-b	it C	OB-	ID (bit)					Data			8-h	/te Da	ata (h	vto)		
Fι	inc (Cod	е			No	ode	ID			RTR	Length			0-03			yte)		
10	9	8	7	6	5	4	3	2	1	0		Lengui	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	60	00	00	00	00	00	00	00
S	DO) cli	en	ŀ												→	S	DO 9	serv	er
Ū		••••	•	•												•	(I-72	31D)
	ccs	5	•		3															
	t		:	()															

Step 4. The I-7231D will respond to the first 8 bytes in the index 0x1008 and sub-index 00 object entries.

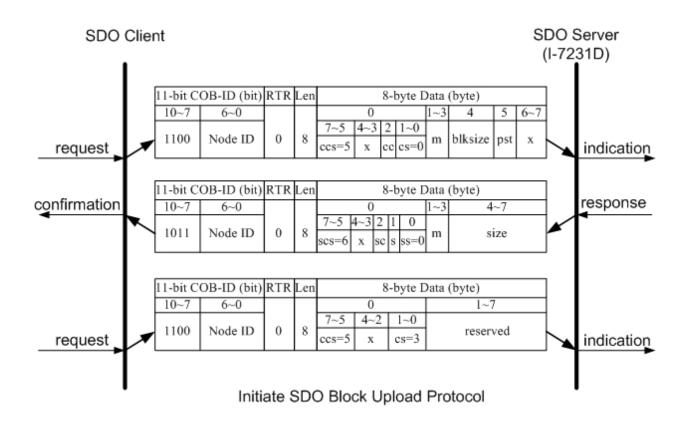
		1	1-bi	t CC)B-II	D (b	oit)					Data			8 h	rto Dr	ata (b	vto)		
Fι	unc (Code	9			No	ode	ID			RTR	Length			0-03		ala (D	yie)		
10	9	8	7	6	5	4	3 2 1 0					Lengin	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	00	43	50	53	5F	44	43	4F
		SDO server																		

SDO clier	nt	(I-7231D)
SCS	:	-
t	:	0
n	:	0
С	:	0
seg-data	:	43 50 53 5F 44 43 4F
		Users can check chapter 6 to see that the object entry with index
		0x1008 and sub index 00 has the data type "VISIBLE_STRING".
		Therefore, users need to transfer these data values to the
		corresponding ASCII character. After transformation, they are
		"CPS_DCO".

Step 5. Request the I-7231D to transmit the rest of the data.

11-bit COB-ID (bit)												Data	8-byte Data (byte)							
Func Code Node ID							RTR	Length	o-byte Data (byte)											
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	70	00	00	00	00	00	00	00
S	SDO client									-			SDO serv (I-7231D)							

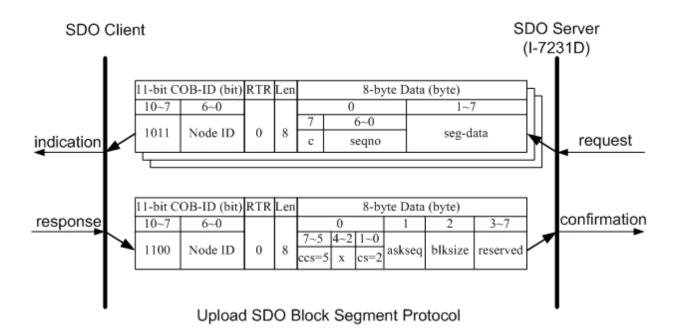
ccs : 3 t : 1


Step 6. Receive the rest of the data from the SDO server.

11-bit COB-ID (bit)												Data	8-byte Data (byte)							
Func Code Node ID								RTR												
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	1B	4E	00	00	00	00	00	00
	SDO server													er						
5	SDO client (I-7231D))						
scs : 0																				
	t		:		1															
	n		:	ł	5															
	c : 1																			
se	seg-data : 4E 00																			
	Transfer the value of 0x4E and 0x00 to the corresponding ASCII													CII						
				(cha	rac	ter.	Aft	ter	trar	nsform	nation, it	mea	ans "	Ν'					

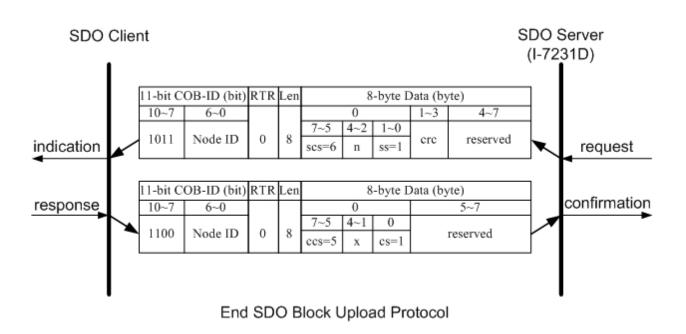
5.1.2 SDO Block Upload

Initiate SDO Block Upload Protocol


The SDO Block Upload is usually used for large data transmission. At the beginning of the SDO Block Upload, the Initiate SDO Block Upload protocol is needed. This protocol is described below.

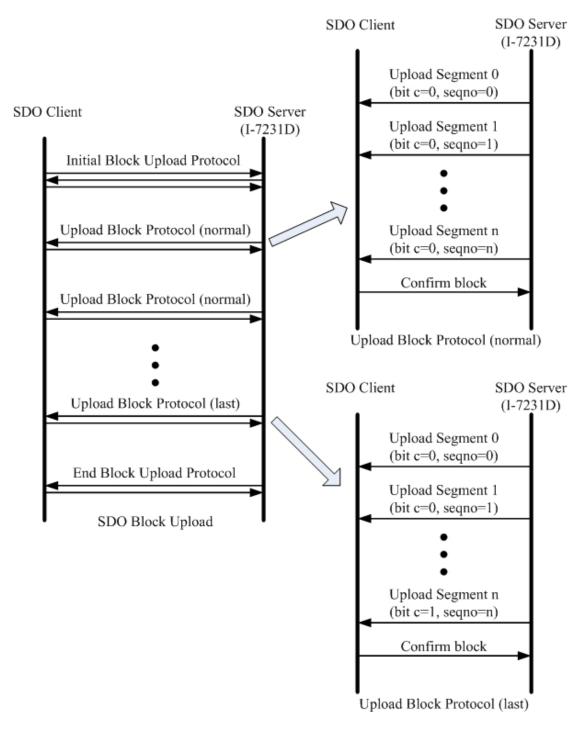
ccs	:	client command specifier
		5: block upload
SCS	:	server command specifier
		6: block upload.
CS	:	client subcommand
		0: initiate upload request
		3: start upload
SS	:	server subcommand
		0: initiate upload response
m	:	multiplexor
		It represents the index/sub-index of the data to be transfer by the
		SDO.
СС	:	client CRC support
		cc=0: Client does not support generating CRC on data.
		cc=1: Client supports generating CRC on data.
SC	:	server CRC support
		sc=0: Server does not support generating CRC on data.
		sc=1: Server supports generating CRC on data.
pst	:	Protocol Switch Threshold in bytes to change the SDO transfer
		protocol
		pst=0: change of transfer protocol not allowed
		pst >0: If the size of the data in bytes that has to be uploaded is
		less or equal pst , the server can optionally switch to the 'SDO
		Upload Protocol' by transmitting the server response of the 'SDO
		Upload Protocol'.
S	•	size indicator 0: Data set size is not indicated.
		1: Data set size is indicated.
size		
5120	•	upload size in byes s= 0: Size is reserved for further use, always 0.
		s =1: Size contains the number of bytes to be uploaded. Byte 4
		contains the LSB and byte 7 is the MSB.
blksize		number of segments per block with 0 < blksize < 128
X		not used, always 0
		reserved for further use , always 0
	•	

Upload SDO Block Segment Protocol


After finish the Initiate SDO Block protocol, the SDO server starts to respond to the data by using the Upload SDO Block Segment protocol. Each block contains 1 segment for minimum and 127 segments for maximum. One segment consists of 1~7 bytes. Only one block can be transmitted during an Upload SDO Block Segment protocol. The SDO server can send a maximum of 127 blocks by using 127 Upload SDO Block Segment protocols. Here is the structure of the Upload SDO Block Segment protocol.

ccs	:	client command specifier
		5: block upload
CS	:	client subcommand
		2: block upload response
С	:	It indicates whether there are still more segments to be uploaded.
		0: more segments to be uploaded
		1: no more segments to be uploaded , enter 'End block upload' phase
seqno	:	sequence number of segment, 0 < seqno < 128
seg-data	:	It is at most 7 bytes of segment data to be uploaded.
ackseq	:	sequence number of last segment that was received
		successfully during the last block upload
		If ackseq is set to 0, the client indicates the server that the
		segment with the sequence number 1 was not received correctly
		and all segments have to be retransmitted by the server.
blksize	:	number of segments per block that has to be used by server for
		the following block upload with 0 < blksize < 128
X	:	not used, always 0
reserved	:	reserved for further use , always 0

End SDO Block Upload Protocol

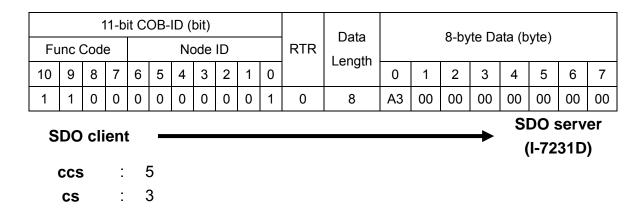

The End SDO Block Upload protocol is used for finishing the SDO Block upload, and is shown in the following figure.

CCS	:	client command specifier
		5: block upload
SCS	:	server command specifier
		6: block upload
CS	:	client subcommand
		1: end block upload request
SS	:	server subcommand
		1: end block upload response
n	:	It indicates the number of bytes in the last segment of the last
		block that do not contain data. Bytes [8-n,7] do not contain
		segment data.
crc	:	16 bit Cyclic Redundancy Checksum (CRC) for the whole data
		set.
		The algorithm for generating the CRC is as follows.
		x^16+x^12+x^5+1
		CRC is only valid if in Initiate Block Upload cc and sc are set to
		1. Otherwise crc has to be set to 0. For I-7231D, it is not support
		CRC check mechanism.
x	:	not used, always 0
reserved	:	reserved for further use , always 0

SDO Block Upload Example

The following figure indicates the general procedure for applying the SDO Block upload.

By following this procedure, we provide a demo for obtaining the value of the index 0x1008 and sub-index 00 object entry.


Step 1. Request the I-7231D to transmit the data by using the SDO Block Upload method.

		-	11-b	it C	OB-	ID (bit)					Data			8-h	te D:	ata (b	vte)		
Fu	inc (Cod	е			N	ode	ID			RTR				0-Dy		מן מומ	yie)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	1	0	0	0	0 0 0 0 0 0 1 0 8 A0 08 10 0									00	7F	00	00	00		
6			client												SI	DO 9	serv	er		
Э	DO	CII	en														(I-72	31D)
(ccs	5	•	Ę	5															
	сс		•	()															
	cs			()															
	m			()8 [·]	10 (00													
bl	ksi	ze	:	7	7F															
				E	Eac	h b	oloc	k c	ont	ain	s 127	segmen	its.							

Step 2. The I-7231D confirms the requirement with the Initiate SDO Block Upload protocol.

		1	1-b	it C	OB-	ID (bit)					Data			8 by		ata (b	vto)		
Fu	inc (Cod	е			No	ode	ID			RTR	Length			0-Dy		מום (ט	yie)		
10	9	8	7	6	5	4	3	2	1	0		Lengui	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	C2	08	10	00	09	00	00	00
6		نام	0.00														S	DO s	serv	er
3	DO	CII	em														((I-72	31D)
;	scs	5	:	6	6															
	SC		:	()															
	S		:		1															
	SS		:	()															
	m		:	()8 [,]	10 (00													
ę	size	;	:	()9															
				-	The	; -	723	1D	wi	ll r	espon	se 9 by	tes	data	dur	ing	the	SDC) Bl	ock
				ι	Jpl	oad	1.													

Step 3. Send the message to finish the Initiate SDO Block Upload protocol, and inform the I-7231D to start the data transmission.

Step 4. The I-7231D responds to the first 7 bytes of data by using the Upload SDO Block Segment protocol.

			11-b	it C	OB-	·ID (bit)					Data			8_h	vto D	ata (t	ovto)		
Fu	inc (Cod	е		Node ID						RTR	Length			0-0	yie D	מנמ (ג	Jyte)		
10	9	8	7	6	6 5 4 3 2 1				0		Lengin	0	1	2	3	4	5	6	7	
1	0	1	1							1	0	8	1	43	50	53	5F	44	43	4F
c	DO		on	•													S	DO s	serv	er
3	00		en	L													((I-72	31D)
	С		:	()															
S	c : 0 seqno : 1																			
se	g-d	ata	:	4	43 5	50 5	53 5	5F 4	14 4	43 4	4F									

Step 5. The I-7231D transmits the rest of the data.

	unc (it C	OB-						RTR	Data			8-by	rte Da	ata (b	yte)		
Г		Jou	e		Node ID 5 5 4 3 2 1 0						RIR	Length					1			
10	9	8	7	6				2	1	0		_0gu	0	1	2	3	4	5	6	7
1	0	1	1	0						1	0	8	82	4E	00	00	00	00	00	00
S	DO) cli	ent	t	•												-	DO s (I-72		-
	c eqn		:		1 ว															,

Step 6. Afterwards, users send a message to confirm the receiving data transmitted from the I-7231D.

		1	l1-b	it C	OB-	ID (bit)					Data			8 by		ata (b	vto)		
Fι	unc (Cod	е			No	ode	ID			RTR				0-Dy			yte)		
10	9	8	7	6	5			2	1	0		Length	0	1	2	3	4	5	6	7
1	1	0	0	0					0	1	0	8	A2	02	7F	00	00	00	00	00
c	DO		ont	4												_	S	DO s	serv	er
3	υυ	CH CH																		
		•	CIII	•													((I-72	31D)
	ccs	-	:		5											-	((I-72	31D)
	ccs cs	-	_	į												-	((1-72	31D)
		5	:	į	2												((I-72	31D)

Step 7. When the reception confirmation is ok, the I-7231D will send a message to enter the End SDO Block Upload protocol.

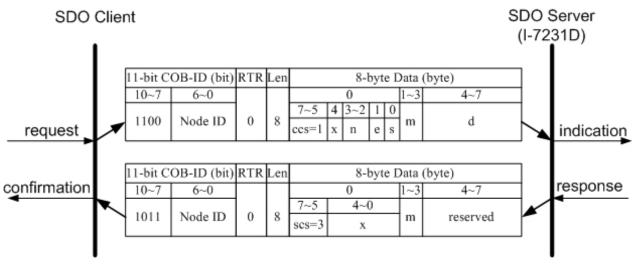
			11-b	it C	OB-	ID (I	bit)					Data			8 by	te Da	oto (b	vto)		
Fι	unc (Cod	е		Node ID						RTR	Length			0-DY	le Da	ala (D	yte)		
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	D5	00	00	00	00	00	00	00

SDO server

(I-7231D)

SDO client

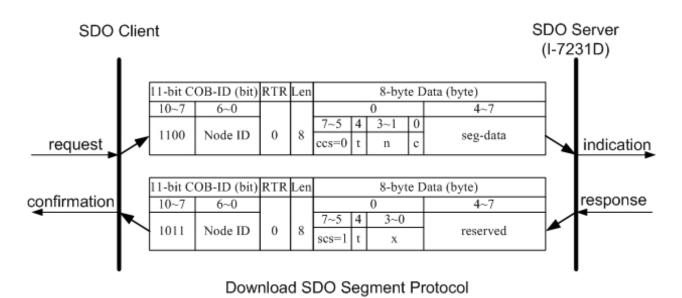
SCS	:	6
n	:	5
SS	:	1


Step 8. Users send a message to finish the End SDO Block Upload protocol.

		1	11-b	it C	OB-	ID (bit)					Data			8-by	rte Da	ata (b	vte)		
Fu	inc (Cod	е		Node ID						RTR	Length			0.09	0.00		<i>y</i> (0)		
10	9	8	7	6	6 5 4 3 2 1 0				0		Lengin	0	1	2	3	4	5	6	7	
1	1	0	0	0	0	0	0	0	0	1	0	8	A1	00	00	00	00	00	00	00
_	DO ccs	-	en		— 5											→		DO s (I-72	serv 31D	

5.1.3 Download

Initiate SDO Download Protocol


The download modes are similar to the upload modes, but different in some parameters in their SDO messages. They are also separated into two steps. If the download data length is less than 4 bytes, the download action will finish in the download initialization protocol. Or, the download segment protocol will be needed. These two protocols are shown below.

Initiate SDO Download Protocol

ccs	:	client command specifier
		1: initiate download request
SCS	:	server command specifier
		3: initiate download response
n	:	Only valid if $\mathbf{e} = 1$ and $\mathbf{s} = 1$, otherwise 0. If valid, it indicates the
		number of bytes in d that do not contain data. Bytes [8- n , 7] do
		not contain segment data.
е	:	transfer type
		0: normal transfer
		1: expedited transfer
		If the e =1, it means that the data of the object are equal or less
		than 4 bytes, and only initiate SDO download protocol is needed.
		If e =0, the download SDO protocol is necessary.
S	:	size indicator
		0: data set size is not indicated
		1: data set size is indicated
m	:	multiplexer
		It represents the index/sub-index of the data to be transfer by the
		SDO.
d	:	data
		e=0,s=0: d Is reserved for further use.
		e=0,s=1: d contains the number of bytes to be downloaded, and
		byte 4 contains the least significant bit, and byte 7
		contains the most significant bit.
		e=1,s=1: d contains the data of length 4-n to be downloaded, the
		encoding depends on the type of the data referenced
		by index and sub-index.
		e=1,s=0: d contains unspecified number of bytes to be
		downloaded.
x	:	not used, always 0
reserved	:	reserved for further use , always 0


Download Segment Protocol

ccs	:	client command specifier
		0: download segment request
SCS	•	server command specifier
		1: download segment response
seg-data	•	It is at most 7 bytes of segment data to be downloaded. The
		encoding depends on the type of the data referenced by index
		and sub-index.
n	:	It indicates the number of bytes in segment data that do not
		contain segment data. Bytes [8-n, 7] do not contain segment
		data. n = 0 if no segment size is indicated.
С	•	It indicates whether there are still more segments to be
		downloaded.
		0 more segments to be downloaded
		1: no more segments to be downloaded
t	:	toggle bit
		This bit must alternate for each subsequent segment that is
		downloaded. The first segment will have the toggle-bit set to 0.
		The toggle bit will be equal for the request and the response
		message.
X	:	not used, always 0
reserved	:	reserved for further use , always 0

SDO Download Example

When the SDO download example has been applied, the procedure in the below figure may be applied.

SDO Download with normal transfer

Since all of those object entries, which can be written, in the I-7231D are equal or less than 4 bytes, we can only provide the demo for expedited transfer.

• Example for expedited transfer

Step 1. Send the Rx SDO message to the I-7231D to access the object entry with index 0x1400 and sub-index 02 stored in the communication profile area. Here, change the value of this object entry to 5. Assume that the node ID for the I-7231D is set to 1.

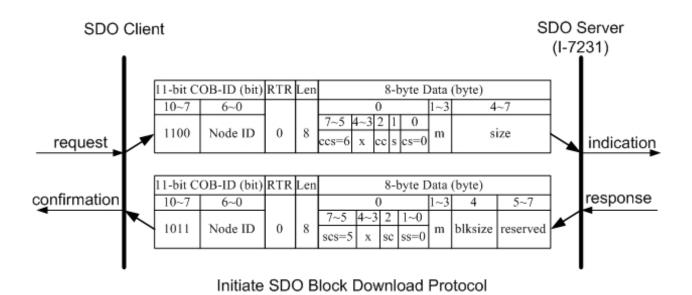
		1	11-b	it C	OB-	ID (bit)					Data			8-h	/te Da	ata (b	vte)		
Fu	unc (Cod	е			N	ode	ID			RTR				0-03			yic)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	2F	00	14	02	05	00	00	00
					•	•		•	•	•	•		•	•			S	DO s	serv	er
3	DO	CII	en	[((I-72	31D)
	ccs	5	:		1															
	n		:		3															
	е		:		1															
	S		:		1															
	m		:	(00 [,]	14	02													
	d		:	(05															

Step 2. The I-7231D will response the message to finish the data download. Afterwards, users can use upload methods mentioned before to read back the value for confirmation.

			11-b	it C	OB-	ID (bit)					Data			0 h)	rte Da	ata (h	vto)		
Fι	unc (Cod	е			No	ode	ID			RTR				0-Dy			yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	60	00	14	02	00	00	00	00

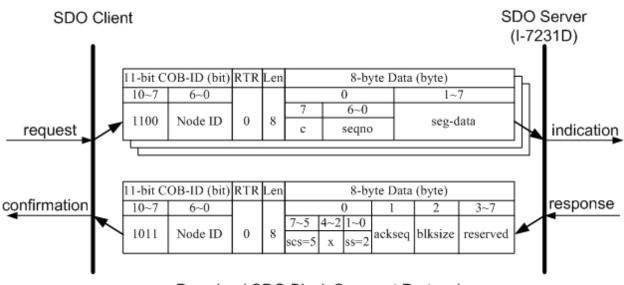
SDO server

(I-7231D)


SDO client

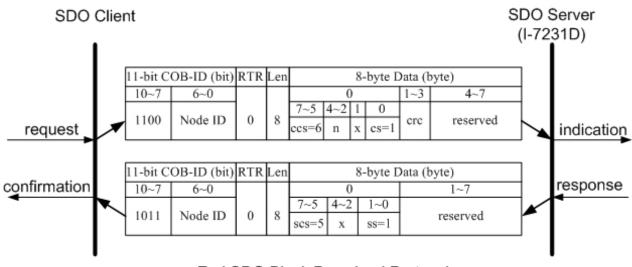
scs : 3 m : 00 14 00

5.1.4 SDO Block Download


The procedure of SDO Block Download is similar with the SDO Block Upload. There are three steps during the SDO Block Download. The Initiate SDO Block Download protocol is the beginning protocol for SDO Block Download. In this protocol, the SDO server and SDO client communicate each other to prepare the necessary information. Afterwards, the SDO Block Download protocol is used. And, SDO client start to send data to SDO server. After finishing the data transmission, the client and server will use the End SDO Block protocol to terminate the SDO Block Download. The following figures are the structures for the three protocols.

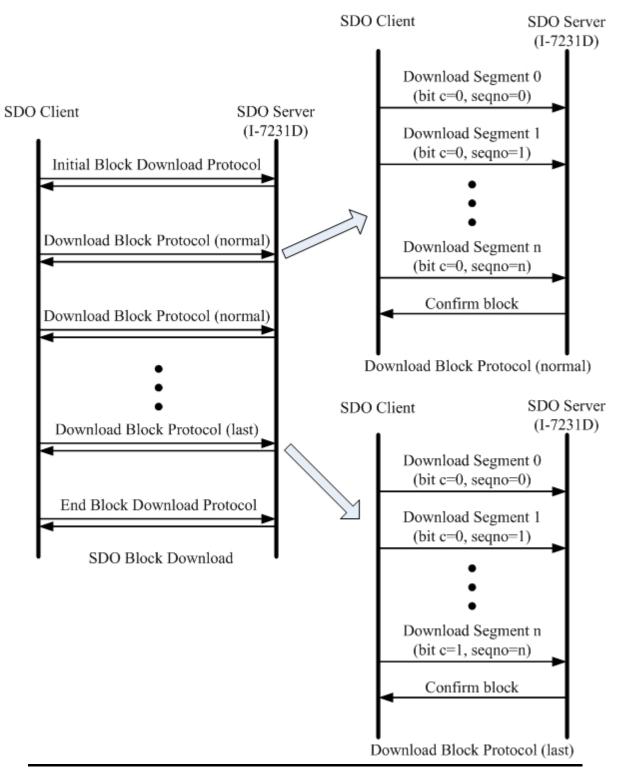
Initiate SDO Block Download Protocol

ccs	:	client command specifier
		6: block download
SCS	:	server command specifier
		5: block download
S	:	size indeicator
		0: Data set size is not indicated.
		1: Data set size is indicated.
CS	:	client subcommand
		0: initiate download request
SS	:	server subcommand
		0: initiate download response
CC	:	client CRC support
		cc=0: Client does not support generating CRC on data.
		cc =1: Client supports generating CRC on data.
SC	:	server CRC support
		sc=0: Server does not support generating CRC on data.
		sc =1: Server supports generating CRC on data.
m	:	multiplexor
		It represents the index/sub-index of the data to be transfer by the
		SDO.
size	:	download size in byes
		s =0: Size is reserved for further use, always 0.
		s =1: Size contains the number of bytes to be downloaded. Byte
hlko:=o		4 contains the LSB and byte 7 is the MSB.
		number of segments per block with 0 < blksize < 128
X		not used, always 0
16261760	•	reserved for further use , always 0


Download SDO Block Segment Protocol

SCS	:	server command specifier
		5: block download
SS	:	server subcommand
		0: initiate download response
С	:	It indicates whether there are still more segments to be
		downloaded.
		0: more segments to be downloaded
		1: no more segments to be downloaded , enter 'End block
		download' phase
seqno	:	sequence number of segment, 0 < seqno < 128
seg-data	:	It is at most 7 bytes of segment data to be downloaded.
ackseq	:	sequence number of last segment that was received
		successfully during the last block download
		If ackseq is set to 0, the server indicates the client that the
		segment with the sequence number 1 was not received correctly
		and all segments have to be retransmitted by the client.
blksize	:	number of segments per block that has to be used by client for
		the following block download with 0 < blksize < 128
X	:	not used, always 0
reserved	:	reserved for further use , always 0

End SDO Block Download Protocol



ccs	:	client command specifier.
		6: block download
SCS	:	server command specifier.
		5: block download
CS	:	client subcommand
		1: end block download request
SS	:	server subcommand
		1: end block download response
n	:	It indicates the number of bytes in the last segment of the last
		block that do not contain data. Bytes [8-n,7] do not contain
		segment data.
crc	:	16 bit Cyclic Redundancy Checksum (CRC) for the whole data
		set.
		The algorithm for generating the CRC is as follows.
		x^16+x^12+x^5+1
		× 10 ¹ × 12 ¹ × 3 ¹ 1
		CRC is only valid if in Initiate Block Download cc and sc are set
		to 1. Otherwise, crc has to be set to 0. For I-7231D, it is not
		support CRC check mechanism.
Х	:	not used, always 0
reserved	:	reserved for further use , always 0

SDO Block Download Example

In this demo, the value of the object entry with index 0x1400 and sub-index 0x02 will be changed to 5 by using the SDO Block Download communication method. When the SDO Block Download is running, the procedure looks as follows.

Step 1. In order to inform the I-7231D that the value of the object entry with index 0x1400 and sub-index 02 will be modified by using the SDO Block Download method, the Initiate SDO Block Download protocol is implemented.

		1	l1-b	it C	OB-	ID (bit)					Data			8 by	to Dr	ata (b	vto)		
Fu	inc (Cod	е			No	ode	ID			RTR	Length			0-Dy		ata (D	yte)		
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	C0	00	14	02	00	00	00	00
e	DO	ام ا	oni		_												S	DO s	serv	er
3	00	CII	em														((I-72	31D)
(ccs	5	:	6	6															
	сс		:	()															
	S		:	()															
	cs		:	()															
	m		:	()0 ⁻	14 (02													
5	size	;	:	()															
				E	Bec	au	se t	he	val	ue	of s is	0, the s	size i	s no	t us	ed.				

Step 2. The I-7231D responds to the message by using the Initiate SDO Block Download protocol. Afterwards, the SDO client can start to download the object's data with index 0x1400 and sub-index 02 to I-7231D.

Fur		Cod	е		OB-	N	ode	1			RTR	Data Length		1	-	1	ata (b		1	
10	9	8	7	6	5	4	3	2	1	0			0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	A0	00	14	02	7F	00	00	00
S	scs sc s ss m	-	ent		5 5 5 5 5 5 7 7 7	14	02											DO 9 (1-72		

Step 3. The SDO client starts to transmit the data of the object entry index 0x1400 and sub-index 02 by using the Download SDO Block Segment protocol. Seeing as the data length of the value is less than the maximum data length of one block, the SDO Block Segment Download protocol is only implemented once.

		1	1-bit	t CC)B-I	D (b	oit)					Data			9 hu	to Dr	ata (b	wto)		
Fι	unc (Code	;			No	ode	ID			RTR	Length			0-Dy		ala (u	yte)		
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	81	05	00	00	00	00	00	00
S	DO	clid	ont													_	S	DO 9	serv	er
0		CIR	5111														((I-72	31D)
	С		:		1															
S	eqn	0	:		1															

seg-data

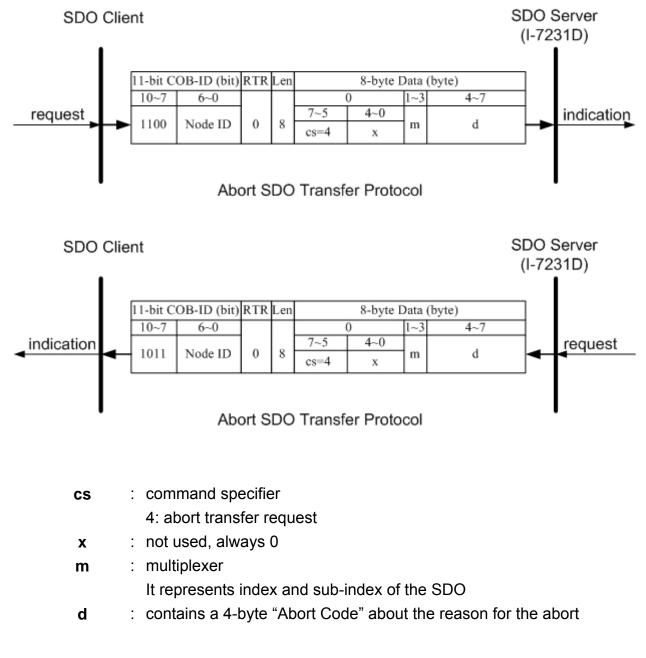
05

:

Step 4. The I-7231D responds to the message to confirm if the transmission is successful or not. If not, this block needs to be transmitted again. After finishing the data transmission, the Download SDO Block Segment protocol is terminated.

		1	l1-b	it C	OB-	ID (bit)					Data			8-by	te Da	ata (b	vto)		
Fu	inc (Cod	е			No	ode	ID			RTR				0-Dy		ata (D	yie)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	A2	01	7F	00	00	00	00	00
6		ام	0.04	L													S	DO 9	serv	er
3	SDO client																(I-72	31D)
:	scs	5	:	Ę	5															
	SS		:	2	2															
ac	:ks	eq	:	(01															
bl	ksi	ze	:	7	7F															

Step 5. The SDO client sends the ending message to finish the SDO Block Download.

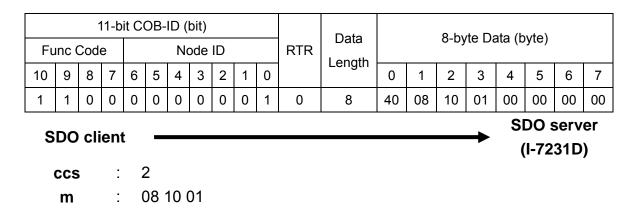

		1	l1-b	it C	OB-	ID (bit)					Data			8 by	to Dr	ata (b	vto)		
Fu	inc (Cod	е			No	ode	ID			RTR	Length			0-Dy		מום (נו	yie)		
10	9	8	7	6	5	4	3	2	1	0		Lengui	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	D5	00	00	00	00	00	00	00
e		ام	oni		_												S	DO s	serv	er
3	SDO client																((I-7 2	31D)
	ccs	5	:	(6															
	n		:	Į	5															
	CS		:		1															
	crc		:	(00 (00														

Step 6. The I-7231D responds to the message to terminate the End SDO Block Download protocol.

Fu	inc (l1-b e	it C	OB-		bit) ode	ID			RTR	Data			8-by	rte Da	ata (b	yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	A1	00	00	00	00	00	00	00
_	DO	-	ent		◄														serv 31D	
	SCS)		•)															

5.1.5 Abort SDO Transfer Protocol

In some situations, the SDO client or SDO server needs to terminate the SDO transmission. For example, the value of entries which users want to modify does not exist or is read-only, or users wouldn't like to continue with the uncompleted SDO protocol under some special conditions. When these situations occur, both the client and the server can be activated to send the Abort SDO Transfer message. The Abort SDO Transfer protocol is shown below.



Abort Code	Description
0503 0000h	Toggle bit not alternated.
0504 0000h	SDO protocol timed out.
0504 0001h	Client/server command specifier not valid or unknown.
0504 0002h	Invalid block size (block mode only).
0504 0003h	Invalid sequence number (block mode only).
0504 0004h	CRC error (block mode only).
0504 0005h	Out of memory.
0601 0000h	Unsupported access to an object.
0601 0001h	Attempt to read a write only object.
0601 0002h	Attempt to write a read only object.
0602 0000h	Object does not exist in the object dictionary.
0604 0041h	Object cannot be mapped to the PDO.
0604 0042h	The number and length of the objects to be mapped would exceed PDO length.
0604 0043h	General parameter incompatibility reason.
0604 0047h	General internal incompatibility in the device.
0606 0000h	Access failed due to an hardware error.
0607 0010h	Data type does not match, length of service parameter does not match
0607 0012h	Data type does not match, length of service parameter too high
0607 0013h	Data type does not match, length of service parameter too low
0609 0011h	Sub-index does not exist.
0609 0030h	Value range of parameter exceeded (only for write access).
0609 0031h	Value of parameter written too high.
0609 0032h	Value of parameter written too low.
0609 0036h	Maximum value is less than minimum value.
0800 0000h	General error.
0800 0020h	Data cannot be transferred or stored to the application.
0800 0021h	Data cannot be transferred or stored to the application because of local control.
0800 0022h	Data cannot be transferred or stored to the application because of the present device state.
0800 0023h	Object dictionary dynamic generation fails or no object dictionary is present (e.g. object dictionary is generated from file and generation fails because of an file error).

Abort SDO Transfer Example

The object index 0x1008 doesn't have the sub-index 01 entry. Therefore, if users read the object entry with index 0x1008 and sub-index 01, the I-7231D will response the Abort SDO Transfer message. We will also use this point as a demo to follow.

Step 1. Send the Rx SDO message to the I-7231D to obtain the object entry with index 0x1008 and sub-index 01. Assume that the node ID for the I-7231D is set to 1.

Step 2. The I-7231D will respond to the Abort SDO message as its indication.

	11-bit COB-ID (bit)											Data			0 hu	to Dr	ata (h	wto)		
Func Code Node ID							RTR		8-byte Data (byte)											
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	80	08	10	01	11	00	09	06

SDO client

cs : 4

m : 08 10 01

d : 11 00 09 06

Because low byte needs to transfer firstly, the data are "06 09 00 11" after converting. Therefore, after searching the Abort Code table described above, this Abort Code can be interpreted as "Sub-index does not exist".

SDO server

(I-7231D)

5.2 PDO Communication Set

5.2.1 PDO COB-ID Parameters

Before using the PDO to transmit the real-time data, it is necessary to check the COB-ID parameter of this PDO in the PDO communication objects. This parameter determines the COB-ID of the PDO communication. It has 32 bits, and the meaning of each bit is given in the table follow.

Bit Number	Value	Meaning
31 (MSB)	0	PDO exits (PDO is valid)
	1	PDO does not exist (PDO is not valid)
30	0	RTR allowed on this PDO
	1	No RTR allowed on this PDO
29	0	11-bit ID (CAN 2.0A)
	1	29-bit ID (CAN 2.0B)
28-11	0	If bit 29=0
	х	If bit 29=1: 28-11 bits of 29-bit COB-ID
10-0 (LSB)	х	10-0 bits of COB-ID

Note: I-7231D only supports CAN 2.0A.

In the following table, the default PDO COB-ID parameters are presented.

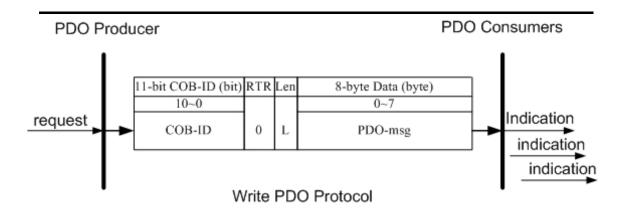
	Default COE	3-ID of PDO
Number of PDO	Bit10~Bit7	Bit6~Bit0
	(Function Code)	
TxPDO1	0011	Node ID
TxPDO2	0101	Node ID
TxPDO3	0111	Node ID
TxPDO4	1001	Node ID
RxPDO1	0100	Node ID
RxPDO2	0110	Node ID
RxPDO3	1000	Node ID
RxPDO4	1010	Node ID

- Note: 1. Users can also define the PDO COB-ID by themselves. Actually, all of the COB-ID can be defined by users except the reserved COB-ID described in the table in section 3.1. When users want to define the COB-ID, it is important to avoid the conflict with the COB-ID used in the same node.
 - The PDO COB-ID parameters cannot be changed if the PDO is valid (bit 31 =0).

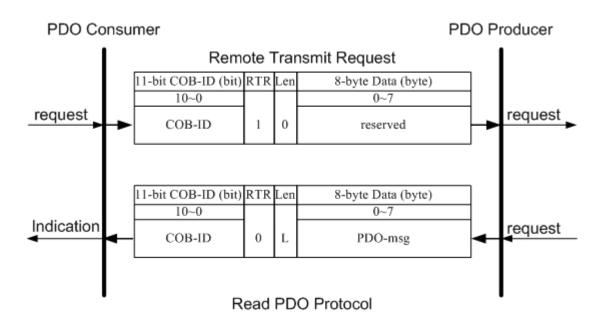
5.2.2 Transmission Type

The transmission type is one of several parameters defined in PDO communication objects with sub-index 02. Each PDO has its own transmission type. The transmission type indicates the transmission/reception character for its corresponding PDO. The following table describes the relationship between the value of the transmission type and the PDO character. For example, if users used transmission type 0 for 1st TxPDO, the CANopen device will follow the rule of the acyclic and synchronous PDO transmission.

Transmission		PC	DO Transmissio	n method	
Туре	cyclic	acyclic	synchronous	asynchronous	RTR only
0		0	0		
1-240	0		0		
241-251			reversed		
252			0		0
253				0	0
254				0	
255				0	


- Note: 1. Transmission type 1-240 indicates how many SYNC objects the TxPDO will be triggered by. The RxPDO is always triggered by the following SYNC upon reception of data independent of the transmission types 0-240.
 - Transmission type 252 and 253 are only used for TxPDO. Transmission type 252 means that the data is updated (but not sent) immediately after reception of the SYNC object. The PDO is only transmitted on remote transmission requests for these two transmission types.
 - 3. For the transmission types 254 and 255, the event timer can be used in the TxPDO. The PDO, which includes the DI value, will be sent when the DI value is changed. For the RxPDO, both of these two types mean that receiving the RxPDO will directly trigger an update of the mapped data.

5.2.3 PDO Communication Rule


The PDO related objects are indicated from index 0x1400 to 0x1BFF. For the I-7231D, RxPDO communication objects are from index 0x1400 to index 0x141F, and RxPDO mapping objects are from index 0x1600 to index 0x161F. The ranges of the TxPDO communication objects and the mapping objects are from index 0x1800 to index 0x181F and from index 0x1A00 to index 0x1A1F respectively. Moreover, each PDO communication object has its own PDO mapping object.

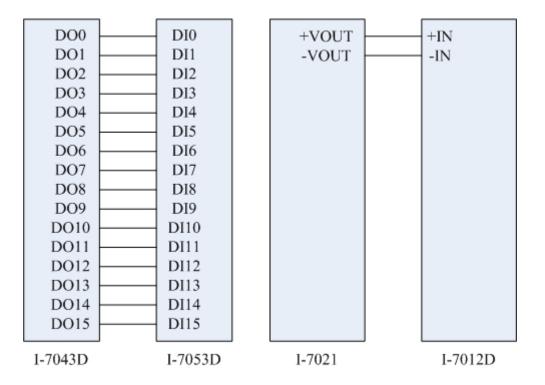
For example, the first RxPDO communication object is stored in the entry with index 0x1400, and the corresponding mapping object is stored in an entry with index 0x1600. The object with index 0x1401 and the object with index 0x1601 are the couple, and so on. The TxPDO also follows the same rules. The first TxPDO communication object is stored in the entry with 0x1800, and the corresponding mapping object is in the 0x1A00 entry, and so on. Therefore, before users access the practical I/O channels via PDO communication, each parameter for the PDO communications and mapping objects must be handled.

Besides, PDO communications can be only applied in the NMT operational state. Users can use the NMT module control protocol to change the NMT state of the I-7231D. It is described in section 5.3. Incidentally, during communication via the PDO messages, the data length of the PDO message must match with the PDO mapping object. If the data length 'L' of the PDO message exceeds the total bytes 'n' of the PDO mapping object entries, only the first 'n' bytes of the PDO message are used by the PDO consumer. If L is less than 'n', the PDO message will not be processed by the PDO consumer, and an Emergency message with error code 8210h will be transmitted to the PDO producer. The PDO communication set is shown as follows.

COB-ID : the defautl PDO COB-ID, or the PDO COB-ID defined by user
 L : the data length about how many bytes the PDO message has
 PDO-msg : the real-time data or the data which can be mapped into the PDO mapping objects

- COB-ID : the defautl PDO COB-ID, or the PDO COB-ID defined by user
 L : the data length about how many bytes the PDO message has
- **PDO-msg** : the real-time data or the data which can be mapped into the PDO mapping objects

PDO Communication Example


To take a look at a PDO communication demo, some DCON modules may be needed. They are I-7043D (or I-7043), I-7053D (or I-7053), I-7021 and I-7012D (or I-7012), and their RS-485 module addresses are configured as 0x01, 0x02, 0x03, and 0x04 respectively. The output ranges for the I-7021 and I-7012D modules are 0~10V and -10V~+10V respectively. The Baud rate and checksum of these modules are set to 9600bps and to disable. When users want to configure the DCON modules, the following procedure is the best for reference.

- Connect the PC RS-485 COM port with the RS-485 port on one of the DCON modules. If there is no RS-485 COM port on your PC, the RS-232/RS-485 converter, I-7520, may be needed.
- Turn this DCON module's power on. Then, follow the steps described in the quick start on the DCON Utility on-line Help menu to ensure the correct configuration.
- Afterwards, turn the DCON Module's power off, and disconnect this DCON module with the PC RS-485 COM port.
- Repeat the steps mentioned above until all of the DCON modules have been configured.

After finishing the configurations, users can connect all the DCON modules to their PC simultaneously, and scan them by using the DCON Utility. The result may look like as follows.

4	DCON Uti	ility						<u>_ 0 ×</u>
E	jile <u>⊂</u> OM Po	ort <u>S</u> earch	<u>R</u> un <u>T</u> ern	ninal <u>H</u> elp				
	[he I-7000	/8000 Mo	dules Found	l				
		3						
L	Module	Address	Baudrate	Alarm	Checksum	Description		
	7043D 7053D 7021 7012D	1[1] 2[2] 3[3] 4[4]	9600 9600 9600 9600	Disable	Disable Disable Disable Disable	16*D0 16*DI 0 ~ +10 V +/- 10 V		
		ng Status t: ICOM 1		ss: 10[de	cl [A[hex]		Baud Rate:	9600

Once completing your configurations, connect these four DCON modules with COM2 of the I-7231D, and each I/O channels for these modules should be wired as follows.

Use the CAN Gateway Utility to set the node ID of the I-7231D, CAN bus baud rate, RS-485 baud rate, and RS-485 checksum to 1, 125Kbps, 9600bps, and disable respectively. The following figures are extracted from the CAN

Gateway Utility windows.

PDO NO.	COB-ID (Hex)	Transmission Type	Inhibit Time	Event Timer	Mapping 0	Mapping 1	Mapping 2
1	201	255	Reversed	Reversed	0x1-7043:00~07	0x1-7043:08~15	0x4-7012:00~01
2	301	255	Reversed	Reversed	0x3-7021:0	0x3-7021:0	
3	401	255	Reversed	Reversed	;	;	;
4	501	255	Reversed	Reversed	;	;	:

RxPDO Information

PDO NO.	COB-ID (Hex)	Transmission Type	Inhibit Time	Event Timer	Mapping 0	Mapping 1	Mapping 2
1	181	255	0	0	0x2-7053:00~07	0x2-7053:08~15	0x4-7012:00~00
2	281	255	0	0	0x4-7012:0	0x4-7012:0	:
3	381	255	0	0			;
4	481	255	0	0	;	;	:

TxPDO Information

Index	0x6000	0x6200	0x6206	0x6207
Description	Read DI (8-bit)	Write DO (8-bit)	DO Err Mode (8-bit)	DO Err Output (8-bit)
Subindex0	3	3	3	3
Subindex1	0x00 (0x2-7053:00-08)	0x00 (0x1-7043:00-08)	0xFF (0x1-7043:00-08)	0x00 (0x1-7043:00-08)
Subindex2	0x00 (0x2-7053:08-16)	0x00 (0x1-7043:08-16)	0xFF (0x1-7043:08-16)	0x00 (0x1-7043:08-16)
Subindex3	0x00 (0x4-7012:00-01)	0x00 (0x4-7012:00-02)	0xFF (0x4-7012:00-02)	0x00 (0x4-7012:00-02)
				-

0x6401	0x6411	0x6443	0x6444
Read AI (16-bit)	Read AO (16-bit)	A0 Err Mode	AO Err Output (16-bit)
1	1	1	1
0x0000 (0x4-7012:1)	0x0000 (0x3-7021:1)	1 (0x3-7021:1)	0 (0x3-7021:1)

Standardized Device Profile Area Information

After concluding the prior preparations above, we will introduce several functions of PDO communication in this demo. They are shown as follows.

- Access digital I/O & analog I/O with asynchronous PDO.
- Use Event Timer to obtain the input value.
- The function of the acyclic and synchronous RxPDO.
- The function of the acyclic and synchronous TxPDO.
- The function of the cyclic and synchronous TxPDO.
- The function of the synchronous and RTR-only TxPDO.
- The function of the asynchronous and RTR-only RxPDO.
- Dynamic PDO mapping for DI/AI/DO/AO channels

Before starting this demo, the step0 must be checked. Assume that the default COB-ID for each communication object is being used.

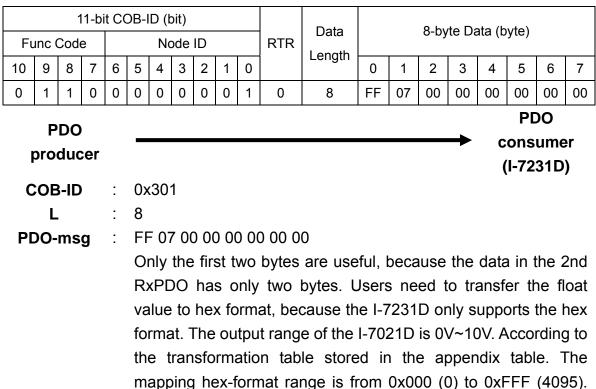
Step0: The following message must be sent for changing the NMT state of the I-7231D first, because the PDO communication can only run under the NMT Operational state.

			11-b	it C	OB-	ID (bit)					Data	8-byte Data (byte)							
Func Code Node ID							RTR	Length			0-Dy			yte)						
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0	0	0	0	8	01	01	00	00	00	00	00	00
N	NMT master 1															→		IMT (I-72		-

cs : 1 **Node ID** : 1

• Access Digital I/O & Analog I/O

Step 1. In order to change the DO value fot the I-7043 and I-7012 to be 0x1234 and 0x00 respectively, users must send the PDO message by using the 1st RxPDO.

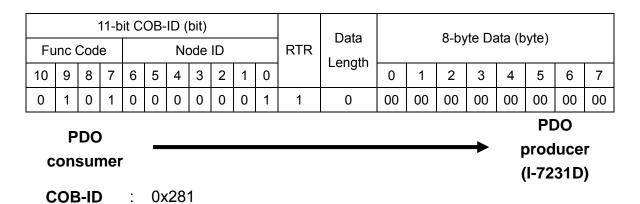

		1	1-bi	t CO	DB-I	D (t	oit)					Data			0 h	de D	ata (h	v (to)		
Fu	inc (Code	Э			No	ode	ID			RTR	Data Length			o-n)	/te Da	ala (D	yte)		
10	9	8	7	6	5	4	3	2	1	0		0	1	2	3	4	5	6	7	
0	1	0	0	0	0	0	0	0	0	1	0	8	34	12	00	00	00	00	00	00
	П					PDO														
-	PDO producer															→	С	ons	ume	er
Ą	•																((I-72	31D)
С	OE	3-ID		:	0x	20 ⁻	1													
	L			:	8															
PD	00-	ms	g	:	34	12	2 00	00 (00 (00 (00 00	C								
					0	nly	the	e fi	rst	thr	ee by	tes are	use	ful e	even	the	Li	is se	et to	8,
					be	ecal	Jse	th	e d	ata	in th	e1st Rx	PDC) co	ntair	ns o	nly t	hree	e byt	es.
					Ac	cco	rdir	ng t	o th	ie F	DO m	napping	table	e sho	own	abo	ve, t	he fi	rst b	yte
					is	the	e D	00	~D	07	chan	nel valu	es c	of th	e I-7	7043	D. 1	Гhe	seco	ond
					by	∕te i	s tl	ne	DO	8~[0015	channel	valu	Jes (of th	e I-7	' 043	D. A	nd,	the
last byte is the DO												01 chani	nel v	alue	es of	the	I-70	12D		
last byte is the DOU~DOT cl																				

Step 2. Owing to the change of the DI-channel status, the TxPDO is transmitted automatically when the transmission type is 255. It is based on the CANopen spec 401. Hence users will receive the 1st TxPDO message.

11-bit COB-ID (bit)												Data	8-byte Data (byte)							
Fur	Node ID							RTR		o-byte Data (byte)										
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
0	0	1	1	0	0	0	0	0	0	1	0	3	СВ	ED	01	00	00	00	00	00
PDO												PDO								
consumer											producer					r				
	011.	Sun															((I-72	31D)
COB-ID			: 0x181																	
L			:	3																
PD	: CB ED 01 00 00 00 00 00																			

The DI value is 1 if the DI is OFF, because of the character of the I-7043D and I-7012D DI channels. Therefore, the first byte indicates that the DI2, DI4, and DI5 of the I-7053D are ON. The second byte shows that the DI9 and DI12 of the I-7053D are ON. The last byte means the DI0 of the I-7012D is OFF.

Step 3. In order to output 5V to the AO0 of the I-7021, users must send the PDO message by using the 2nd RxPDO.



Therefore, the 5V is mapped to the 0x7FF by applying following equation.

$$HexValue = \left(\frac{5V - 0V}{10V - 0V}\right) * (4095 - 0) + 0 = 2047.5 \approx 2047 = 0x7FF$$

The first two bytes of the PDO message will be filled with "FF" and "07". For more details about how to transfer the value between the hex and float, please refer to section 6.3.

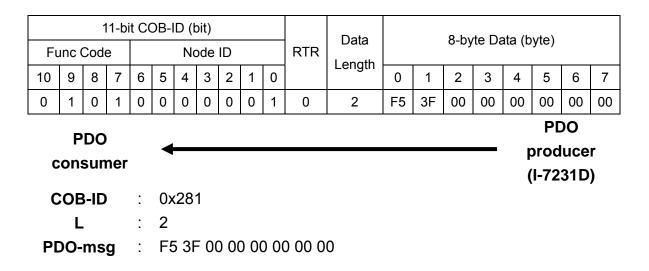
Step 4. Even the AI input value will be changed, the RxPDO will not respond automatically in the I-7231D. Therefore, users need to use the RTR message from the 2nd TxPDO to read back the AI value.

Step 5. The feedback value for AI is 5V.

		1	1-bi		ופר		hit)													
					50-1		,				ото	Data			8-by	rte Da	ata (b	yte)		
FL	inc (Code	e		1	INC	ode	טו	1	1	RTR	Length			1	1	1		1	
10	9	8	7	6	5	4	3	2	1	0		- 0-	0	1	2	3	4	5	6	7
0	1	0	1	0	0	0	0	0	0	1	0	2	F5	3F	00	00	00	00	00	00
	–			•				•					•		•	•	•	P	00	
	Р	DO															r	orod	uce	r
С	on	sun	ner														-	I-72		
C	COB-ID)		0x	(28)	1										``	–	• • • •	,
Ŭ	COB-ID L					.20	•													
	L	•		÷	2															
PD	00-	ms	g	:	F٤	5 3F	= 00	00 0	00 0	00 0	0 00 0	0								
					Tł	ne f	eed	dba	ck	۸I	value	is 3FF5.	Use	ers a	lso i	need	to t	rans	sfer	this
					va	alue	to	flo	at	Th	e I-70	12D's ir	tuar	float	ran	ne i	s se	t to	-10\	/~
													•			•				
					+	100	a	na	the	e ir	iput n	ex rang	je is	s fro	om (1X80	00 (-32	(68)	το
					0>	(7F	FF	(32	276	7).	The v	alue 0x	3FF	5 (16	6373) ca	n be	e tra	nsfe	red
				by	/ us	ing	the	e fo	llov	ving e	quation.									
					5		5				-	-								
									(163	73 (32768)	١							
				F_{i}	loat	Val	lue	=	207	$\frac{13-(-)}{67}$	- 32768) - 32768)	*(10)V –	(-10	V))+	-(-1	0V)			
									(.	521	07 - (-	- 52/08)	/							

• Event Timer Functionality

Step 6. Use the SDO to change the event timer of the 2nd RxPDO to 1000, which is stored in index 0x1801 with sub-index 5. The value 1000 means 1 second, because the unit in the event timer is ms,


		1	11-b	it C	OB-	ID (bit)					Data			8_h	/to D/	ata (b	vto)		
Fu	inc (Cod	е			No	ode	ID			RTR				0-Dy		ala (D	yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	2B	01	18	05	E8	03	00	00
6		cli	0.01													_	SI	DO 9	serv	er
3	DO	CII	en														(I-72	31D)
(ccs	5	:		1															
	n		:		2															
	е		:		1															
	S		:		1															
	m		:	()1 [·]	18 (05													
	d		:	I	E8	03														
				-	The	e va	lue	0x	03E	E8 i	is equ	al to 100)0.							

Step 7. The I-7231D will response the message to finish the data download.

			11-b	it C	OB-	ID (bit)					Data			8-h	/te Da	ata (h	vte)		
Fu	unc (Cod	е			N	ode	ID			RTR	Length			0-03		מומ (ה	yie)		
10	9	8	7	6	5	4	3	2	1	0		Lengui	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	60	00	18	05	00	00	00	00
-	DO		ien	-	3														serv 31D	

m : 00 18 05

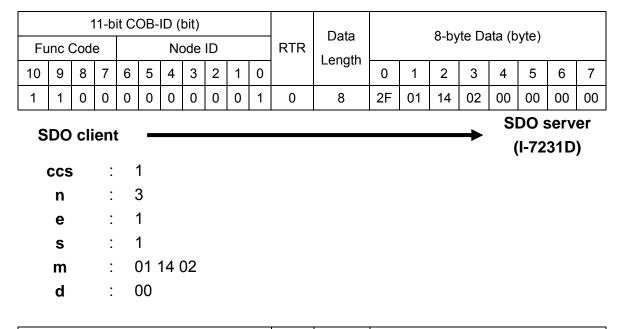
Step 8. After changing the value of the event timer, the AI value will be transmitted automatically every 1 second. This is the first time the 2nd TxPDO message is received.

Step 9. This is the second time the 2nd TxPDO message is received.

			11-b	it C	OB-	ID (bit)					Data			0 h)	to D	ata (h	vto)		
Fu	inc (Cod	е			No	ode	ID			RTR	Length			о-ру	rte Da	ala (D	yte)		
10	9	8	7	6	5	4	3	2	1	0		Lengui	0	1	2	3	4	5	6	7
0	1	0	1	0	0	0	0	0	0	1	0	2	F8	3F	00	00	00	00	00	00
	D																	P	00	
c	PDO consumer																F	orod	uce	r
C		Sui															((I-72	31D)
С	OE	B-ID)	:	0>	(28	1													
	L			:	2															
PC	00-	ms	g	:	F٤	3 3 F	= 00	00 0	00 0	00 0	0 00 0	0								
	The value of 0x									x3F	F8 is	equal to	4.99	98V.	The	Al v	alue	is c	hang	jed
	because of the ne								nc	ise di	sturbanc	e or	othe	er fa	ctors	6.				

Step 10. This is the third time the 2nd TxPDO message is received.

		1	l1-bi	t CO	DB-I	D (t	oit)					Data			8-by	rte Da	ata (b	vte)		
Fι	unc (Cod	е		Node ID						RTR	Length			0-by		מום (נו	yic)		
10	9	8	7	6	5	4	3	2	1	0		Lengui	0	1	2	3	4	5	6	7
0	1	0	1	0	0	0	0	0	0	1	0	2	F8	3F	00	00	00	00	00	00
С	P	DO sun																	DO luce 31D	

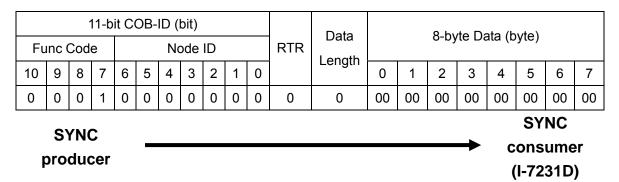

COR-ID	:	0x281
L	:	2
PDO-msg	:	F5 3F 00 00 00 00 00 00

Step 11. Set the event timer to 0 to finish the event timer test.

			1	l1-b	it C	OB-	ID (bit)					Data			0 h	to Dr	ata (b	vto)		
F	ur	nc C	Code	е			No	ode	ID			RTR	Length			о-ру		ala (D	yte)		
10)	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
1		1	0	0	0	0	0	0	0	0	1	0	8	2B	01	18	05	00	00	00	00
	٩r	າດ	cli	ent	ŀ												_	S	DO 9	serv	er
		50	CII	CIII	•													(I-72	31D)
	С	cs		:																	
		n		:	2																
		е		•		1															
		S		÷			40.0	~~													
		m		•			18 (20	J5													
		d		•	C	00 (JÜ														
			1	11_h	it Ci	OR-	ID (hit)													
F	Fur		Cod			00-	-	ont) ode	חו			RTR	Data			8-by	/te Da	ata (b	yte)		
10	-	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	-	0	1	' 1	0	0	0	0	0	0	1	0	8	60	00	18	05	00	00	00	, 00
						•	•	•	•	•		-	-						DO 9		
	SE	00	cli	ent	t														I-72		
	s	cs		:		3													L		,
	I	m		:	(. 0C	18 (05													

• Transmission Type 0 for 1st RxPDO

Step 12. Set the transmission type of the 1st RxPDO to 0.



			11-b	it C	OB-	ID (bit)					Data			Q h	rto Dr	ata (h	wto)		
Fu	unc (Cod	е			No	ode	ID			RTR	Length			0-Dy	rte Da		yte)		
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	60	00	14	02	00	00	00	00
S	DO) cli	en	t	•														serv 31D	
	SCS	5	:		3															
	m		:	(. OC	14 (02													

Step 13. Change the DO value of the I-7043 and I-7012 to be 0x5678 and 0x00 respectively by using the 1st RxPDO.

		1	l1-bi	t CO	DB-I	D (t	oit)					Data			8-by	/to D:	ata (b	(vto)		
Fι	unc (Code	е			No	ode	ID			RTR				0-by		מנמ (נ	yie)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
0	1	0	0	0	0	0	0	0	0	1	0	8	78	56	00	00	00	00	00	00
	Ρ	DO)															P	00	
I	pro	duc	er													→	-	ons (I-72		-

Step 14. The DO value will not change immediately, because of the character of the transmission type 0. The SYNC message is needed to trigger the action of the 1st RxPDO.

COB-ID : 0x80

The message of the SYNC object is always fixed as the format described above. The COB-ID of the SYNC object can be changed arbitrarily. It follows the producer/consumer relationship.

Step 15. After transmitting the SYNC object, the 1st RxPDO is triggered, and the DI value is changed. Hence, users can receive the 1st TxPDO from I-7231D.

			11-b	it C	OB-	ID (bit)					Data			8 hu	rte Da	ata (h	wto)		
Fu	inc (Cod	е			No	ode	ID			RTR				0-Dy			yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
0	0	1	1	0	0	0	0	0	0	1	0	3	87	A9	01	00	00	00	00	00
	D	DO																P	00	
~	г on:																F	orod	luce	r
U		Sui															((I-72	31D)
С	;OE	8-ID)	:	0>	(18	1													
	L	•		:	3															
PC	00-	ms	q	:	87	7 A 9	9 01	1 00	00 (0 0	0 00 0	0								

Step 16. Set the transmission type of the 1st RxPDO to 255 to finish the test.

			11-b	it C	OB-	ID (bit)					Data			0 h	to Dr	oto (b	vto)		
Fu	inc (Cod	е			No	ode	ID			RTR				0-Dy		ata (b	yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	2F	01	14	02	FF	00	00	00

SDO server

(I-7231D)

(I-7231D)

SDO client

ccs	:	1
n	:	3
е	:	1
S	:	1
m	:	00 14 02
d	:	FF

			1-b	it C	OB-	ID (bit)					Data			9 hu	rte Da	ata (h	wto)		
Fu	inc (Cod	е			No	ode	ID			RTR	Length			0-Dy			yte)		
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	60	00	14	02	00	00	00	00
							-	-	-	-			•				S	DO 9	serv	er

SDO client

: 3

m :

SCS

00 14 02

• Transmission Type 0 for 1st TxPDO

Step 17. Set the transmission type of the 1st TxPDO to 0.

		1	1-b	it C	OB-	ID (bit)					Data			8 h.	/te Da	ata (h	wto)		
Fu	inc (Cod	е			N	ode	ID			RTR	Length			0-Dy			yte)		
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	2F	01	18	02	00	00	00	00
6																	S	DO s	serv	er
3	SDO client																((I-72	31D)
	ccs	5	:		1															
	n		:		3															
	е		:		1															
	S		:		1															
	m		:	()1 ⁻	18 (02													
	d		:	(00															

			11-b	it C	OB-	ID (bit)					Data			0 h	to Dr	ata (h	vto)		
Fu	Func Code Node ID										RTR				0-Dy	/te Da	ala (D	yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	60	00	18	02	00	00	00	00

SDO client

SCS

SDO server (I-7231D)

: 3

m : 00 18 02

Step 18. Change the DO value of the I-7043 and I-7012 to be 0x90AB and 0x00 respectively by using the 1st RxPDO.

		1	1-bi	t CC	DB-I	D (t	oit)					Data			8 by		ata (h	vto)		
Fu	unc (Code	u			No	ode	ID			RTR	Length			0-DY	le Da	ata (b	yte)		
10	9	8	7	6	5	4	3	2	1	0		Lengui	0	1	2	3	4	5	6	7
0	1	0	0	0	0	0	0	0	0	1	0	8	AB	90	00	00	00	00	00	00
	Р	DO																PD	00	
F	pro				_											-	-		ume 31D	-
С	OB	8-ID		:	0×	(20	1										(<u>1-72</u>	שונ)
	-			_	0															
	L				8															

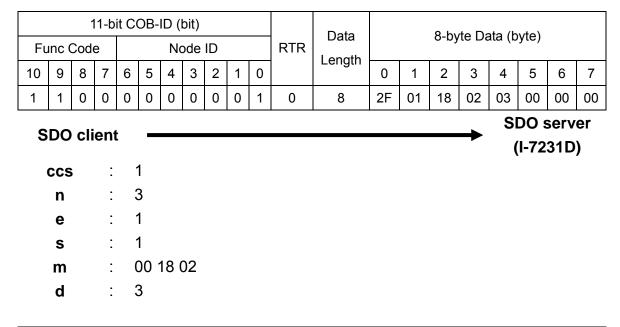
Step 19. The 1st TxPDO will not be transmitted immediately even if the DI value is changed, because of the character of the transmission type 0. The SYNC message is needed to trigger the action of the 1st TxPDO.

			11-b	it C	OB-	ID (bit)					Data			8 h	/te Da	ata (h	wto)		
Fι	inc (Cod	е			No	ode	ID			RTR	Length			0-03		מומ (נ	yie)		
10												Lengin	0	1	2	3	4	5	6	7
0											0	0	00	00	00	00	00	00	00	00
ł		YN(duo			_											→	-	SY ons (I-72		-

COB-ID : 0x80

Step 20. After transmitting the SYNC object, the 1st TxPDO is triggered, and users can receive the 1st TxPDO from I-7231D.

		1	1-bi	t CO	DB-I	D (t	oit)					Data			8 h	/te Da	ata (h	wto)		
Fu	unc (Code	9			No	ode	ID			RTR	Length			o-0y		ala (D	yte)		
10	9	8	7	6	5	4	3	2	1	0		Lengui	0	1	2	3	4	5	6	7
0	0	1	1	0	0	0	0	0	0	1	0	3	54	6F	01	00	00	00	00	00
	PDO																P	00		
~	PDO															k	orod	luce	r	
U		Sun															((I-72	31D)
С	;OE	3-ID		•	0x	(18	1													
	L			:	3															
PD	00-	ms	g	:	54	4 6 F	01	1 00	00 (0 00	0 00 0	0								


Step 21. Send the SYNC message again.

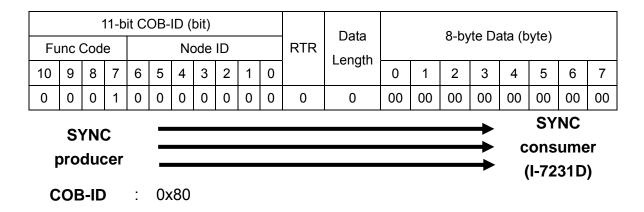
Fu	unc (it C	OB-		bit) ode	ID			RTR	Data			8-by	⁄te Da	ata (b	yte)		
10												Length	0	1	2	3	4	5	6	7
0											0	0	00	00	00	00	00	00	00	00
:	S` pro SYI SOE	٩C	er	:	0×	(80										→	-	SY ons (I-72	ume	

Step 22. Nothing has happened because the DI values don't change. This is the main difference between transmission type 0 and 1. At transmission type 1, the TxPDO is always transmitted no matter whether the DI values are changed or not, when the I-7231D receives the SYNC object.

• Transmission Type 3 for 1st TxPDO

Step 23. Set the transmission type of the 1st TxPDO to 3.

			11-b	it C	OB-	ID (bit)					Data			0 h	to Dr	ata (h	wto)		
Fu	inc (Cod	е			N	ode	ID			RTR	Length			0-Dy	rte Da	ala (L	yte)		
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	60	00	18	02	00	00	00	00
SDO client																			serv 31D	


scs : 3 m : 00 18 02

Step 24. Change the DO value of the I-7043 and I-7012 to be 0xCDEF and 0x00 respectively by using the 1st RxPDO.

		1	1-bi	t CC	DB-I	D (t	oit)					Data			8-by	to Da	ta (h	vto)		
Fι	unc (Cod	9			No	ode	ID			RTR				0-Dy			yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
0	1	0	0	0	0	0	0	0	0	1	0	8	EF	CD	00	00	00	00	00	00
I	P pro	DO duc			_											→	-	PE ons (I-72		
C	COB-ID : 0x201 L : 8 PDO-msg : EF CD 00 00 00																			

I-7231D CANopen/DCON Gateway user manual (ver. 1.04, Dec/14/2010) -----119

Step 25. The SYNC message needs to be transmitted 3 times because of the character of transmission type 3.

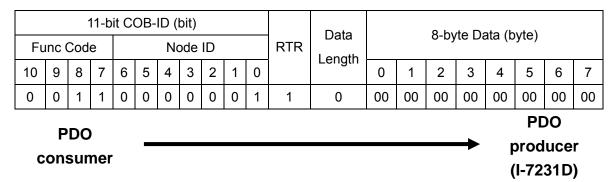
Step 26. After finishing the transmission of the three SYNC objects, the 1st TxPDO is triggered, and users can receive the 1st TxPDO from I-7231D.

		1	1-bi	it CO	OB-I	ID (ł	oit)					Data			8 h	rto Dr	ata (h	wto)		
Fu	inc (Code	e			No	ode	ID			RTR				0-03		ata (b	yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
0	0	1	1	0	0	0	0	0	0	1	0	3	10	32	01	00	00	00	00	00
с	PDO consumer																•	orod	DO luce 31D	
С	COB-ID : 0x181																			
	L : 3																			
PD	00-	ms	g	•	10) 32	2 01	00	00 (00 (00 00	C								

• Transmission Type 252 for 1st TxPDO

Step 27. Set the transmission type of 1st TxPDO to 252.

		1	I1-b	it C	OB-	ID (bit)					Data			8 h	to D	ata (b	vto)		
Fu	inc (Cod	е			No	ode	ID	-	-	RTR	Length			0-03			yte)	-	
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	2F	01	18	02	FC	00	00	00
C	1 0 0 0 0 0 1 0 8 2F 01 18 02 SDO client															_	S)O s	serv	er
Э	00	DO client															(I-72	31D))
	DO client																			
	n		:		3															
	е		:		1															
	s		:		1															
	m		:	()0 [,]	18 (02													
	d		:	I	=C															


			11-b	it C	OB-	ID (bit)					Data			8 h	rto Dr	ata (b	wto)		
Fu	unc (Cod	е			No	ode	ID			RTR	Length			0-Dy			yte)		
10												Length	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	60	00	18	02	00	00	00	00
S	DO) cli	ent	t														DO s (I-72		
	scs	5	:	(3															

m : 00 18 02

Step 28. Change the DO value of the I-7043 and I-7012 to be 0x1234 and 0x00 respectively by using the 1st RxPDO.

		1	l1-bi	t CO	DB-I	D (t	oit)					Data			8 h	rto Dr	ata (b	wto)		
Fu	unc (Code	e			No	ode	ID			RTR				0-Dy		מום (נו	yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
0	1	0	0	0	0	0	0	0	0	1	0	8	34	12	00	00	00	00	00	00
F		DO duc														→	-	ons	DO ume 31D	-
_	L	B-ID		:	0x201 8 34 12 00 00 00 00							_								
PD	00-	ms	g	:	34	12	2 00	00 (00 (00 (00 00	0								

Step 29. The 1st TxPDO will not be transmitted immediately, because of transmission type 252. Send the RTR message of the 1st TxPDO.

COB-ID : 0x181

Step 30. The feedback DI values are the old one. (If users use the I-7053D, the LEDs on the I-7053D can indicate the practical DI values).

		1	l1-bi	it CO	DB-I	ID (ł	oit)					Data			8 by	to Dr	ata (h	wto)		
Fu	unc (Code	е			No	ode	ID			RTR				0-03		ata (b	yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
0	1	0	1	0	0	0	0	0	0	1	0	2	10	32	01	00	00	00	00	00
	D	DO																P	00	
~		-			•												K	orod	luce	r
L	,011	sun	iei														((I-7 2	31D)
C	OE	8-ID)	:	0x	(18	1													
	L	•		:	2															
P	00-	ms	g	:	10) 32	2 01	00	00 (00 (00 00	C								

Step 31. Transmit a SYNC message.

			11-b	it C	OB-	ID (bit)					Data			8-hv	rte Da	ata (b	vte)		
Fu	inc (Cod	е			No	ode	ID			RTR	Length			0-by			yic)		
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
0	0	0	1	0	0	0	0	0	0	0	0	0	00	00	00	00	00	00	00	00
	51	YN	•															SY	NC	
r	oro				-											-	С	ons	ume	: r
1	510	uut															(I-72	31D)
С	;OE	3-ID)	:	0х	80														

Step 32. Send the RTR message of the 1st TxPDO again.

				it C	OB-		,				ото	Data			8-by	/te Da	ata (b	yte)		
FU	inc (-0a	e			Node ID					RTR	Length								
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
0	0	1	1	0	0	0	0	0	0	1	1	0	00	00	00	00	00	00	00	00
С	P	DC sur														-		PE prod (I-72	luce	

COB-ID : 0x181

Step 33. The feedback DI values are the practical DI values.

		1	1-bi	t CC)B-I	D (t	oit)					Data			8 by	to Da	ita (b	uto)		
Fu	inc (Code	е			No	ode	ID			RTR				0-Dy			yie)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
0	1	0	1	0	0	0	0	0	0	1	0	2	СВ	ED	01	00	00	00	00	00
	Б	DO																P	00	
~		sun			-												K	orod	uce	r
L	UII	Sun	iei														(I-72	31D)
С	OE	8-ID)	:	0x	(18	1													
	L			:	2															
PC	00-	ms	g	:	CI	ΒE	DO	01 (00 (00 (00 00	00								

• Transmission Type 253 for 1st TxPDO

Step 34. Set the transmission type of the 1st TxPDO to 253.

		1	11-b	it C	OB-	ID (bit)					Data			8-h	/to D	ata (b	vto)		
Fu	unc (Cod	е		-	No	ode	ID	-	-	RTR	Length		-	0-03			yie)	-	-
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	2F	01	18	02	FD	00	00	00
c	DO	ام ا	ani	L	_											_	SI	00 s	serv	er
3	DU	CII	en	L													(I-72	31D))
	ccs	5	:		1															
	n		:		3															
	е		:		1															
	S		:		1															
	m		:	(. OC	18 (02													
	d		:	I	FD															

			11-b	it C	OB-	ID (bit)					Data			<u>8</u> by	rto Dr	ata (b	wto)		
Fu	inc (Cod	е			No	ode	ID			RTR	Length			0-Dy		ala (L	yte)		
10	9	8	7	6	5	4	3	2	1	0		Lengui	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	60	00	18	02	00	00	00	00
S	DO	cli	ent	t														DO s (I-72		
:	scs	5	:	3	3													•		-

m : 00 18 02

Step 35. Change the DO value of the I-7043 and I-7012 to be 0x5678 and 0x00 respectively by using the 1st RxPDO.

		-	l1-bi	t CO	DB-I	D (t	oit)					Data			8-by	te D:	ata (b	wto)		
Fu	inc (Cod	e			No	ode	ID			RTR	Length			0-Dy			yie)		
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
0	1	0	0	0	0	0	0	0	0	1	0	8	78	56	00	00	00	00	00	00
		DO														→	с		DO ume	er
k	oro	duc	er														((I-72	31D)
С	;OE	3-ID)	:	0x	20	1													
	L	•		:	8															
PD	00-	ms	g	:	78	3 56	6 00	00 (00 (00 (00 00	C								

Step 36. Because of the transmission type 253, the 1st TxPDO can only be transmitted when receiving the RTR message. So, send RTR message to get the DI values.

			11-b	it C	OB-	ID (bit)					Data			8-bv	/te Da	ata (b	vte)		
Fu	inc (Cod	е			No	ode	ID			RTR	Length			j		,	j /		
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
0	0	1	1	0	0	0	0	0	0	1	1	0	00	00	00	00	00	00	00	00
с		DO sur		,												→		PE prod (I-72	uce	
С	OE	3-ID)	:	0x	(18	1													

Step 37. Set the transmission type of the 1st TxPDO to 255 to finish the test.

		1	1-b	it C	OB-	ID (bit)					Data			8-h	/te Da	ata (h	vte)		
Fu	nc (Cod	Э			No	ode	ID			RTR	Length			0-Dy		מום (ש	yte)		
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	2F	01	18	02	FF	00	00	00
c	DO	cli	ont														SI	DO 9	serv	er
0		CII	CIII	•													(I-72	31D)
(ccs		:		1															
	n		:		3															
	е		:		1															
	S		:		1															
	m		:	()0 [,]	18 (02													
	d		:	F	F															
											1		1							
			l1-b	it C	OB-	ID (bit)					Data			8-b\	/te Da	ata (h	vte)		
Fu	inc (Cod	е			N	ode	ID			RTR	Length			0.0)			<i>J</i> .c <i>)</i>		
10	9	8	7	6	5	4	3	2	1	0		Longin	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	60	00	18	02	00	00	00	00
ç	DO	cli	oni	•		1											S	DO 9	serv	er
5		CII	CIII	L													(I-72	31D)
:	scs	;	:		3															
	m		:	(00	18 (02													

• Dynamic PDO Mapping for DI/AI/DO/AO Channels

Step 38. Use the 5th TxPDO to create a new PDO communication with PDO COB-ID 0x182, you do this because the COB-ID 0x182 is useless for the I-7231D,. Before setting the COB-ID of a PDO, check bit 31 of the COB-ID first. Only the COB-ID, which has the value 0 on its bit 31, can be changed. Therefore, if users want to configure the COB-ID of a valid PDO communication (bit 31 is 1), set this PDO to an invalid state (bit 31 is 0). The COB-ID can be configured directly, because the 5th TxPDO is invalid.

			11-b	it C	OB-							Data			8-by	/te Da	ata (b	yte)		
Fu	inc (Cod	е			No	ode	ID			RTR	Length			-					
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	23	05	18	01	82	01	00	00
S	DO) cli	ient	t												→		DO s (I-72		
(ccs	5	:		1															-

105	•	I
n	:	0
е	:	1
S	:	1
m	:	05 18 01
d	:	82 01 00 00

			11-b	it C	OB-	ID (bit)					Data			0 h	to Dr	ata (h	vto)		
Fι	Func Code Node ID										RTR	Length			0-Dy	rte Da		yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	60	05	18	01	00	00	00	00

SDO server

(I-7231D)

SDO client

SCS	:	3
m	:	05 18 01

Step 39. Build a new PDO mapping object for the 5th TxPDO. Before starting to fill in the device objects into the index 0x1A05, check the value of the index 0x1A05 with sub-index 00. If the value is not equal to 0, any modification will be rejected. In this case, it is necessary to write the value to 0. Its value is 0 and can be configured directly, because the 0x1A05 has not been used before. First, fill the DI0~DI7 of the I-7053 into the index 0x1A05 with sub-index 01.

			11-b	it C	OB-	ID (bit)					Data			9 hi	to D	ata (b	wto)		
Fu	unc (Cod	е			No	ode	ID			RTR				0-Dy		ala (b	yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	23	05	1A	01	08	01	00	60
S	DO) cli														-	_	_	serv 31D	-
	CCS	5	:		1															
	n		:	()															
	е		:		1															
	S		:		1															
	m		:	()5 ⁻	1A (01													
	d		:	() 8 (01 (00	60												
				i	nde che	ex (ck crit	0x6 thi bed	000 is) wi obj	ith : ect	sub-in in tl	means th dex 01. he Star apped a	It is Idaro	an 8 dize	bit obj	data ect	unit map	. Us opinę	ers o g ta	can Ible

Fu	inc (it C	ЭB-		bit) ode	ID			RTR	Data			8-by	rte Da	ata (b	yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	60	05	1A	01	00	00	00	00
S	DO	cli	ent	t C	-												_	DO s (I-72	serv 31D	-

Step 40. Fill the DI8~DI15 of the I-7053D and AI0 of the I-7012D into the index 0x1A05 with sub-index 02 and 03 respectively.

		1	l1-b	it C	OB-	ID (bit)					Data			9 by	to Dr	ata (b	wto)		
Fu	Func Code Node ID										RTR	Length			0-Dy			yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	23	05	1A	02	08	02	00	60
S	DO	cli	ent	t												-			serv 31D	

ccs	:	1
n	:	0
е	:	1
S	:	1
m	:	05 1A 02
d	:	08 02 00 60

			11-	bit CO	DB-I	D (b	oit)				RTR	Data			8-by	∕te Da	ata (byte	e)	
Fu	Func Code Node ID											Length			I	Func	Coc	le		
10	9	8	7	10	9	8	7	10	9	8	'	10	9	8	7	10	9	8	7	10
1	0	1	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0	1	1	1
	•	•	•			•	•		•	•			•					S	DO	

server (I-7231D)

SDO client

scs : 3 m : 05 1A 02

		1	l1-b	it C	OB-	ID (bit)					Data			9 by		ata (b	vto)		
Fu	Func Code Node ID										RTR				0-Dy		ata (D	yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	23	05	1A	03	10	01	01	64

SDO cli	ient		(I-7231D)
ccs	:	1	
n	:	0	
е	:	1	
S	:	1	
m	:	05 1A 03	
d	:	10 01 01 64	

The value "64 01 01 10" means that the mapped object is stored in the index 0x6401 with sub-index 01. It is a 16-bit data unit. User can check this object in the Standardize object mapping table described above. It is mapped according to AI0 of the I-7012D. In 7231D, all analog channels are presented by 16-bit value.

		1	I1-b	it C	OB-	ID (bit)					Data			8 by		ata (b	vto)		
Fu	Func Code Node ID 10 9 8 7 6 5 4 3 2 1										RTR	Length			0-Dy			yte)		
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	60	05	1A	03	00	00	00	00
S	DO	cli	ent	t	•												_	DO s (I-72		-
:	scs	5	:		3															
	m		:	()5 ⁻	1A (03													

Step 41. In order to use this PDO mapping object normally, the value of the index 0x1A05 with sub-index 00 must be changed to 3. The value 3 means there are 3 objects mapped to the 5th TxPDO. They are the index 0x6000 with sub-index 01, index 0x6000 with sub-index 02, and index 0x6401 with sub-index 01.

-											1									
			11-b	it C	OB-	ID (bit)					Data			Q hu	to Dr	nta (h	vto)		
Fι	unc (Cod	е			No	ode	ID			RTR				0-Dy	rte Da	ala (D	yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	2F	05	1A	00	03	00	00	00
																	S		serv	٥r
S	DO	cli	ent	t												→				
-																-	(I-72	31D)
	ccs	5	:		1															
	n		:	3	3															
	е		:		1															
	~				1															
	S		•		•															
	s m		:)5 ^	1A (00													

			11-b	it C	OB-		,				DTD	Data			8-by	rte Da	ata (b	yte)		
Fι	inc (Cod	е			N	ode	ID			RTR	Longth								
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	60	05	1A	00	00	00	00	00
S	DO) cli	ent	t	•													DO : (I-72		

scs : 3 m : 05 1A 00

Step 42. Use the 5th RxPDO to create a new PDO communication with PDO COB-ID 0x202, and build the RxPDO mapping object in the index 0x1605, because the COB-ID 0x202 is useless for the I-7231D. This procedure is similar to the steps 37 to 40.

		1	l1-b	it C	OB-	ID (bit)					Data			8-h	/te Da	ata (h	vte)		
Fu	inc (Cod	е			No	ode	ID			RTR	Length			0-03			yic)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	23	05	14	01	02	02	00	00
6	DO	نام	oni		_												S	DO s	serv	er
3	00	CII	em	•													(I-72	31D)
	ccs	5	:		1															
	n		:	()															
	е		:		1															
	S		:		1															
	m		:	()5	14 (01													
	d		:	()2(02 (00 (00												
													1							
		1	l1-b	it Co	OB-	ID (bit)					Data			8-h\	/te Da	ata (h	wte)		
Fu	inc (Cod	е		-	No	ode	ID			RTR	Length			0.03			y.c)	-	
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	60	05	14	01	00	00	00	00
c	DO	نام	oni			L											S	DO 9	serv	er
3	00	CII	em	•													(I-72	31D)
:	scs	5	:		3															
	m		:	()5 ⁻	14 (01													

			11-b	it C	OB-	ID (bit)					Data			8 by	rte Da	ata (h	wto)		
Fu	inc (Cod						RTR	Length			0-Dy			yte)					
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	23	05	16	01	08	01	00	60
																	S	DO 9	serv	er

SDO client

- ccs
 :
 1

 n
 :
 0
- e : 1 s : 1
- **m** : 05 16 01
- d : 08 01 00 62

The value "62 00 01 08" means the mapped object is stored in the index 0x6200 with sub-index 01. It is an 8-bit data unit. Users can check this object in the Standardize object mapping table described above. It is mapped to the DO0~DO7 for I-7043D.

(I-7231D)

SDO server

(I-7231D)

			11-b	it C	OB-	ID (bit)					Data			9 hu	/te Da	ata (h	wto)		
Fu	inc (Cod	е		Node ID					RTR				0-Dy		ala (D	yte)			
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	0	1	1	0	0 0 0 0 0 1				1	0	8	60	05	16	01	00	00	00	00	

SDO client

SCS

m

: 3

: 05 16 01

			11-b	it C	OB-	ID (bit)					Data			8 h	rte Da	ata (h	wto)		
Fι	unc (Cod	е		Node ID						RTR				0-Dy			yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	23	05	16	02	08	02	00	62

SDO cl	ient		SDO server (I-7231D)
ccs	:	1	
n	:	0	
е	:	1	
S	:	1	
m	:	05 16 02	
d	:	08 02 00 62	

			11-b	it C	OB-	ID (bit)					Data			8-by	/te Da	ata (h	wto)		
Fι	inc (Cod	е		Node ID						RTR	Length			0-by			yie)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	60	05	16	02	00	00	00	00
_	DO scs	-	en		◄ 3													DO s (I-72		

			11-b	it C	OB-	ID (I	bit)					Data			8 by	rte Da	ta (h	vto)		
Fι	unc (Cod	е		Node ID						RTR	Length			0-Dy		iia (D	yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	23	05	16	03	10	01	11	64

SDO client

m

- ccs
 :
 1

 n
 :
 0

 e
 :
 1

 s
 :
 1
- **m** : 05 16 03
- **d** : 10 01 01 64

05 16 02

:

The value "64 11 01 10" means the mapped object is stored in the index 0x6401 with sub-index 01. It is a 16-bit data unit. Users can check this object in the Standardize object mapping table described above. It is mapped according to the AO0 of the I-7021.

SDO server

(I-7231D)

			11-b	it C	OB-	ID (bit)					Data			8 hu	/te Da	ata (h	wto)		
Fu	inc (Cod	е			No	ode	ID			RTR	Length			0-Dy			yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	60	05	16	03	00	00	00	00
S	DO	cli	ent								-							DO s (I-72		

		1	1-b	it C	OB-	·ID (bit)					Data			0 hi	to Dr	ata (h	vto)		
Fu	inc (Code	e			No	ode	ID			RTR	Data Length			o-by	/te Da	ata (D	yte)		
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	2F	05	16	00	03	00	00	00
S	חח	cli	ont		_												S	DO s	serv	er
0		CII	em	•													((I-72	31D)
	CCS	6	:	1																
	n		:	3																
	е		:	1																
	S		:	: 1 : 05 16 00																
	m		:	: 05 16 00																
	d		:	0	3															
											1	1								
			11-b	it C	OB-	-ID ((bit)				-	Data			8-b\	/te Da	ata (b	vte)		
Fu	Inc	Cod	е		1	N	ode	ID	1		RTR	Length		1	,	1	(.	, ,	1	
10	9	8	7	6	5	4	3	2	1	0		3	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	60	05	16	00	00	00	00	00
S) cli	ent	ŀ		1											S	DO :	serv	er
U			CIII														((I-72	31D)
1	SCS	5	:		3															
	m		:	(05	16	00													

Step 43. Transmit the DO0~DO15 of I-7043D and AO0 of I-7021 to be 0x90AB and 0V respectively.

		1	l1-bi	t CO	DB-I	D (ł	oit)					Data			8 by		ata (b	vto)		
Fu	unc	Cod	е			No	ode	ID			RTR				0-Dy		ala (D	yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
0	0	1	1	0	0	0	0	0	1	0	0	8	AB	90	00	00	00	00	00	00
	Ρ	DO)													→	r		DO luce	r
C	on	sun	ner														•		31D	
C	COB-ID				0x	20	2													-
P	00-	ms	g	:	AE	3 9	0 0	0 0	0											
					Tł	ne f	irst	tw	o b	yte	s are	the valu	e 0x	90A	B fo	r the	DC	0~C	0015	5 of
			th	e l-	-704	43E). 1	The	last t	two byte	es ar	e th	e va	alue	0x0	000	for	the		

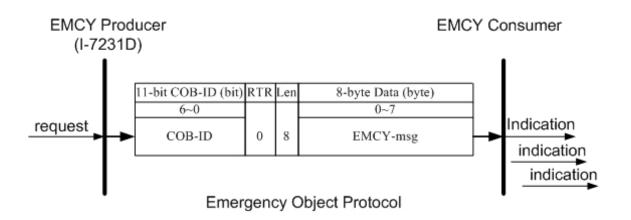
AO0 of the I-7021. Total bytes of this PDO message are 4.

Step 44. Users will receive the 1st TxPDO and 5st TxPDO simultaneously, because the DI values has changed.

		1	1-b	it C	OB-	ID (bit)					Data			8-h	/te Da	ata (b	vte)		
Fι	inc (Cod	е			No	ode	ID			RTR	Length			0-Dy			yie)		
10	9	8	7	6	5	4	3	2	1	0		Lengui	0	1	2	3	4	5	6	7
0	1	0	1	0	0	0	0	0	0	1	0	3	54	6F	01	00	00	00	00	00
	Р	DO																P	00	
		_			-												K	orod	uce	r
C	ons	sun	ner														(I-72	31D)
С	OE	8-ID)	:	0x	(18	1													
	11-bit COB-ID (bit) Data 8-byte unc Code Node ID RTR											- 1 - 71-								
Fι	Func Code Node ID										RTR				8-Dy	rte Da	ata (d	yte)		
10							0		Length	0	1	2	3	4	5	6	7			
0	1	0	1	0	0	0	0	0	1	0	0	4	54	6F	06	00	00	00	00	00
																		P	00	
_		DO			•												Ķ	orod	uce	r
С	ons	sun	ner														(I-72	31D)
С	COB-ID :					(18)	2													
							= 06	6 00)											
m	ess	sag	е		Tł	ne f	irst	tw	o b	yte	s are f	for the v	alue	0x6	F54	for t	the [DI0~	DI15	5 of
					th	e I-	705	53C). T	he	last tv	vo bytes	are	for t	the v	alue	e 0x0	0006	for	the
					Al	0 o	of th	ne l	-70	12[D. Afte	er transf	errin	g, th	ie in	put v	value	e of	the	AI0

is 0.002V.

5.3 EMCY Communication Set


5.3.1 EMCY COB-ID Parameter

The EMCY COB-ID is similar to the PDO COB-ID. It can be a default value or be defined by users via SDO communication methods. This COB-ID is stored in the object 0x1014, and the data format is shown in the following table. Before using the EMCY mechanism, bit 31 of the EMCY COB-ID needs to be confirmed.

Bit Number	Value	Meaning
31 (MSB)	0	EMCY exits (EMCY is valid)
	1	EMCY does not exist (EMCY is not valid)
30	0	reserved (always 0)
29	0	11-bit ID (CAN 2.0A)
	1	29-bit ID (CAN 2.0B)
28-11	0	If bit 29=0
	х	If bit 29=1: 28-11 bits of 29-bit COB-ID
10-0 (LSB)	х	10-0 bits of COB-ID

5.3.2 EMCY Communication

The EMCY message is triggered when some internal error occurs. After the transmission of one EMCY message, the object with index 0x1003 will record this EMCY event. Therefore, users can check this object to understand the history of the error's occurrences. The I-7231D supports a max of 5 records stored in the index 0x1003 object. Sub-index 1 of this object stores the last EMCY event, and sub-index 5 records the oldest EMCY event. The EMCY communication set is given below.

COB-ID : the EMCY COB-ID The EMCY COB-ID can be defined by user. This situation is similar to the PDO COB-ID. The default value is 4-bit function code "0001" with 7-bit node ID.

EMCY-msg : record the type or class of the occurrence error

The data format of the emergency object data follows the structure bellows.

Byte	0	1	2	3	4	5	6	7
Content	Emergency	Error Code	Error register	Manufa	acturer sp	pecific El	rror Field	

Each bit on the error register is defined as follows. The I-7231D only supports bit 0, bit 4 and bit 7.

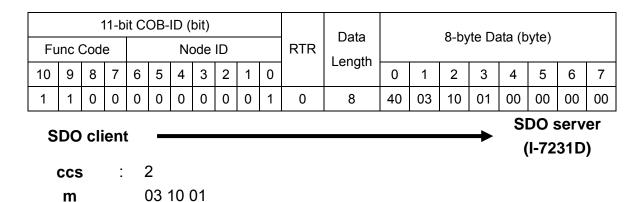
Bit	Meaning
0	generic error
1	current
2	voltage
3	temperature
4	communication error (overrun, error state)
5	device profile specific
6	reserved (always 0)
7	manufacturer specific

Emerg	ency	Error	Manufa	acturer S	Specific Error	Description
Error C	Code	Register	Field			
High	Low		First T	NO	Last Three	
Byte	Byte		Byte		Byte	
00	00	00	00	00	00 00 00	Error Reset or No Error
10	00	81	01	00	00 00 00	CAN Controller Error Occure
50	00	81	02	00	00 00 00	EEPROM Access Error
50	00	81	03	00	00 00 00	COM Port Access Error
81	10	11	04	00	00 00 00	Soft Rx Buffer Overrun
81	10	11	05	00	00 00 00	Soft Tx Buffer Overrun
81	10	11	06	00	00 00 00	CAN Controller Overrun
81	30	11	07	00	00 00 00	Lift Guarding Fails
81	40	11	08	00	00 00 00	Recover from bus off
82	10	11	09	00	00 00 00	PDO Data length Error
FF	00	80	0A	00	00 00 00	Request to reset Node or
						communication
FF	00	81	0B	??	00 00 00	The module with RS-485
						address ?? is timeout or receive
						data error more than three times.

The emergency error codes and the error register are specified in the following table.

After producing the EMCY message, the emergency object data will be saved to the object with index 0x1003, and the error register of the emergency object data will be mapped to object 0x1001. Therefore, users can use these two objects to view what has happened in the I-7231D and check the error history.

EMCY Communication Example


Assume that there is a DCON module connected with COM2 on the I-7231D. This module has the module address 01, and has one digital or analog input channel at least. The node ID of the I-7231D is 5, and the I-7231D works normally with the default COB-ID.

Step 1. In order to produce the emergency event, please cut off the RS-485 connection wire between this DCON module and the I-7231D, or turn off the DCON module.

Step 2. Afterwards, the I-7231D will respond to an emergency message when reading the input value of this DCON module fails more than three times.

											1									
		1	1-bi	it CO	OB-I	ID (t	oit)					Data			<u> 9 h</u>	to Dr	ota (h	vto)		
Fu	inc (Code	Э			No	bde	ID			RTR				0-03	/te Da	ala (D	yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
0	0	0	1	0	0	0	0	1	0	1	0	8	00	FF	81	0B	01	00	00	00
				1		1					1	I				1	1	EM	CY	
	Eľ	NC	Y														r	orod	uce	r
С	on	sun	ner														•	(I-72		
(CO	B-II)		: ()x8	1													
EN	NC	′ -m	sa		: (00 I	=F (81	0B	01	00 00	00								
			U		-	The	fir	st t	wo	bv	rtes "F	F 00" a	are e	emer	aeno	cv e	rror	code	es. 1	- he
										•		error reg			•	•				
							-					turer sp								
												•			U					
												0 00" ar								
					1	field	ls.	Thi	s e	me	rgenc	y messa	age	mea	ns t	hat t	he r	nodu	le v	vith
					á	add	res	s 0	1 h	as	timed	-out or t	his is	s a r	ead/	write	erro	or oc	curr	ing
					I	moi	e tl	han	th	ree	times	-								

Step 3. Read the 0x1003 object with sub-index 01, users will then be able to see the emergency error code of the emergency object data recording in this object.

Step 4. The I-7231D responds to the ending message.

Fu	unc (it C	OB-	-	bit) ode	ID			RTR	Data			8-by	/te Da	ata (b	oyte)							
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7					
1	0	1	1	0	0	0	0	0	0	1	0	8	43	03	10	01	00	FF	0B	01					
	1																								
	DO	-	en [:]		∢ 2												_	_		-					
	SDO scs n	-	-		4 2 0												_	_		-					

m : 03 10 01

d : 00 FF 0B 01

Step 5. Check the object 0x1001, and make sure that the manufacturer specific and generic errors on the error register are indicated.

			11-b	it C	OB-	ID (bit)					Data			8 h	/te Da	ata (h	wto)		
Fι	inc (Cod	е			N	ode	ID			RTR	Length			0-Dy			yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	40	01	10	00	00	00	00	00
_	DO ccs m	-	ent :	2	2 01 ⁻	10 (00									→		DO \$ (I-72		

Step 6. The manufacturer specific and generic errors on the error register are indicated in the received message.

			11-b	it C	OB-	ID (bit)					Data			8 h	rto Dr	ata (t	wto)		
Fu	unc (Cod	е			No	ode	ID			RTR	Length			0-03		ala (L	yie)		
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	4F	01	10	00	81	FF	0B	01
e	DO		an														S	DO s	serv	er
3	00	CII	en	L													((I-72	31D)
:	scs	5	:		2															
	n		:		3															
	е		:		1															
	S		:		1															
	m		:	()1 ⁻	10 (00													
	d		:	8	31															

Step 7. Clear the access error counter for the DCON module in index 0x2000 with sub-index 01.

		1	1-b	it C	OB-	ID (bit)					Data			8-by	rte Da	ata (h	vte)										
Fι	unc (Cod	е			No	ode	ID			RTR		gth															
10	9	8	7	6	5	4	3	2	1	0		Length	0 1 2 3 4 5 6 7															
1	1	0	0	0	0	0	0	0	0	1	0	8	2B	00	20	01	00	00	00	00								
S	DO	cli	ent	t												→	01 00 00 00 00 → SDO server (I-7231D)											
	ccs	5	:		1													•		•								
	n				2																							
	е				1																							
	S				1																							
	m		:	(00 2	20 (01																					
	d		:	(00 (00																						

		1	11-b	it C	OB-	ID (bit)					Data			8 hu	rte Da	ata (h	wto)		
Fu	inc (Cod	е			No	ode	ID			RTR	Length			0-Dy			yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	60	00	20	01	00	00	00	00
																	S		serv	٥r

SDO client

scs : 3 m : 00 20 01

Step 8. The EMCY message containing the error reset information will be received here.

			11-b	it C	OB-I	ID (I	oit)					Data			0 h	to Dr	ata (h	vto)		
Fu	Func Code Node ID										RTR				0-Dy	/te Da	ala (D	yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
0	0	0	1	0	0	0	0	0	0	1	0	8	00	00	00	00	00	00	00	00

NMT master

NMT slaver (I-7231D)

(I-7231D)

EMCY-msg : 00 00 00 00 00 00 00 00

The first two bytes "FF 00" are emergency error code. The 3rd byte "81" is the error register code. It means that the I-7231D has an error with the manufacturer specific and generic errors. The last five bytes "0B 01 00 00 00" are the manufacturer specific error fields. This emergency message means that the module with address 01 has hit a timeout or a read/write error more than three times.

Step 9. Check the index 0x1003 with sub-index 01 again. The user will then see that the error reset emergency code has been recorded.

		1	11-b	it C	OB-	ID (bit)					Data			8-hv	/te Da	ata (h	vte)		
Fu	inc (Cod	е			No	ode	ID			RTR	Length			0-by			yic)		
10	9	8	7	6	5	4	3	2	1	0		Lengui	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	40	03	10	01	00	00	00	00
6		cli	0.04														S	DO s	serv	er
3	DO	CII	en														((I-72	31D)
	ccs	5	:		2															
	m			()1 [·]	10 (00													

			11-b	it C	OB-	ID (bit)					Data			8 by	rte Da	ata (h	vto)		
Fu	inc (Cod	е			No	ode	ID			RTR	Length			0-Dy			yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8							00	
SDO server													er							

SDO client

ccs	:	1
n	:	2
е	:	1
S	:	1
m	:	00 20 01
d	:	00 00

SDO server (I-7231D)

SDO server

(I-7231D)

Step 10. Check the index 0x1003 with sub-index 02, and the user will see that the emergency error code which is received previously has also been recorded in the emergency object data.

	11-bit COB-ID (bit)										Dete	Data	8-byte Data (byte)							
Fu	inc (Cod	е	Node ID							RTR	Length			0-Dy		ala (D	yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	40	03	10	02	00	00	00	00

SDO client

ccs : 2 m : 01 10 00

	11-bit COB-ID (bit)										Deta	8 byte Data (byte)								
Fu	inc (Cod	е	Node ID							RTR	Length	Data 8-byte Data (byte)							
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	43	03	10	02	00	FF	0B	02

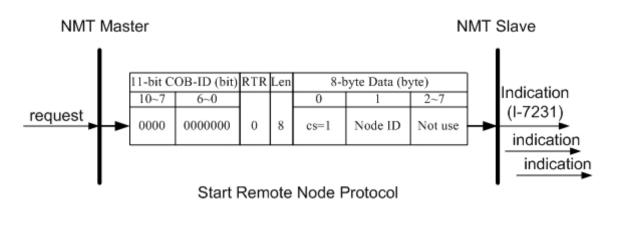
SDO server SDO client (I-7231D) : 1 ccs : n 2 : 1 е : 1 S : 00 20 01 m : 00 00 d

Ste	ep 1	11.	Coi	nfiri	n tl	ne e	erro	or re	egis	ster	store	d in inde	ex Ox	100	1. Tł	ne va	alue	is 0	now	Ι.
	11-bit COB-ID (bit)											Data			9 hu	/te Da	ata (h	wto)		
Fu	inc (Cod	е			No	ode	ID			RTR	Length			0-Dy			yie)		
10	9	8	7	6	5	4	3	2	1	0		Lengui	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	40	01	10	00	00	00	00	00
c		ام	on	•	_											_	S	DO s	serv	er
	SDO client																			
Ŭ																•	((I-72	31D)
	ccs	5	:	-	2											F	((1-72	31D)
	ccs m	5	:			10 (00									-	((1-72	31D)
		5	:			10 (00									-	((1-72	31D)
			:	(01 ⁻	10 (ID (Data			9 hu			• 	31D)
		-	: 11-b	(01 ⁻	ID (I		ID			RTR	Data			8-by	rte Da		• 	31D)
	m	-	: 11-b	(01 ⁻	ID (I	bit)	ID 2	1	0	RTR	Data Length	0	1	8-by	rte Da		• 	31D) 7

SDO server

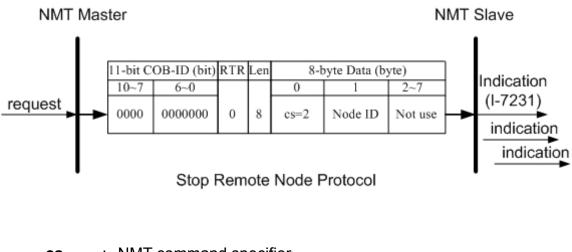
(I-7231D)

SDO client

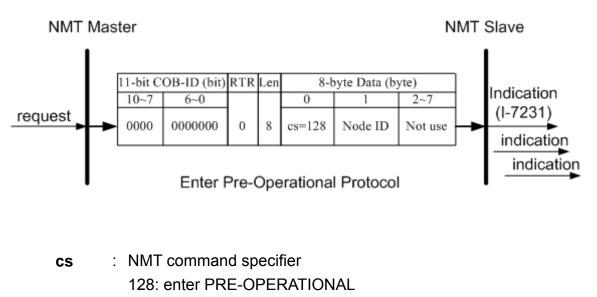

ccs	:	1
n		2
е		1
S		1
m	:	00 20 01
d	:	00 00

5.4 NMT Communication Set

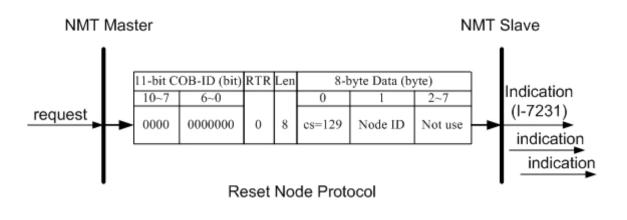
5.4.1 Module Control Protocol


The NMT communication set can be applied for changing the NMT status of the NMT slave. The following figure shows how to change the different NMT statuses for the I-7231D.

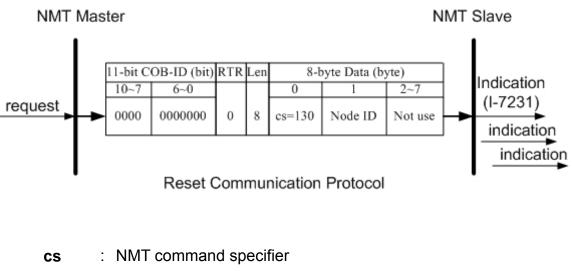
Start Remote Node Protocol


CS	:	NMT command specifier
		1: start
Node ID	:	the node ID of the NMT slave device

Stop Remote Node Protocol


cs : NMT command specifier 2: stop Node ID : the node ID of the NMT slave device

Enter Pre-Operational Protocol


Node ID : the node ID of the NMT slave device

Reset Node Protocol

CS	:	NMT command specifier
		129: Reset_Node
Node ID	:	the node ID of the NMT slave device

Reset Communication Protocol

 130: Reset_Communication

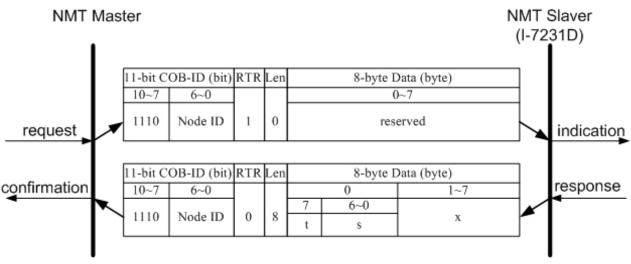
 Node ID
 : the node ID of the NMT slave device

Module Control Protocol Example

Assume that the I-7231D node ID is 5.

Step1. Turn off the I-7231D.

Step2. Turn on the I-7231D. After finishing the initialization, the I-7231D will enter the Pre_Operational state automatically. The user will then see the CAN LED flashing about twice per second.


Step3. Send the NMT module control protocol to command the I-7231D to enter its operational state.

			l1-b	it C	OB-	ID (bit)					Data			8-h	/te Da	ata (h	wto)		
Fu	inc (Cod	е			N	ode	ID			RTR	Length			0-03		מומ (ה	yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0	0	0	0	8	01	05	00	00	00	00	00	00
N	ИΤ	ma	ste	er	_											→		імт (I-72		
	cs		:		1													-		-

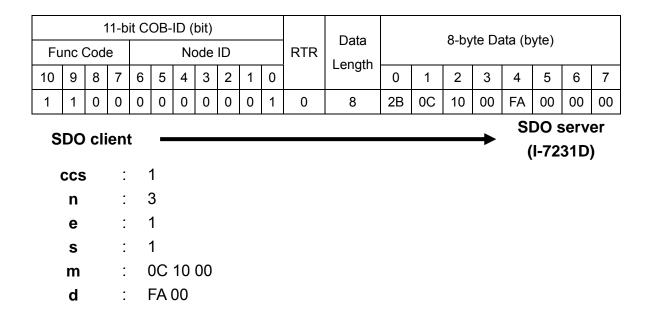
Node ID : 5

5.4.2 Error Control Protocol

Error Control Protocol is one of the ways to check if the CANopen device still lives. Related objects are indexes 0x100C and 0x100D. The 0x100C is the guard time, and the 0x100D is the life time factor. The node life time is the guard time multiplied by the life time factor. The Node Guarding timer of the I-7231D starts to count after receiving the first remote-transmit-request for the guarding identifier. The communication set of the Error Control protocol is displayed below.

t : toggle bit

The value of this bit must alternate between two consecutive responses from the NMT slave. After the node Guarding protocol becomes active, the value of the toggle-bit of the first response is 0.


s : the state of the NMT Slave 4: STOPPED 5: OPERATIONAL 127: PRE-OPERATIONAL

Error Control Protocol Example

Assume that the default EMCY function code has been applied, and the node ID for the I-7231D is 1.

Step 1. Turn off the I-7231D. Then, turn on the I-7231D. The I-7231D will now be in the pre_operational state.

Step 2. Set the guard time value to 250. This value is stored in index 0x100C with sub-index 00.

Step 3. The I-7231D will respond to the ending message.

		1	1-b	it Co	ЭB-	ID (bit)					Data			8 by		ata (b	vto)		
Fu	inc (Cod	е			No	ode	ID			RTR				0-Dy		מום (ט	yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	60	0C	10	00	00	00	00	00
6) cli	oni														S	DO s	serv	er
3	00		CIII														(I-72	31D)
:	scs	5	:	3	3															
	m		:	(C	10	00													

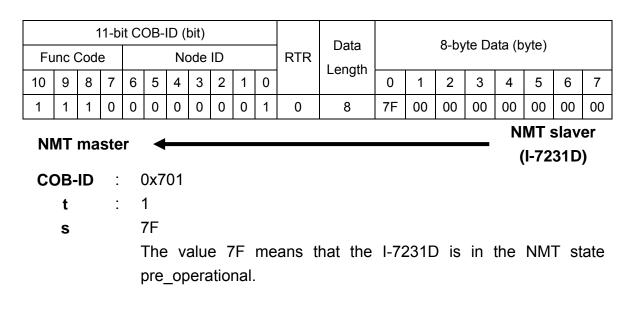
Step 4. Set the life-time factor value to 4. This value is stored in the index 0x100D with sub-index 00. Then, receive the ending message from I-7231D

		1	1-b	it C	OB-	ID (bit)					Data			8 by	te Da	ata (h	vto)		
Fu	unc (Cod	е			No	ode	ID			RTR	Length			0-Dy		ata (D	yte)		
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0	0	1	0	8	2F	0D	10	00	04	00	00	00
e	DO	ام ا	oni		_												S	DO s	serv	er
3	00	CII	en														((I-72	31D)
	ccs	5	:		1															
	n		:		3															
	е		:		1															
	S		:		1															

0D 10 00

:

: 04


m d

				it C	OB-							Data			8-by	/te Da	ata (b	yte)		
FL	Func Code Node ID								-		RTR	Length								
10	9	8	7	6	5	4	3	2	1	0		Lengin	0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0	0	0	1	0	8	60	00	18	02	00	00	00	00
S	DO	cli	ent	t	-													DO s 1-72		
:	scs	5	:	3	3															-
scs : 3 m : 0D 10 00																				

Step 5. Send the node guarding protocol to start the mechanism of the node guard. The life time here is equal to 1000 ms (guard time * life time factor =250*4=1000),

Fu	inc (I1-b e	it Co	OB-		bit) ode	ID			RTR	Data			8-by	∕te Da	ata (b	yte)		
10	9	8	7	6	5	4	3	2	1	0		Length	0	1	2	3	4	5	6	7
1	1	1	0	0	0	0	0	0	0	1	1	0	00	00	00	00	00	00	00	00
N	мт	ma	ste	r												→		MT : (I-72		-
CC	DB-	١D	:	()x7	01														

Step 5. Afterwards, users can receive the message, which records the NMT state of the I-7231D. For the reason that life time is equal to 1000 ms (guard time * life time factor =250*4=1000), users will need to transmit the node guarding protocol again.

Step 6. Since life time is equal to 1000 ms (guard time * life time factor =250*4=1000), users will need to transmit the node guarding protocol again. If not, an error event will be triggered, and an EMCY message will be received. All values from the output channels will be changed according to index 0x6206, index 0x6207, index 0x6443, and index 0x6444.

Step 7. Afterwards, if reading the input value of this DCON module fails more than three times, the I-7231D will then respond with an emergency message.

											1		1							
			11-b	it Co	OB-I	ID (t	oit)					Data			0 h	to D	ata (h	wto)		
Fι	inc (Cod	е			No	ode	ID			RTR	Dala			o-n3	/te Da	ala (L	yte)		
10	<u> </u>	0	-	0	-	4	2	0	4	0		Length	_	4	_	<u> </u>	4	-		-
10	9	8	7	6	5	4	3	2	1	0			0	1	2	3	4	5	6	7
0	0	0	1	0	0	0	0	1	0	1	0	8	30	81	11	07	00	00	00	00
			~															EM	ICY	
_	EMCY consumer producer																			
C	ion	sur	ner														(I-72	31D)
EN	NC	Y-m	sg			30 8	31 ⁻	11 ()7 () 0 (00 00	00								-
			U		-	The	fir	st t	wo	bv	tes "8 [.]	1 30" ar	e for	the	em	erae	ncv	erro	or co	de.
																Ŭ				
						ine	31	ab	yte		IIST	or the e	rror	regi	ster.	ine	e las	την	e by	tes
					"	'07	00	00) 0(0 0	0" are	e the ma	anufa	actu	rer s	spec	ific	erro	r fiel	lds.
					-	This	s er	ner	aer	าดง	mess	age indi	cate	sal	ife o	uard	l erro	or		
									30	,		age mai	0010							

5.5 Special Functions for DCON modules

I/O Modules R/W Error Control Entry

The I-7231D Manufacturer Specific Profile Area defines some special functions for DCON modules. The object with index 0x2000 is the I/O modules read/write error control entry. Each sub-index of this object is mapped to the corresponding DCON module beside sub-index 00.

For example, there are 4 DCON modules connected with the I-7231D, and the module address for each DCON module is 2, 5, 7, and 9 respectively. Sub-index 1 is mapped to the DCON module with address 2. Sub-index 2 is mapped to the DCON module with address 5. Sub-index 3 and sub-index 4 are mapped to the DCON module with address 7 and 9 respectively, and so the sub-index will be 4. This means that there are 4 DCON modules connected with the I-7231D. If accessing the I/O channels on the DCON modules fails, the value of the corresponding sub-index will count the number of times this error occurs according to ether a read/write timeout or read/write failure. The counting range is from 0 to 65535, and the counting value may be returned to 0 after 65536. It can be cleared to 0 via the SDO communication method.

I/O Modules Watchdog Timer Enable Control Entries

All DCON modules have their own host watchdog. Object 0x2001 is used for storing the watchdog Enable situation of the DCON modules, and the sub-indexes of this object are also mapped to the corresponding DCON modules. The mapping method is the same with the I/O modules read/write error control entry. Value 1 or 0 of the sub-index indicates that the watchdog has been enabled or disabled. After writing the sub-index of this object to 1 via the SDO communication method, set the DCON modules watchdogs to enable, and the I-7231D will periodically send the RS-485 command "~**" to inform all DCON modules that the communication between the I-7231D and the DCON module is ok.

If the watchdog timer has escaped (please refer to the following section) without receiving the RS-485 command "~**" from the I-7231D, the DCON module will send out a safe value to ensure the safety of the machines and employees. The DCON module's safe value can be set by using the DCON Utility.

For more details related to the watchdog, safe value and watchdog timer for the DCON modules, please refer to the DCON module's manual (I-7000 or I-87K series modules) packaged in the DCON modules in the box. Alternatively, users can download it on the following web site.

http://www.icpdas.com/download/index.htm

I/O Modules Watchdog Timer Value Entry

Object 0x2002 is used for storing the watchdog timer value of DCON modules. Similarly, each sub-index is also mapped to the different DCON module as mentioned previously. When the sub-index of the object with index 0x2001 is set to 1, it enables the corresponding watchdog based on the watchdog timer value stored in the sub-index of the object with index 0x2002. Therefore, before enabling the watchdog timer by accessing the object 0x2001, it is recommended that users confirm the watchdog timer value stored in object 0x2002. If some DCON module don't receive any RS-485 command "~**" from the I-7231D until the watchdog timer value expires, then all output channels of this DCON module will be forced to output the safe value defined in this DCON module. After that, the I-7231D will not be able to output this DCON module until the object with index 0x2003 has been cleared. The safe value defined in DCON is different from the error output value defined in the object with index 0x6200 and index 0x6444. The former is activated when the DCON module cannot receive the RS-485 bus confirmation, and only the module whose watchdog has a timeout will output the safe value; the latter is activated when the I-7231D cannot receive the node guarding message, and all DCON modules will output the error mode value under this condition. Therefore, it is recommended that setting these two parameters to the same value can guarantee outputting the same value no matter whether the RS-485 bus or CAN bus error occurs.

I/O Modules Watchdog Timer Status Entry

Object 0x2003 is used for storing the watchdog timer status of DCON modules. After enabling the DCON module's watch timer, users can check the sub-index value of this object to know if the watchdog has had a timeout or not. If there is a watchdog timeout, the DCON module may need to be recovered by clearing the sub-index of this object. Each of the sub-indexes is also mapped to its corresponding DCON module, and is similar to the situation mentioned above.

Count/Frequency Modules Entry of i-7080D

The I-7231D Manufacturer Specific Profile Area defines some special functions for DCON modules. The object with index 0x2200 is the count and Frequency modules read entry. Each sub-index of this object is mapped to the corresponding DCON module of i-7080D beside sub-index 00.

For example, there are 4 DCON modules connected with the I-7231D, and the i-7080D module address is 2, 5. Sub-index 1 is mapped to the i7080D's channel 0 with address 2, and Sub-index 2 is mapped to the i7080D's channel 1 with address 2, Sub-index 3 and sub-index 4 are mapped to the i7080D's channel 0 and channel 1 with address 5. The counting range is from 0 to 4,294,967,295, and the counting value may be returned to 0 after 4,294,967,295. Another the Frequency measurement range is 1HZ to100KHZ, they can be read via the SDO communication method.

Reset Count Entry just for i-7080D

The I-7231D Manufacturer Specific Profile Area defines some special functions for DCON modules. The object with index 0x2201 is the reset count entry just for i-7080D's count mode. Each sub-index of this object is mapped to the corresponding DCON module of i-7080D's count mode beside sub-index 00.

For example, there are 4 DCON modules connected with the I-7231D, and the i-7080D module address is 2, 5, but the address 2 is count mode and address 5 is frequency mode, then Sub-index 1 is mapped to the i7080D's channel 0 with address 2, and Sub-index 2 is mapped to the i7080D's channel 1 with address 2, they can be write via the SDO communication method. If you read the Sub-index 1, it express the channel 0 that be reset how many times (the MAX value range is from 0 to 255). if you read the Sub-index 2, it is express the channel1 that be reset how many times.

6 Object Dictionary of I-7231D

6.1 Communication Profile Area

The following information lists each entry into the communication profile area defined in I-7231D. In order to look these up conveniently, all communication entries are divided into several tables. They are "General Communication Entries", "RxPDO Communication Entries", "RxPDO Mapping Communication Entries". "TxPDO Communication Entries". and *"TxPDO* Mapping Communication Entries". In the table header you can see "Idx", "Sidx" and "Attr" which represent "index", "sub-index", and "attribute" respectively. The sign "---" in the default field means that the default is not defined or may be defined conditionally by the firmware built in I-7231D. In the table, the number accompanying letter "h" indicates that this value is in the hex format.

ldx	Sidx	Description	Туре	Attr	Default
1000h	0h	device type	UNSIGNED 32	RO	
1001h	0h	error register	UNSIGNED 8	RO	
1003h	0h	largest sub-index supported for	UNSIGNED 8	RO	FEh
		"predefine error field"			
	1h	actual error (the newest one)	UNSIGNED 32	RO	
	5h	actual error (the oldest one)	UNSIGNED 32	RO	
1005h	0h	COB-ID of Sync message	UNSIGNED 32	RW	80h
1008h	0h	manufacturer device name	VISIBLE_STRING	RO	I-8x21
1009h	0h	manufacturer hardware version	VISIBLE_STRING	RO	
100Ah	0h	manufacturer software version	VISIBLE_STRING	RO	
100Ch	0h	guard time	UNSIGNED 16	RW	0
100Dh	0h	life time factor	UNSIGNED 8	RW	0
1014h	0h	COB-ID of EMCY	UNSIGNED 32	RW	80h+Node-ID
1015h	0h	Inhibit time of EMCY	UNSIGNED 16	RW	0

General Communication Entries

1018h	0h	largest sub-index supported for	UNSIGNED 8	RO	1
		"identity object"			
	1h	vender ID	UNSIGNED 32	RO	

Note: 1.The object with index 0x1000 has the following data format:

Additional inf	ormation	General Information
bit 31~ bit 24	bit 23 ~ bit16	bit 15 ~ bit 0
Specific functionality	I/O functionality	Device profile number

For I-7231D, the specific functionality is always 0. The I/O functionality defines what kind of device the I-7231D is. Bit 16, 17, 18, 19 present the DI, DO, AI, AO respectively. For example, if bit 16 is 1, it means that the I-7231D has DI channels. If both bit 16 and 17 are 1, the I-7231D has both DI and DO channels. Bit 23 ~ bit 19 is always 0. The general information is 0x191 (0x191=401), it means that the I-7231D follows the CANopen spec DS401.

- 2.About the object with index 0x1001 and 0x1003, please refer to section 5.3.2.
- 3. The object with index 0x1005 stores the SYNC COB-ID. In the I-7231D, this is used to receive the SYNC COB-ID. The following table shows the data format of the SYNC.

Bit Number	Value	Meaning
31 (MSB)	х	do not care
30	0	Device does not generate SYNC message
	1	Device generates SYNC message
29	0	11-bit ID (CAN 2.0A)
	1	29-bit ID (CAN 2.0B)
28-11	0	If bit 29=0
	х	If bit 29=1: 28-11 bits of 29-bit COB-ID
10-0 (LSB)	х	10-0 bits of COB-ID

The I-7231D doesn't support the SYNC generation, therefore 29-bit ID, bit 30 and bit 31 are always 0.

- 4.The object with index 0x1008, 0x1009 and 0x100A record the I-7231D product information. When interpreting these objects, the ASCII table may be needed.
- 5. The range of the 0x100c is 0~32767 in I-7231D. For more information of the object with index 0x100C and 0x100D, please refer to section 5.3.2.
- 6.For the object with index 0x1014, please refer to section 5.3.1.
- 7. The object with index 0x1015 store the inhibit time period between two EMCY message. The function of this object is similar to the PDO communication object with sub-index 04.

It is useful for avoiding the large loading on the CAN bus because of transmitting a lot of EMCY messages. This parameter range is 0~32767 for the I-7231D, and the unit of EMCY inhibit time is ms.

SDO Communication Entries

ldx	Sidx	Description	Туре	Attr	Default
1200h	0h	largest sub-index supported for	UNSIGNED 8	RO	2
		"server SDO parameter"			
	1h	COB-ID form client to server	UNSIGNED 32	RO	600h+Node-ID
		(RxSDO)			
	2h	COB-ID form server to client	UNSIGNED 32	RO	580h+Node-ID
		(TxSDO)			

RxPDO Communication Entries

ldx	Sidx	Description	Туре	Attr	Default
1400h	0h	largest sub-index supported for	UNSIGNED 8	RO	2
		"receive PDO parameter"			
	1h	COB-ID used by PDO (Rx)	UNSIGNED 32	RW	200h+Node-ID
	2h	transmission type	UNSIGNED 8	RW	FFh
1401h	0h	largest sub-index supported for	UNSIGNED 8	RO	5
		"receive PDO parameter"			
	1h	COB-ID used by PDO (Rx)	UNSIGNED 32	RW	300h+Node-ID
	2h	transmission type	UNSIGNED 8	RW	FFh
1402h	0h	largest sub-index supported for	UNSIGNED 8	RO	5
		"receive PDO parameter"			
	1h	COB-ID used by PDO (Rx)	UNSIGNED 32	RW	400h+Node-ID
	2h	transmission type	UNSIGNED 8	RW	FFh
1403h	0h	largest sub-index supported for	UNSIGNED 8	RO	5
		"receive PDO parameter"			
	1h	COB-ID used by PDO (Rx)	UNSIGNED 32	RW	500h+Node-ID
	2h	transmission type	UNSIGNED 8	RW	FFh
1404h	0h	largest sub-index supported for	UNSIGNED 8	RO	5
		"receive PDO parameter"			
	1h	COB-ID used by PDO (Rx)	UNSIGNED 32	RW	80000000h
	2h	transmission type	UNSIGNED 8	RW	FFh
141Fh	0h	largest sub-index supported for	UNSIGNED 8	RO	5
		"receive PDO parameter"			
	1h	COB-ID used by PDO (Rx)	UNSIGNED 32	RW	8000 0000h
	2h	transmission type	UNSIGNED 8	RW	FFh

RxPDO Mapping Communication Entries

ldx	Sidx	Description	Туре	Attr	Default
1600h	0h	largest sub-index supported for	UNSIGNED 8	RO	8
		"receive PDO mapping"			
	1h	write digital output 1h to 8h	UNSIGNED 8	RW	6200 0108h
	2h	write digital output 9h to 10h	UNSIGNED 8	RW	6200 0208h
	3h	write digital output 11h to 18h	UNSIGNED 8	RW	6200 0308h
	4h	write digital output 19h to 20h	UNSIGNED 8	RW	6200 0408h
	5h	write digital output 11h to 28h	UNSIGNED 8	RW	6200 0508h
	6h	write digital output 19h to 30h	UNSIGNED 8	RW	6200 0608h
	7h	write digital output 11h to 40h	UNSIGNED 8	RW	6200 0708h
	8h	write digital output 19h to 48h	UNSIGNED 8	RW	6200 0808h
1601h	0h	largest sub-index supported for	UNSIGNED 8	RO	4
		"receive PDO mapping"			
	1h	write analog output 1h	UNSIGNED 16	RW	6411 0110h
	2h	write analog output 2h	UNSIGNED 16	RW	6411 0210h
	3h	write analog output 3h	UNSIGNED 16	RW	6411 0310h
	4h	write analog output 4h	UNSIGNED 16	RW	6411 0410h
1602h	0h	largest sub-index supported for	UNSIGNED 8	RO	4
		"receive PDO mapping"			
	1h	write analog output 5h	UNSIGNED 16	RW	6411 0510h
	2h	write analog output 6h	UNSIGNED 16	RW	6411 0610h
	3h	write analog output 7h	UNSIGNED 16	RW	6411 0710h
	4h	write analog output 8h	UNSIGNED 16	RW	6411 0810h
1603h	0h	largest sub-index supported for	UNSIGNED 8	RO	4
		"receive PDO mapping"			
	1h	write analog output 9h	UNSIGNED 16	RW	6411 0910h
	2h	write analog output Ah	UNSIGNED 16	RW	6411 0A10h
	3h	write analog output Bh	UNSIGNED 16	RW	6411 0B10h
	4h	write analog output Ch	UNSIGNED 16	RW	6411 0C10h
1604h	0h	largest sub-index supported for	UNSIGNED 8	RO	
		"receive PDO mapping"			
	1h			RW	
				RW	

161Fh	0h	largest sub-index supported for	UNSIGNED 8	RO	
		"receive PDO mapping"			
	1h			RW	
				RW	

TxPDO Communication Entries

ldx	Sidx	Description	Туре	Attr	Default
1800h	0	largest sub-index supported for	UNSIGNED 8	RO	5
		"receive PDO parameter"			
	1	COB-ID used by PDO (Tx)	UNSIGNED 32	RW	180h+Node-ID
	2	transmission type	UNSIGNED 8	RW	FFh
	3	inhibit time	UNSIGNED 16	RW	0
	4	reversed			
	5	event timer	UNSIGNED 16	RW	0
1801h	0	largest sub-index supported for	UNSIGNED 8	RO	5
		"receive PDO parameter"			
	1	COB-ID used by PDO (Tx)	UNSIGNED 32	RW	280h+Node-ID
	2	transmission type	UNSIGNED 8	RW	FFh
	3	inhibit time	UNSIGNED 16	RW	0
	4	reversed			
	5	event timer	UNSIGNED 16	RW	0
1802h	0	largest sub-index supported for	UNSIGNED 8	RO	5
		"receive PDO parameter"			
	1	COB-ID used by PDO (Tx)	UNSIGNED 32	RW	380h+Node-ID
	2	transmission type	UNSIGNED 8	RW	FFh
	3	inhibit time	UNSIGNED 16	RW	0
	4	reversed			
	5	event timer	UNSIGNED 16	RW	0
1803h	0	largest sub-index supported for	UNSIGNED 8	RO	5
		"receive PDO parameter"			
	1	COB-ID used by PDO (Tx)	UNSIGNED 32	RW	480h+Node-ID
	2	transmission type	UNSIGNED 8	RW	FFh
	3	inhibit time	UNSIGNED 16	RW	0
	4	reversed			
	5	event timer	UNSIGNED 16	RW	0
1804h	0	largest sub-index supported for	UNSIGNED 8	RO	5
		"receive PDO parameter"			
	1	COB-ID used by PDO (Tx)	UNSIGNED 32	RW	80000000h
	2	transmission type	UNSIGNED 8	RW	FFh
	3	inhibit time	UNSIGNED 16	RW	0
	4	reversed			

	5	event timer	UNSIGNED 16	RW	0
181Fh	0	largest sub-index supported for	UNSIGNED 8	RO	5
		"receive PDO parameter"			
	1	COB-ID used by PDO (Tx)	UNSIGNED 32	RW	80000000h
	2	transmission type	UNSIGNED 8	RW	FFh
	3	inhibit time	UNSIGNED 16	RW	0
	4	reversed			
	5	event timer	UNSIGNED 16	RW	0

TxPDO Mapping Communication Entries

ldx	Sidx	Description	Туре	Attr	Default
1A00h	0h	largest sub-index supported for	UNSIGNED 8	RO	8
		"transmit PDO mapping"			
	1h	read digital input 1h to 8h	UNSIGNED 8	RW	6000 0108h
	2h	read digital input 9h to 10h	UNSIGNED 8	RW	6000 0208h
	3h	read digital input 11h to 18h	UNSIGNED 8	RW	6000 0308h
	4h	read digital input 19h to 20h	UNSIGNED 8	RW	6000 0408h
	5h	read digital input 11h to 28h	UNSIGNED 8	RW	6000 0508h
	6h	read digital input 19h to 30h	UNSIGNED 8	RW	6000 0608h
	7h	read digital input 11h to 40h	UNSIGNED 8	RW	6000 0708h
	8h	read digital input 19h to 48h	UNSIGNED 8	RW	6000 0808h
1A01h	0h	largest sub-index supported for	UNSIGNED 8	RO	4
		"transmit PDO mapping"			
	1h	read analog input 1h	UNSIGNED 16	RW	6401 0110h
	2h	read analog input 2h	UNSIGNED 16	RW	6401 0210h
	3h	read analog input 3h	UNSIGNED 16	RW	6401 0310h
	4h	read analog input 4h	UNSIGNED 16	RW	6401 0410h
1A02h	0h	largest sub-index supported for	UNSIGNED 8	RO	4
		"transmit PDO mapping"			
	1h	read analog input 5h	UNSIGNED 16	RW	6401 0510h
	2h	read analog input 6h	UNSIGNED 16	RW	6401 0610h
	3h	read analog input 7h	UNSIGNED 16	RW	6401 0710h
	4h	read analog input 8h	UNSIGNED 16	RW	6401 0810h
1A03h	0h	largest sub-index supported for	UNSIGNED 8	RO	4
		"transmit PDO mapping"			
	1h	read analog input 9h	UNSIGNED 16	RW	6401 0910h
	2h	read analog input Ah	UNSIGNED 16	RW	6401 0A10h
	3h	read analog input Bh	UNSIGNED 16	RW	6401 0B10h
	4h	read analog input Ch	UNSIGNED 16	RW	6401 0C10h
1A04h	0h	largest sub-index supported for	UNSIGNED 8	RO	
		"transmit PDO mapping"			
	1h			RW	
				RW	

1A1Fh	0h	largest sub-index supported for	UNSIGNED 8	RO	
		"transmit PDO mapping"			
	1h			RW	
				RW	

6.2 Manufacturer Specific Profile Area

In the following table, there is information about some special functions for the DCON modules. Index 0x2000 records the access error count for the DCON module. The watchdog timer of each DCON module can be controlled by accessing the object with index 0x2001, and the value of this watchdog is stored in the object with index 0x2002. The object with index 0x2003 allows users to check the status of each watchdog timer. Entries with sub-index 00 for these objects indicate how many entries each object has. For more detail about these objects, please refer to section 5.5.

I/O Module Read/Write Error Counter Entries

ldx	Sidx	Description	Туре	Attr	Default
2000h	0h	largest sub-index supported for	UNSIGNED 8	RO	8
		"I/O Module R/W Error Counter"			
	1h	Module 1 R/W Error Counter	UNSIGNED 16	RW	

I/O Modules Watchdog Timer Enable Control Entries

ldx	Sidx	Description	Туре	Attr	Default
2001h	0h	largest sub-index supported for	UNSIGNED 8	RO	8
		""I/O Module Watchdog Timer			
		Enable Control"			
	1h	Module 1 control status of	UNSIGNED 8	RW	
		Watchdog Timer			

I/O Modules Watchdog Timer Value Entries

ldx	Sidx	Description	Туре	Attr	Default
2002h	0h	largest sub-index supported for	UNSIGNED 8	RO	8
		"I/O Module Watchdog Time			
		Value"			
	1h	Module 1 Watchdog Timer value	UNSIGNED 8	RW	

I/O Modules Watchdog Timer Status Entries

ldx	Sidx	Description	Туре	Attr	Default
2003h	0h	largest sub-index supported for	UNSIGNED 8	RO	8
		"I/O Module Watchdog Time			
		Status"			
	1h	Module 1 Watchdog Timer	UNSIGNED 8	RW	
		status			

i-7080D Count and Frequency Entries

ldx	Sidx	Description	Туре	Attr	Default
2200h	0h	Largest sub-index supported for "Total channel's number of i-7080D's Counts".	UNSIGNED 8	RO	NO
	1h	Count or Frequency value.	UNSIGNED 32	RO	NO
	•••	••••			

Reset i-7080D Count Entries

ldx	Sidx	Description	Туре	Attr	Default
2201h	0h	Largest sub-index supported for "Total	UNSIGNED	RO	NO
		Reset count's value of i-7080D's Counts".	8		
	1h	Reset count value.	UNSIGNED	RW	NO
			8		
	•••				

6.3 Standardized Device Profile Area

When the I-7231D's power is on, all of device profile entries are produced automatically by the firmware built inside the I-7231D. These device entries will match the channel types and numbers of the DCON modules connected to the I-7231D. In order to look them up conveniently, these entries are divided into four tables, "Digital Input Devices Entries", "Digital Output Devices Entries", "Analog Input Devices Entries" and "Analog Output Devices Entries". They are as follows.

ldx	Sidx	Description	Туре	Attr	Default
6000h	0h	largest sub-index supported for	UNSIGNED 8	RO	8
		"read digital input 8-bit"			
	1h	read digital input 1h to 8h	UNSIGNED 8	RO	

Digital Input Devices Entries

Digital Output Devices Entries

ldx	Sidx	Description	Туре	Attr	Default
6200h	0h	largest sub-index supported for	UNSIGNED 8	RO	
		"write digital output 8-bit"			
	1h	write digital output 1h to 8h	UNSIGNED 8	RW	
6206	0h	largest sub-index supported for	UNSIGNED 8	RW	
		"error mode digital output 8-bit"			
	1h	error mode digital output 1h to	UNSIGNED 8	RW	0
		8h			
6207	0h	largest sub-index supported for	UNSIGNED 8	RW	
		"error value digital output 8-bit"			
	1h	error value digital output 1h to	UNSIGNED 8	RW	0
		8h			

Note: 1. When the bus-off is detected or the node guarding fails, the I-7231D will check the value of the object with index 0x6206. If the bit of this value sets to 1, the I-7231D will output the error mode digital output value to the corresponding DO channel. For example, if the sub-index 01 in the object with index 0x6206 and 0x6207 are 0x31 and 0xF8 respectively, When the error events occurs, only the DO5, DO4, DO0 will be changed to error mode output value because the bit 5, bit 4 and bit 1 of the value 0x31 is 1. And, the DO5, DO4, and DO0 will be change to 1, 1, and 0 respectively because bit 5, 4, and 1 of the value 0xF8 is 1, 1, and 0. Other channels beside DO5, DO4, and DO0 will do nothing.

Analog Input Devices Entries

ldx	Sidx	Description	Туре	Attr	Default
6401h	0h	largest sub-index supported for	UNSIGNED 8	RO	8
		"read analog input 16-bit"			
	1h	read analog input 1h	UNSIGNED 16	RO	

Note: 1. Because the I-7231D only supports the hex format, all of the AI channels need to transfer to the hex format when storing into this object. The transformation equation is shown below.

$$FloatValue = \left(\frac{HexValue - H\min}{H\max - H\min}\right) * (F\max - F\min) + F\min$$

The FloatValue is the result after transformation. The HexValue is the value which wants to be transferred. The Hmax and Hmin is the maximum and minimum values of the 2's complement hex range. The Fmax and Fmin is the maximum and minimum value of the float range. User can find out the Hmax, Hmin, Fmax, and Fmin, in the appendix B. For example, The input range of the module I-7017 is set to $-10V \sim +10V$. According to the table in the appendix B, we can find out the range for hex format is 0x8000 (+32767) \sim 0x7FFF (-32768). Therefore, if the value got from the AI channel of the I-7017 is 0x1234, the AI value with float format can be calculated as follows.

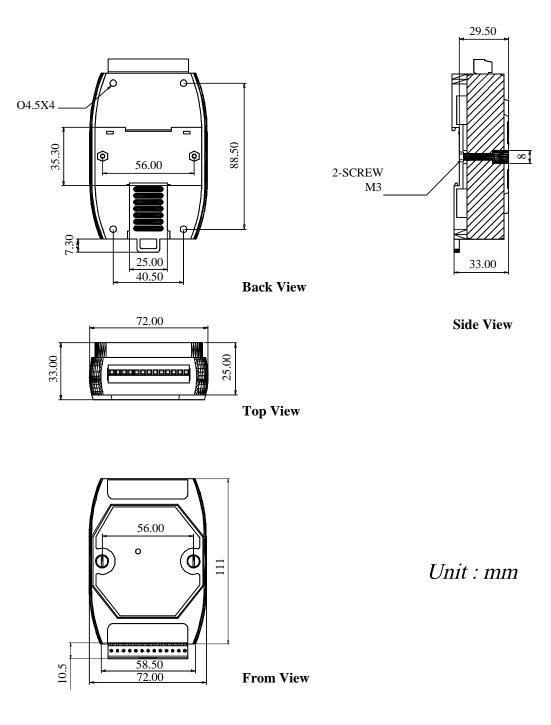
$$\left(\frac{4660 - (-32768)}{32767 - (-32768)}\right) * (10V - (-10V)) + (-10V) \approx 1.422V$$

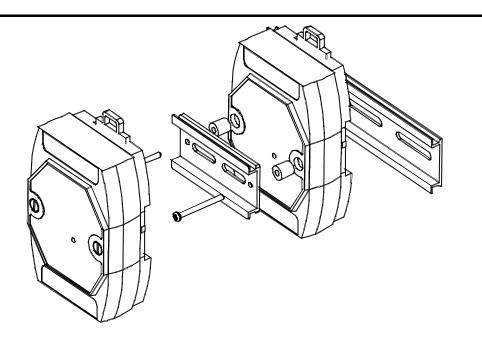
By the way, any AI value which is bigger then the maximum value of the input range will be set to the maximum value of the input range automatically. And, the AI value which is small then the minimum value of the input range is also set to the minimum value of the input range automatically.

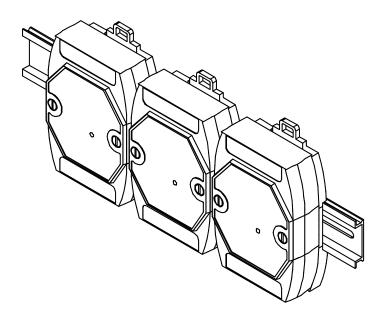
Analog Output Devices Entries

ldx	Sidx	Description	Туре	Attr	Default
6411h	0h	largest sub-index supported for	UNSIGNED 8	RO	
		"write analog output 16-bit"			
	1h	write analog output 1h	UNSIGNED 16	RW	
6443	0h	largest sub-index supported for	UNSIGNED 8	RW	

		"error mode analog output			
		16-biť"			
	1h	error mode analog output 1h	UNSIGNED 16	RW	0
6444	0h	largest sub-index supported for	UNSIGNED 8	RW	
		"error value analog output			
		16-bit"			
	1h	error value analog output 1h	UNSIGNED 16	RW	0


Note: 1. Because the I-7231D doesn't support float format, user need to transfer the AO value form float format to hex format. It is similar with the AI situation. The transformation equation is as follows.


$$HexValue = \left(\frac{FloatValue - F\min}{F\max - F\min}\right) * (H\max - H\min) + H\min$$


The HexValue is the result after transformation. The FloatValue is the value which wants to be transferred. The Fmax and Fmin is the maximum and minimum values of the float range. The Hmax and Hmin is the maximum and minimum value of the 2's complement hex range. User can find out the Fmax, Fmin, Hmax, and Hmin in the appendix B.

2. When the bus-off is detected or the node guarding fails, the I-7231D will check the value of the object with index 0x6443. If this value sets to 1, the I-7231D will output the error mode digital output value to the corresponding AO channel. For example, if the sub-index 01 in the object with index 0x6443 and 0x6444 are 1 and 0x0000 respectively, When the error events occurs, this AO will be output to error mode output because the value of the object with index 0x6443 and sub-index 01 is 1. The AO output value is 0 because of the value in the object with index 0x6444 and sub-index 01.

Appendix A: Dimensions and Mounting

Appendix B: Analog I/O Transformation Table

In order to look up your required information, we have separated the transformation table into several parts according to the DCON module names. They are given below.

- I-7012(D), I-7012F(D), I-7014D, I-7017, I-7017F, I-7017C, I-7017R, I-7017RC, I-87017
- I-7013(D), I-7033(D), I-87013
- I-7011(D), I-7011P(D), I-7018, I-7018P, I-7018R, I-7018BL, I-87018
- I-7021
- I-7022, I-87022
- I-7024, I-87024
- I-87026

<u>I-7012(D), I-7012F(D), I-7014(D), I-7017, I-7017F, I-7017C, I-7017R, I-7017RC, I-87017</u>

Range Code (Hex)	Data Format	Max value	Min value
	Input Range	+10.000V	-10.000V
08	% of FSR	+100.00	-100.00
(Default)	2's Complement HEV	0x7FFF	0x8000
()	2's Complement HEX	(+32767)	(-32768)
	Input Range	+5.0000V	-5.0000V
09	% of FSR	+100.00	-100.00
09	2's Complement HEV	0x7FFF	0x8000
	2's Complement HEX	(+32767)	(-32768)
	Input Range	+1.0000V	-1.0000V
0A	% of FSR	+100.00	-100.00
UA	2's Complement HEV	0x7FFF	0x8000
	2's Complement HEX	(+32767)	(-32768)
0B	Input Range	+500.00mV	-500.00mV
	% of FSR	+100.00	-100.00

	21a Complement LIEV	0x7FFF	0x8000
	2's Complement HEX	(+32767)	(-32768)
	Input Range	+150.00mV	-150.00mV
0C	% of FSR	+100.00	-100.00
00	2's Complement HEX	0x7FFF	0x8000
		(+32767)	(-32768)
	Input Range	100.000 4	20.000 1
00	(with 125 ohms resistor)	+20.000mA	-20.000mA
0D	% of FSR	+100.00	-100.00
	2's Complement HEX	0x7FFF	0x8000
		(+32767)	(-32768)

I-7013(D), I-7033(D), I-87013

Range Code (Hex)	RTD Type	Data Format	Max Value	Min Value
		Input Range	+100.00 ℃	-100.00 ℃
20	Platinum 100	% of FSR	+100.00	-100.00
	a = 0.00385	Ohm	+138.50	+060.25
(Default)	a – 0.00303	2'a Complement HEV	0x7FFF	0x8000
		2's Complement HEX	(+32767)	(-32768)
		Input Range	+100.00 ℃	+000.00 °C
	Platinum 100 a = 0.00385	% of FSR	+100.00	+000.00
21		Ohm	+138.50	+100.00
		2's Complement LIEV	0x7FFF	0
		2's Complement HEX	(+32767)	(0)
		Input Range	+200.00 ℃	+000.00 °C
	Platinum 100	% of FSR	+100.00	+000.00
22	a = 0.00385	Ohm	+175.84	+100.00
	a – 0.00303	2's Complement HEV	0x7FFF	0
		2's Complement HEX	(+32767)	(0)
23	Platinum 100	Input Range	+600.00 ℃	+000.00°C
	a = 0.00385	% of FSR	+100.00	+000.00
		Ohm	+313.59	+100.00

I-7231D CANopen/DCON Gateway user manual (ver. 1.04, Dec/14/2010) -----177

		2's Complement HEX	0x7FFF	0
		_ • • • • • • • • • • • • • • • • • • •	(+32767)	(0)
		Input Range	+100.00℃	-100.00° ℃
	Platinum 100	% of FSR	+100.00	-100.00
24	a = 0.003916	Ohm	+139.16	+059.58
		2's Complement HEX	0x7FFF	0x8000
			(+32767)	(-32768)
		Input Range	+100.00 ℃	+000.00°℃
	Platinum 100	% of FSR	+100.00	+000.00
25	a = 0.003916	Ohm	+139.16	+100.00
	u 0.000010	2's Complement HEX	0x7FFF	0
			(+32767)	(0)
		Input Range	+200.00 °C	+000.00°C
	Platinum 100	% of FSR	+100.00	+000.00
26	a = 0.003916	Ohm	+177.13	+100.00
	a – 0.003910	2's Complement HEV	0x7FFF	0
		2's Complement HEX	(+32767)	(0)
		Input Range	+600.00 ℃	+000.00°C
	Platinum 100 a = 0.003916	% of FSR	+100.00	+000.00
27		Ohm	+317.28	+100.00
		0's Complement LIEV	0x7FFF	0
		2's Complement HEX	(+32767)	(0)
		Input Range	+100.00 ℃	-80.00 ℃
		% of FSR	+100.00	-080.00
28	Nickel 120	Ohm	+200.64	+120.60
		2's Complement HEV	0x7FFF	0x999A
		2's Complement HEX	(+32767)	(-26214)
		Input Range	+100.00 ℃	+000.00°C
		% of FSR	+100.00	+000.00
29	Nickel 120	Ohm	+200.64	+120.60
		2's Complement UEV	0x7FFF	0
		2's Complement HEX	(+32767)	(0)
		Input Range	+600.00 ℃	-200.00 ℃
	Platinum 1000	% of FSR	+100.00	-033.33
2A	a = 0.00385	Ohm	+3137.1	+0185.2
	u – 0.00000	2's Complement UEV	0x7FFF	0xD556
		2's Complement HEX	(+32767)	(-10922)

I-7231D CANopen/DCON Gateway user manual (ver. 1.04, Dec/14/2010) -----178

I-7011(D), I-7011P(D), I-7018, I-7018P, I-7018R, I-7018BL, I-87018

Range Code (Hex)	Data Format	Max value	Min value
	Input Range	+15.000mV	-15.000mV
00	% of FSR	+100.00	+100.00
00	2's Complement HEV	0x7FFF	0x8000
	2's Complement HEX	(+32767)	(-32768)
	Input Range	+50.000mV	-50.000mV
01	% of FSR	+100.00	+100.00
01	2's Complement HEV	0x7FFF	0x8000
	2's Complement HEX	(+32767)	(-32768)
	Input Range	+100.00mV	-100.00mV
02	% of FSR	+100.00	+100.00
02	2's Complement LIEV	0x7FFF	0x8000
	2's Complement HEX	(+32767)	(-32768)
	Input Range	+500.00mV	-500.00mV
03	% of FSR	+100.00	+100.00
03	2's Complement LIEV	0x7FFF	0x8000
	2's Complement HEX	(+32767)	(-32768)
	Input Range	+1.0000V	-1.0000V
04	% of FSR	+100.00	+100.00
04	2's Complement LIEV	0x7FFF	0x8000
	2's Complement HEX	(+32767)	(-32768)
05	Input Range	+2.5000V	-2.5000V
05	% of FSR	+100.00	+100.00
(Default)	2's Complement UEV	0x7FFF	0x8000
(2's Complement HEX	(+32767)	(-32768)
	Input Range	+20.000mA	-20.000mA
06	% of FSR	+100.00	+100.00
	2's Complement HEV	0x7FFF	0x8000
	2's Complement HEX	(+32767)	(-32768)

<u>Thermocouple Type for I-7011(D), I-7011P(D), I-7018, I-7018P, I-7018R, I-7018BL,I-87018</u>

Range Code (Hex)	Thermocouple Type	Data Format	Max Value	Min Value
0E	Ј Туре	Input Range (Celsius)	+760.00 ℃	-210.00 ℃
		% of FSR	+100.00	-027.63
UE		2's Complement HEX	0x7FFF (+32767)	0xDCA2 (-9054)
		Input Range (Celsius)	+1372.0°℃	-0270.0℃
	К Туре	% of FSR	+100.00	-019.68
0F		2's Complement HEX	0x7FFF (+32767)	0xE6D0 (-6448)
		Input Range (Celsius)	+400.00 ℃	-270.00° ℃
10	TT	% of FSR	+100.00	-067.50
10	Т Туре	2's Complement HEX	0x7FFF (+32767)	0xA99A (-22118)
	Е Туре	Input Range (Celsius)	+1000.0℃	-0270.0 ℃
44		% of FSR	+100.00	-027.00
11		2's Complement HEX	0x7FFF (+32767)	0xDD71 (-8847)
	R Type	Input Range (Celsius)	+1768.0 ℃	+0000.0°C
12		% of FSR	+100.00	+000.00
12		2's Complement HEX	0x7FFF (+32767)	0 (0)
		Input Range (Celsius)	+1768.0 ℃	+0000.0°C
13	S Туре	% of FSR	+100.00	+000.00
		2's Complement HEX	0x7FFF (+32767)	0 (0)
	В Туре	Input Range (Celsius)	+1820.0 ℃	+0000.0°C
14		% of FSR	+100.00	+000.00
14		2's Complement HEX	0x7FFF (+32767)	0 (0)
	N Type	Input Range (Celsius)	+1300.0 ℃	-0270.0 ℃
15		% of FSR	+100.00	-020.77
10		2's Complement HEX	0x7FFF (+32767)	0xE56B (-6805)

I-7231D CANopen/DCON Gateway user manual (ver. 1.04, Dec/14/2010) -----180

16	С Туре	Input Range (Celsius)	+2320.0 ℃	+0000.0°C
		% of FSR	+100.00	+000.00
		2's Complement LIEV	0x7FFF	0
	2's Complement HEX		(+32767)	(0)
	L Type	Input Range (Celsius)	+800.00 ℃	-200.00 ℃
17		% of FSR	+100.00	-025.00
17		2's Complement HEX	0x7FFF	0xE000
			(+32767)	(-8192)
	М Туре	Input Range (Celsius)	+100.00 ℃	-200.00 °C
18		% of FSR	+050.00	-100.00
10		2's Complement HEX	0x4000	0x8000
			(+16384)	(-32768)
	L Type DIN43710	Input Range (Celsius)	+900.00 °C	-200.00 °C
19		% of FSR	+100.00	-022.22
		2'a Complement UEV	0x7FFF	0xE38F
		2's Complement HEX	(+32767)	(-7281)

Note: Type L and M are only for I-7011P(D), I-7018P, and I-87018. And the type L2(DIN43710) is special for I-87017.

<u>l-7021</u>

Range Code (Hex)	Data Format	Max Value	Min Value
	Output Range	+20.000mA	+00.000mA
30	% of Span	+100.00	+000.00
50	2's Complement HEX	0xFFF	0
		(+4095)	(0)
31	Output Range	+20.000mA	+04.000mA
	% of Span	+100.00	+000.00
	2's Complement HEX	0xFFF	0
		(+4095)	(0)
32	Output Range	+10.000V	+00.000V
	% of Span	+100.00	+000.00
(Default)		0xFFF	0
	2's Complement HEX	(+4095)	(0)

<u>I-7022, I-87022</u>

Range Type (Hex)	Data Format	Max Value	Min Value
	Output Range	+20.000mA	+00.000mA
0	% of Span	+100.00	+000.00
U	2's Complement HEX	0xFFF	0
		(+4095)	(0)
1	Output Range	+20.000mA	+04.000mA
	% of Span	+100.00	+000.00
	2's Complement HEX	0xFFF	0
		(+4095)	(0)
2	Output Range	+10.000V	+00.000V
	% of Span	+100.00	+000.00
(Default)		0xFFF	0
	2's Complement HEX	(+4095)	(0)

<u>l-87026</u>

Range Type (Hex)	Data Format	Max Value	Min Value
	Output Range	+20.000mA	+00.000mA
0	% of FSR	+100.00	-100.00
U	2's Complement HEX	0xFFFF	0
		(+65535)	(0)
1	Output Range	+20.000mA	+04.000mA
	% of FSR	+100.00	-100.00
	2's Complement HEX	0xFFFF	0
		(+65535)	(0)
2	Output Range	+10.000V	+00.000V
	% of FSR	+100.00	-100.00
(Default)	2's Complement HEV	0xFFFF	0
	2's Complement HEX	(+65535)	(0)

<u>I-7024, I-87024</u>

Range Code (Hex)	Data Format	Max Value	Min Value
30	Output Range	+20.000mA	+0.000mA
		0x7FFF	0
	2's Complement HEX	(+32767)	(0)
	Output Range	+20.000mA	+04.000mA
31		0x7FFF	0
	2's Complement HEX	(+32767)	(0)
	Output Range	+10.000V	+00.000V
32	2's Complement HEX	0x7FFF	0
		(+32767)	(0)
33	Output Range	+10.000V	-10.000V
	2's Complement HEX	0x7FFF	0x8000
(Default)		(+32767)	(-32768)
34	Output Range	+05.000V	+00.000V
	2's Complement HEX	0x7FFF	0
		(+32767)	(0)
	Output Range	+05.000V	-05.000V
35	2's Complement HEX	0x7FFF	0x8000
		(+32767)	(-32768)