

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 1

PISO-CPM100-DT
PISO-CPM100U-DT

CANopen Master PCI Card
User’s Manual

Warranty

All products manufactured by ICP DAS are warranted
against defective materials for a period of one year from
the date of delivery to the original purchaser.

Warning

ICP DAS assume no liability for damages consequent
to the use of this product. ICP DAS reserves the right to
change this manual at any time without notice. The
information furnished by ICP DAS is believed to be
accurate and reliable. However, no responsibility is
assumed by ICP DAS for its use, nor for any infringements
of patents or other rights of third parties resulting from its
use.

Copyright

Copyright 2008 by ICP DAS. All rights are reserved.

Trademark

The names used for identification only maybe registered

trademarks of their respective companies.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 2

Tables of Content
1. General Information..5

1.1. CANopen Introduction...5
1.2. CANopen Applications ..6
1.3. PISO-CPM100 Library Characteristics7

2. Hardware Configuration...10
2.1. Board Layout..10
2.2. Jumper Selection ... 11
2.3. Connector Pin Assignment ...12

2.3.1. 5-pin screw terminal connector..12
2.3.2. 9-pin D-sub female connector..13
2.3.3. Wire Connection ..14

2.4. Green LED ..15
2.5. Red LED ..15
2.6. Hardware Installation...15

3. Software Installation...16
3.1. Software Structure ...16
3.2. Installation Driver Step by Step ..17

4. PISO-CPM100 Function Library...21
4.1. Function List ..21
4.2. Function Return Code ...23
4.3. CANopen Master Library Application Flowchart.....................24
4.4. Communication Services Introduction26
4.5. Function Description ...29

4.5.1. CPM100_GetVersion ...29
4.5.2. CPM100_TotalBoard ...30
4.5.3. CPM100_GetBoardSwitchNo..31
4.5.4. CPM100_GetBoardInf...32
4.5.5. CPM100_ActiveBoard...33
4.5.6. CPM100_BoardIsActive..34
4.5.7. CPM100_CloseBoard ..35
4.5.8. CPM100_GetCANStatus ...36
4.5.9. CPM100_InitMaster ..38
4.5.10. CPM100_ShutdownMaster..39
4.5.11. CPM100_AddNode..40
4.5.12. CPM100_RemoveNode ...41
4.5.13. CPM100_NMTChangeState ..42

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 3

4.5.14. CPM100_NMTGetState...43
4.5.15. CPM100_NMTGuarding ...44
4.5.16. CPM100_SendSYNC ..45
4.5.17. CPM100_GetSYNCingID ...46
4.5.18. CPM100_ChangeEMCYID ...47
4.5.19. CPM100_ChangeSYNCID..48
4.5.20. CPM100_ReadEMCYCount..49
4.5.21. CPM100_ReadEMCY ...50
4.5.22. CPM100_SDOAobrtTransmit ...51
4.5.23. CPM100_SDOReadData ...52
4.5.24. CPM100_SDOWriteData...53
4.5.25. CPM100_DynamicPDO ..55
4.5.26. CPM100_InstallPDO ...57
4.5.27. CPM100_RemovePDO..58
4.5.28. CPM100_PDOTxType...59
4.5.29. CPM100_SetEventTimer ...60
4.5.30. CPM100_ChangePDOCobID..61
4.5.31. CPM100_PDOWrite ..62
4.5.32. CPM100_PDORemote...63
4.5.33. CPM100_ReadPDOCount ...64
4.5.34. CPM100_ReadPDOMessage...65
4.5.35. CPM100_WriteDO ..66
4.5.36. CPM100_ReadDI...67
4.5.37. CPM100_WriteAO ..68
4.5.38. CPM100_ReadAI...69
4.5.39. CPM100_GetFirmwareVersion..70
4.5.40. CPM100_COBIDInfo ..71
4.5.41. CPM100_PDOMappingInfo ..72
4.5.42. CPM100_GetNodeList ..74

5. Demo Programs ..75
5.1. Brief of the demo programs ..75

6. CPM_Utility Introduction..90
6.1. Board Configure...91
6.2. Node Configuration..92
6.3. Refresh slave parameter..101
6.4. DI/DO control ..102
6.5. AI/AO control ..103
6.6. Save receive messages ...104

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 4

6.7. Save/Load CPM_Utility Setting ...105
6.8. About us ...105

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 5

1. General Information

1.1. CANopen Introduction
The CAN (Controller Area Network) is a serial communication protocol,

which efficiently supports distributed real-time control with a very high level of
security. It is an especially suited for networking "intelligent" devices as well as
sensors and actuators within a system or sub-system. In CAN networks, there
is no addressing of subscribers or stations in the conventional sense, but
instead, prioritized messages are transmitted. CANopen is one kind of the
network protocols based on the CAN bus and it is applied in a low level
network that provides connections between simple industrial devices (sensors,
actuators) and higher-level devices (controllers), as shown in Figure 1.1.

Figure 1.1 Example of the CANopen network

CANopen was developed as a standardized embedded network with
highly flexible configuration capabilities. It provides standardized
communication objects for real-time data (Process Data Objects, PDO),
configuration data (Service Data Objects, SDO), network management data
(NMT message, and Error Control), and special functions (Time Stamp, Sync
message, and Emergency message). Nowadays, CANopen is used in many
various application fields, such as medical equipment, off-road vehicles,
maritime electronics, public transportation, building automation and so on.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 6

1.2. CANopen Applications
CANopen is the standardized network application layer optimized for

embedded networks. Its specifications cover the standardized application layer,
frameworks for the various applications (e.g. general I/O, motion control
system, maritime electronics and so forth) as well as device, interface, and
application profiles.

The main CANopen protocol and products are generally applied in the
low-volume and mid-volume embedded systems. The following examples
show some parts of the CANopen application fields. (For more information,
please refer to the web site, http://www.can-cia.org):

 Truck-based superstructure control systems
 Off-highway and off-road vehicles
 Passenger and cargo trains
 Maritime electronics
 Factory automation
 Industrial machine control
 Lifts and escalators
 Building automation
 Medical equipment and devices
 Non-industrial control
 Non-industrial equipment

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 7

1.3. PISO-CPM100(U) Library Characteristics
In order to use the PCI CAN board of PISO-CPM100(U), we provide

CPM100 library for VC, VB and BCB development, and users can use it to
establish the CANopen communication network rapidly. Most of the CANopen
communication protocols, such as PDO, SDO and NMT, would be handled by
the library function automatically. Therefore, it is helpful to reduce the
complexity of developing a CANopen master interface, and let users ignore the
detail CANopen protocol technology. This library mainly supports connection
sets of master-slave architecture, which include some useful functions to
control the CANopen slave device in the CANopen network. The following
figure describes the general application architecture of PISO-CPM100(U).

Figure 1.2 Example of application architecture

PISO-CPM100(U) follows the CiA CANopen specification DS-301 V4.01,

and supports the several CANopen features. The CANopen communication
general concept is shown as Figure 1.3.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 8

Figure 1.3 CANopen communication general concept

 Node Manager (NMT Master)
- Functions for changing the slave device state
- Node Guarding Protocol for error control
- Support Emergency (EMCY) messages

 SDO Manager
- Expedited, segmented and block methods for SDO download and

upload
 PDO Manager

- Support all transmission types and event timer
 SYNC Manager

- SYNC message production
- SYNC cycles of 0.1ms resolution

 EMCY Manager
- EMCY message consumer

For more information about the CANopen functions described above,

please refer to the function descriptions and demo programs shown in the
chapter 3 and chapter 4.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 9

Specifications
 PISO-CPM100-D/T:

 33 MHz 32bit 5 V PCI bus (V2.1) plug and play technology.
 PISO-CPM100U-D/T:

 Universal PCI card supports both 5 V and 3.3 V PCI bus.
 CPU: 80186 compactable CPU, 80 MHz.
 CAN controller: NXP SJA1000T with 16 MHz.
 CAN transceiver: NXP 82C250.
 CAN bus interface: Follow ISO 11898-2 specification.
 Connector: 5-pin screw terminal or 9-pin D-sub female connector.
 512 kbytes Flash memory, 512 kbytes SRAM, and 8 kbytes DPRAM.
 2 kbytes EEPROM and 31 bytes NVRAM.
 Isolation voltage: 2500 Vrms photo-isolation protection on CAN side.
 Power requirements: 5 V@ 400 mA.
 Operating Temperature: 0 ~ +60 ℃.

 Storage Temperature: -20 ~ +80 ℃.

 Humidity: 0 ~ 90% non-condensing.
 Dimensions: please refer to section 2.1.

Features

 One CAN communication port.
 Follow CiA DS-301 V4.01
 240 records CANopen PDO message receive buffer size
 20 records CANopen EMCY message receive buffer size
 Support 8 kinds baud: 10 kbps, 20 kbps, 50 kbps, 125 kbps, 250 kbps, 500

kbps, 800 kbps, and 1 Mbps
 Each Port support maximum nodes up to 127
 Support upload and download SDO Segment
 Support Node Guarding protocol
 Provide 5 sets of SYNC cyclic transmission
 Support EMCY protocol
 Timestamp of CAN message with at least ±1ms precision

 Jumper select 120Ω terminator resistor for CANopen network

 Support firmware update
 Two indication LEDs (Tx/Rx and Err LEDs)
 Provide VC++,VB, and BCB demos and function libraries

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 10

2. Hardware Configuration
 This section would describe the hardware setting of the

PISO-CPM100(U). This information includes the wire connection and terminal
resistance configuration for the CAN network.

2.1. Board Layout

Figure 2.1 PISO-CPM100 board layout

Figure 2.2 PISO-CPM100U board layout

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 11

 Jumper Selection
The following table shows the definition of jumpers and DIP switch. Users

need to refer to this table to configure the PISO-CPM100(U) hardware.

Jumper Description Status

JP1
(PISO-CPM100)

CAN Port 120Ωterminal
resistance

Enable Disable

JP4
(PISO-CPM100U)

CAN Port 120Ωterminal
resistance

Enable Disable

DIP switch

DIP switch is used to set the
PISO-CPM100(U) board No.
Switch1 is for bit0, switch2 is for
bit1 and so forth. For example, if
the left-hand-side switch (switch1)
is ON, the board No. is set to 1.
The range of board No. is from 0 to
15. Be careful that the board No.
for each board must be unique in
the PC.

The situation indicates
the board No. 1.

Table 2.1 Jumper or DIP switch selections

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 12

Connector Pin Assignment
The PISO-CPM100(U) has two kinds of connector. One is 5-pin screw

terminal connector (PISO-CPM100(U)-T) and the other is 9-pin D-sub female
connector (PISO-CPM100(U)-D) for wire connection of the CANopen network.
The connector’s pin assignment is specified as follows:

2.1.1. 5-pin screw terminal connector

The 5-pin screw terminal connector of the CAN bus interface is shown in
figure 2.2. The details for the pin assignment are presented in the following
table.

Figure 2.2 5-pin screw terminal connector

Pin No. Signal Description
1 N/A No use
2 CAN_L CAN_L bus line (dominant low)
3 CAN_SHLD Optional CAN shield
4 CAN_H CAN_H bus line (dominant high)
5 N/A No use

Table 2.2 Pin assignment of 5-pin screw terminal connector

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 13

2.1.2. 9-pin D-sub female connector

The 9-pin D-sub female connector of the CAN bus interface is shown in
figure 2.3 and the corresponding pin assignments are given in following table.

Figure 2.3 9-pin D-sub female connector

Pin No. Signal Description
1 N/A No use
2 CAN_L CAN_L bus line (dominant low)
3 N/A No use
4 N/A No use
5 CAN_SHLD Optional CAN Shield
6 N/A No use
7 CAN_H CAN_H bus line (dominant high)
8 N/A No use
9 N/A No use

Table 2.3 Pin assignment of the 9-pin D-sub female connector

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 14

2.1.3. Wire Connection

In order to minimize the reflection effects on the CAN bus line, the CAN
bus line has to be terminated at both ends by two terminal resistances as in the
following figure. According to the ISO 11898-2 spec, each terminal resistance
is 120Ω(or between 108Ω~132Ω). The length related resistance should have
70mΩ/m. Users should check the resistances of the CAN bus, before they
install a new CAN network.

Figure 2.4 CANopen network topology

Moreover, to minimize the voltage drop over long distances, the terminal

resistance should be higher than the value defined in the ISO 11898-2. The
following table can be used as a good reference.

Bus Cable Parameters
Bus Length

(meter)
Length Related

Resistance
(mΩ/m)

Cross Section
(Type)

Terminal
Resistance

(Ω)

0~40 70
0.25(23AWG)~0.34

mm2 (22AWG)
124 (0.1%)

40~300 <60
0.34(22AWG)~0.6

mm2 (20AWG)
127 (0.1%)

300~600 <40
0.5~0.6mm2

(20AWG)
150~300

600~1K <20
0.75~0.8mm2

(18AWG)
150~300

Table 2.4 Relationship between cable feature and terminal resistance

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 15

2.2. Green LED
After PISO-CPM100(U) has been activated, the greed LED would be

flashed once when PISO-CPM100 receives or transmits one message to CAN
bus successfully. If the bus loading is heavy, the green LED would turn on
always.

2.3. Red LED
When some error occurs, the red LED would turn on until the error has

been solved. Users can use CPM100_GetCANStatus function to get the
situation except buffer status.

2.4. Hardware Installation
When users want to use PISO-CPM100(U), the hardware installation

needs to be finished as following steps.
1. Shutdown your personal computer.
2. Configure the DIP switch and JP1 of PISO-CPM100(U) for the

board No. and the terminal resistance. The more detail
information could be found on the section 2.1.

3. Find an empty PCI slot for the PISO-CPM100(U) on the mother
board of the personal computer. Plug the configured
PISO-CPM100(U) into this empty PCI slot.

4. Plug the CAN bus cable(s) into the 5-pin screw terminal
connector or the 9-pin D-sub connector.

When the procedure described above is completed, turn on the PC.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 16

3. Software Installation

3.1. Software Structure
The CPM DLL driver is the CANopen specification function collections for

the PISO-CPM100(U) cards used in Windows 98/Me/NT/2000/XP systems.
The application structure is presented in the following figure. The users’
CANopen master application programs can be developed by the following
program development tools: Borland C++ Builder, VB, and visual C++. The
driver architecture is shown in the following Figure.

Figure 3.1 Driver concept of PISO-CPM100(U)

PISO-CPM100
Function Library

Users’ Programs

PISO-CM100
Function Library

PISO-CM100
Kernel Driver

PISO-CPM100
Firmware

Application

User Mode

Kernel Mode

Windows
Operation

MiniOS7
Operation

PCI Bus & DPRAM

KP_CM100.sys
Windrvr6.sys

CPM100XX.exe
Firmware

CM100.dll

CPM100.dll

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 17

3.2. Installation Driver Step by Step
When users want to use the PISO-CPM100(U) CAN card, the

PISO-CPM100(U) driver must be installed firstly. After finishing the installation
process, the CPM_Utility and the demo programs would also be installed to the
PC. The demo programs may be a good reference for users to build their
CANopen master interface by using VC++, BCB and VB. The demo programs
also give a simple interface to show the basic functions of master/slave
connection and CANopen master program architectures. It is very helpful for
users to understand how to use these functions and develop their CANopen
master application. If users do not want to develop this application by
themselves, the CPM_Utility can be used to be an easily CANopen master
program. The following description displays the step-by-step procedures about
how to install the PISO-CPM100(U) driver.
Install the PISO-CPM100(U) CAN card driver

Step 1: Insert the product CD into the CD-ROM and find the path
\CANopen\Master\PISO-CPM100\Install\. Then execute the
PISO-CPM100.exe to install the PISO-CPM100(U) CAN card
driver.

Step 2: Wait until the install wizard has prepared.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 18

Step 3: Click “Next” to start the PISO-CPM100(U) installation.

Step 4: Select the folder where the PISO-CPM100(U) setup would be
installed and click “Next” button to continue.

Step 5: Click the button “Install” to continue.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 19

Step 6: Wait for finishing the PISO-CPM100(U) installation.

Step 7: Finally, restart the computer to complete the installation.

.

Step 8: When finishing the installation. The PISO-CPM100(U) folder

would be found at the Start menu shown as below.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 20

Remove the PISO-CPM100(U) driver
If the PISO-CPM100(U) driver is not used any more, users can click

the “Uninstall” to remove the PISO-CPM100(U) driver below.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 21

4. PISO-CPM100(U) Function Library

4.1. Function List
In order to use the PISO-CPM100(U) more easily, we provide some useful

and easy-to-use functions in CPM100 library. There are three function libraries
for different compiler, such as VC, VB and BCB. Users can use these functions
to control the PISO-CPM100(U) by using the functions. The following table
shows all functions provided by the CPM100 library.

Function Name Description
CPM100_GetVersion Get the version of the CPM100 library
CPM100_TotalBoard Get the total number of PISO-CPM100(U)

CPM100_GetBoardSwitchNo
Get the board number from the dip switch number
of the PISO-CPM100(U)

CPM100_GetBoardInf Get board information of the PISO-CPM100(U)
CPM100_ActiveBoard Activate the PISO-CPM100(U) CAN board
CPM100_BoardIsActive Obtain the active status of the PISO-CPM100(U)
CPM100_CloseBoard Close the PISO-CPM100(U) CAN board
CPM100_GetCANStatus Obtain the status of the CAN controller
CPM100_InitMaster Initialize CPM100 library
CPM100_ShutdownMaster Remove all nodes and stop master
CPM100_AddNode Add a node into CPM100 master manager
CPM100_RemoveNode Remove a node from CPM100 master manager
CPM100_NMTChangeState Change the specific CANopen node state
CPM100_NMTGetState Get the specific CANopen node state
CPM100_NMTGuarding Start the specific node guarding function
CPM100_SendSYNC Send SYNC message from the specific channel
CPM100_GetSYNCingID Get the total SYNC ID of sending
CPM100_ChangeSYNCID Change SYNC COB-ID
CPM100_ChangeEMCYID Change EMCY COB-ID

CPM100_ReadEMCYCount
Get the number of EMCY message of the specific
channel

CPM100_ReadEMCY Read EMCY message from the specific channel

CPM100_SDOAbortTransmit
Send SDO abort message from the specific
channel

CPM100_SDOReadData Read data by uploading SDO protocol
CPM100_SDOWriteData Write data by downloading SDO protocol

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 22

CPM100_DynamicPDO Map a new PDO object dynamically

CPM100_InstallPDO
Enable a specific PDO object of the specific
Nodes

CPM100_RemovePDO
Remove a specific PDO object of the specific
Nodes

CPM100_PDOTxType
Set the transmission type of TxPDO of the specific
Nodes

CPM100_SetEventTimer Set the event timer of the specific TxPDO
CPM100_ChangePDOCobID Change the PDO COB-ID of the specific Node

CPM100_PDOWrite
Use PDO to write data to the CANopen node via
the COB-ID

CPM100_PDORemote
Use PDO to get data from CANopen node via the
COB-ID

CPM100_ReadPDOCount Get the number of not RTR PDO message

CPM100_ReadPDOMessage
Read the not RTR PDO message data of the
specific COB-ID

CPM100_WriteDO Output 8 bits DO value to the specific Node
CPM100_ReadDI Read 8 bits DI value from the specific Node
CPM100_WriteAO Output one AO channel to the specific Node
CPM100_ReadAI Read one AI channel from the specific Node

CPM100_COBIDInfo
Get SYNC, EMCY, and all PDO COB-ID of the
specific node

CPM100_PDOMappingInfo
Get mapping data information of the PDO via
COB-ID connection

Table 4.1 Description of functions

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 23

4.2. Function Return Code
The following table interprets all the return code returned by the CANopen

Master Library functions.
Return
Code

Error ID Description

0 CPM100_NoError OK
1 CPM100_DriverError Kernel driver is not opened
2 CPM100_ActiveBoardError PISO-CPM100(U) can’t be activated successfully
3 CPM100_BoardNumberError The board number of PISO-CPM100(U) is error

102 CPM100_ConfigureErr Library hasn’t been configured successfully
103 CPM100_DataLenErr Data length is erroneous
104 CPM100_NodeAddErr Adding a CANopen node is a failure
106 CPM100_StatusErr CANopen slave NMT status is error

107 CPM100_SetGuardErr
Setting the guarding parameters of CANopen slave
node is a failure

109 CPM100_NodeNumberErr Set the node number is error
110 CPM100_CobIdErr Set COB-ID error
112 CPM100_SDOSendErr Send SDO expedition message error
115 CPM100_PDOSendErr Send PDO message error
116 CPM100_PDOTypeErr TxPDO or RxPDO type is error
118 CPM100_PDOEntryErr Set subindex content of PDO error
120 CPM100_PDORemoveErr Remove PDO content error
121 CPM100_TimeOut Message response timeout
127 CPM100_ChannelErr This I/O channel isn’t exist
130 CPM100_SYNCSendErr Send SYNC message error
131 CPM100_SYNCSetErr Cyclic SYNC is over 5 or cyclic timer is less than 5
140 CPM100_SDODataLose SDO buffer is overflow
147 CPM100_PDOFIFOisEmpty The PDO buffer doesn’t have any message
148 CPM100_EMCYFIFOisEmpty The EMCY buffer doesn’t have any message
150 CPM100_SendCmdErr The command send to PISO-CPM100(U) is error
160 CPM100_FirmwareErr The firmware of PISO-CPM100(U) isn’t running
162 CPM100_MasterInitErr Master initializes error
163 CPM100_MasterShutdownErr Master shut down error
165 CPM100_CobIdChangeErr Can’t change the COB ID
167 CPM100_SetEventTimerErr Set event timer of TxPDO error

Table 4.2 Description of return code

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 24

4.3. CANopen Master Library Application Flowchart
In this section, it describes the operation procedure about how to use the

CANopen Master Library to build users applications. This information is helpful
for users to apply the CANopen Master Library easily. Besides, the CANopen
operation principles must be obeyed when build a CANopen master
application. For example, if the CANopen node is in the pre-operational status,
the PDO communication object is not allowed to use. For more detail
information, please refer to the demo programs in section 5.

When users’ programs apply the CANopen Master Library functions, the

functions CPM100_ActiveBoard and CPM100_InitMaster must be call first.
The functions are used to activate PISO-CPM100(U), configure the CAN port,
and initialize CPM100 library.

After activate the CAN interface card and initialize library successfully,
users need to use the CPM100_AddNode function to install at least one
CANopen device into the node list.

If the functions CPM100_ActiveBoard, CPM100_InitMaster and
CPM100_AddNode have been executed, the communication services (NMT,
SYNC, EMCY, SDO, and PDO services) can be used at any time before calling
the functions CPM100_ShutdownMaster and CPM100_CloseBoard. That is
because the CPM100_ShutdownMaster would stop all process created by the
function CPM100_InitMaster, and the CPM100_CloseBoard would stop the
hardware of PISO-CPM100(U).

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 25

Figure 4.1 Main programming sequences

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 26

4.4. Communication Services Introduction

NMT Services

The CANopen Master Library provides several NMT services functions,
such as the CPM100_AddNode, CPM100_RemoveNode,
CPM100_NMTChangeState, CPM100_NMTGetState, and
CPM100_NMTGuarding functions. As the prerequisite for the master, the slave
nodes have to be registered by using CPM100_AddNode function with the
Node-ID. The registered slave nodes can be individually removed from the
node list by using the CPM100_RemoveNode function. Through NMT services,
the NMT Master controls the state of the slave. Table 4.3 lists the command
value and corresponding NMT command for the input parameters of the
CPM100_NMTChangeState function. When using the CPM100_NMTGetState
function, the slave status value and their descriptions are shown in the table
4.4. The Node Guarding protocol is implemented via the
CPM100_NMTGuarding function. If the slave nodes are in the node list, users
can change the node guarding parameters defined in the slave nodes by
calling the CPM100_NMTGuarding function.

Table 4.3 NMT Command Specifier

Table 4.4 State of the Slave

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 27

SDO Services

Initiating SDO download or SDO upload protocol is used when SDO data
length ≦ 4 bytes. If the SDO message data length ＞ 4 bytes, segment SDO
download or upload protocol would be used. To call these two
CPM100_SDOReadData and CPM100_SDOWriteData functions, the initial
protocol and segment protocol would be selected automatically according to
data length.

CPM100_SDOAbortTransmit function can abort a pending SDO transfer
at any time. Applying the aborting transmitting service, that would not have any
confirmation from the salve device.

PDO Services

The CPM100_DynamicPDO function is used for setting TPDOs or RPDOs
mapping object. Each PDO object supports 0~8 application objects. These
application objects defined in the CANopen specification DS401 are mapped
to the DI/DO/AI/AO channels. After calling the function CPM100_DynamicPDO,
the PDO communication object will be mapped and activated. If the PDO
communication object is not needed no more, use the CPM100_RemovePDO
function to remove it.

The PDOs data are written to the PDO buffer by using the
CPM100_WritePDO function. This function can write all 8-byte PDO data or
write some part of 8-byte PDO data to PDO buffer. If users write some part of
the PDO data to the buffer, the other part of the PDO data will not be changed.
Users can use the CPM100_SetEventTimer and CPM100_PDOTxType
functions to change the response type of TPDO. When devices reply PDO
data with data event or timer event, users can use the
CPM100_ReadPDOMessage function to read these data stored in the PDO
buffer. It also can change the output type of RPDO with the function
CPM100_PDOTxType.

In CANopen specification, users can get the TxPDOs data by applying the
remote transmit request CAN frame. The CPM100_PDORemote function is
needed in this case.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 28

SYNC Services

Calling the CPM100_SendSYNC function can start the SYNC object
transmission. This function supports to send single SYNC message and cyclic
SYNC message. The SyncCycle parameter of the CPM100_SendSYNC
function can adjust the cyclic period of SYNC COB-ID sent by master if the
SyncCycle parameter is not 0. This unit of SyncCycle parameter range is
0.1ms. When the SyncCycle parameter is set to 0, the SYNC object
transmission will send single SYNC message, or the function will be stopped if
the SYNC COB-ID is running. And the maxima number of SYNC cyclic
message is 5.

EMCY Services

Emergency objects are triggered by the occurrence of a device internal
error situation. Users can call the function CPM100_ReadEMCY to receive
EMCY message if any CAN slaves send EMCY messages.

For example, if users have used CPM100_NMTGuarding to guard some
slave and the guarding failure event of node 1 of the slave has occurred. The
PISO-CPM100(U) and the node 1 of the slave will both produce EMCY
messages as below, and users can use CPM100_ReadEMCY function to read
the EMCY message sent by node 1.

ID Len D0 D1 D2 D3 D4 D5 D6 D7
Master

0x81 8 0x30 0x81 0x11 0x07 0x23 0x00 0x00 0x00
ID Len D0 D1 D2 D3 D4 D5 D6 D7

Slave
0x81 8 0x30 0x81 0x11 0x07 0x00 0x00 0x00 0x00

If users have only received the EMCY produced by Master, it means the

connection between the Master and the Slave may be opened. If users have
received both the two EMCY, it means the guard time may be too short, or the
bus loading may be too heavy.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 29

4.5. Function Description

4.5.1. CPM100_GetVersion

 Description:

This function is used to obtain the version information of CPM100.lib
library.

 Syntax:

float CPM100_GetVersion(void)

 Parameter:

None

 Return:

LIB library version information.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 30

4.5.2. CPM100_TotalBoard

 Description:

Obtain the total board number of PISO-CPM100(U) plugged in the
PCI bus.

 Syntax:

int CPM100_TotalBoard(void)

 Parameter:

None

 Return:

Return the scanned total PISO-CPM100(U) number.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 31

4.5.3. CPM100_GetBoardSwitchNo

 Description:

Obtain the DIP switch No. of PISO-CPM100(U).

 Syntax:

int CPM100_GetBoardSwitchNo(BYTE BoardCntNo,
BYTE *BoardSwitchNo)

 Parameter:

BoardCntNo: [input] The number of specified PISO-CPM100(U). For
example, if the first PISO-CPM100(U) is applied, this
value is 0. If the second board is applied, this value is 1.

*BoardSwitchNo: [output] The address of a variable used to get the
DIP switch No. of PISO-CPM100(U).

 Return:

CPM100_NoError
CPM100_DriverError
CPM100_BoardNumberError

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 32

4.5.4. CPM100_GetBoardInf

 Description:

Obtain the information of PISO-CPM100(U), which includes vender ID,
device ID and the interrupt number.

 Syntax:

int CPM100_GetBoardInf(BYTE bBoardNo, DWORD *dwVID,
DWORD *dwDID, DWORD *dwSVID,
DWORD *dwSDID, DWORD *dwSAuxID,
DWORD *dwIrqNo)

 Parameter:

bBoardNo: [input] Switch No. of PISO-CPM100(U) DIP. The value is
from 0 to 15.

*dwVID: [output] The address of a variable which is used to receive the
vendor ID.

*dwDID: [output] The address of a variable used to receive device ID.
*dwSVID: [output] The address of variable applied to receive

sub-vendor ID.
*dwSDID: [output] The address of variable applied to receive

sub-device ID.
*dwSAuxID: [output] The address of a variable used to receive

sub-auxiliary ID.
*dwIrqNo: [output] The address of a variable used to receive logical

interrupt number.

 Return:

CPM100_NoError
CPM100_DriverError
CPM100_BoardNumberError

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 33

4.5.5. CPM100_ActiveBoard

 Description:

Activate the PISO-CPM100(U) board. It must be called once before
using the other functions of PISO-CPM100(U) APIs.

 Syntax:

int CPM100_ActiveBoard(BYTE bBoardNo)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).

 Return:

CPM100_NoError
CPM100_DriverError
CPM100_BoardNumberError
CPM100_ActiveBoardError
CPM100_FirmwareErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 34

4.5.6. CPM100_BoardIsActive

 Description:

Obtain the active status of the specific board.

 Syntax:

int CPM100_BoardIsAvtive(BYTE bBoardNo)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).

 Return:

0: means the board is inactive.
1: means the board is active.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 35

4.5.7. CPM100_CloseBoard

 Description:

Stop and close the kernel driver to release the device resource from
the computer resource. This method must be called once before exiting
the application program.

 Syntax:

int CPM100_CloseBoard(BYTE bBoardNo)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).

 Return:

CPM100_NoError
CPM100_DriverError
CPM100_BoardNumberError

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 36

4.5.8. CPM100_GetCANStatus

 Description:

Obtain the status of the CAN controller of the specific
PISO-CPM100(U) board.

 Syntax:

int CPM100_GetCANStatus(BYTE bBoardNo, BYTE *bStatus)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
*bStatus: [output] The address of a variable is applied to get the status

value of CAN controller. The bit interpretation of the bStatus
parameter is as below.

Bit Name Value Status
1 Bus-off

Bit 7 Bus Status
0 Bus-on
1 Error

Bit 6 Error Status
0 OK
1 Transmit

Bit 5 Transmit Status
0 Idle
1 Receive

Bit 4 Receive Status
0 Idle
1 Complete

Bit 3 Transmission Complete Status
0 Incomplete
1 Release

Bit 2 Transmit Buffer Status
0 Locked
1 Overrun

Bit 1 Data Overrun Status
0 Absent
1 Not Empty

Bit 0 Receive Buffer Status
0 Empty

 Return:

CPM100_NoError

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 37

CPM100_DriverError
CPM100_BoardNumberError
CPM100_ActiveBoardError

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 38

4.5.9. CPM100_InitMaster

 Description:

The function must be applied when configuring the CAN controller
and initialize the CPM100 library. It must be called once before using
other functions of CPM100.lib.

 Syntax:

int CPM100_InitMaster(BYTE bBoardNo, BYTE bBaudrate)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bBaudrate: [input] The baudrate of the PISO-CPM100(U)

Value Baud rate

0 10Kbps
1 20Kbps
2 50Kbps
3 125Kbps
4 250Kbps
5 500Kbps
6 800Kbps
7 1Mbps

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_ConfigureErr
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 39

4.5.10. CPM100_ShutdownMaster

 Description:

The CPM100_ShutdownMaster function removes all the slaves
added to master, and stop all the functions of CPM100. The function
must be called before exit the users’ application programs.

 Syntax:

int CPM100_ ShutdownMaster (BYTE bBoardNo)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15)

 Return:

CPM100_OK
CPM100_MasterShutdownerr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 40

4.5.11. CPM100_AddNode

 Description:

The CPM100_AddNode function can add a CANopen slave with the
specified Node ID into the node list of CPM100. After calling this
function to add a slave by the program, the slave would into the
operational state directly and the default TxPDO COB ID(0x180 + node
ID, 0x280 + node ID, 0x380 + node ID, 0x480 + node ID)and RxPDO
COB ID(0x200 + node ID, 0x300 + node ID, 0x400 + node ID, 0x500 +
node ID) would also be installed if the slave supports these default PDO
COB ID. The added node can be removed from the node list by the
CPM100_RemoveNode function.

 Syntax:

int CPM100_AddNode(BYTE bBoardNo, BYTE bNodeID)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bNodeID: [input] Slave device Node-ID (1~127).

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_NodeAddErr
CPM100_NodeNumberErr
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 41

4.5.12. CPM100_RemoveNode

 Description:

The CPM100_RemoveNode function removes the slave with the
specified Node-ID from the node list of the node manager. It requires a
valid Node-ID, which has installed by the function CPM100_AddNode
before.

 Syntax:

int CPM100_RemoveNode(BYTE bBoardNo, BYTE bNodeID)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bNodeID: [input] Slave device Node-ID (1~127).

 Return:

CPM100_NoError
CPM100_NodeNumberErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 42

4.5.13. CPM100_NMTChangeState

 Description:

The function CPM100_NMTChangeState is used to change the NMT
state of a slave. If the node parameter of this function is set to 0, the
state of all nodes on the same CAN network will be changed.

 Syntax:

int CPM100_NMTChangeState(BYTE bBoardNo, BYTE bNodeID,
 BYTE bState)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bNodeID: [input] Slave device Node-ID (1~127).
bState: [input] NMT command specifier.
 1: enter OPERATIONAL
 2: stop
 128: enter PRE-OPERATIONAL
 129: Reset_Node
 130: Reset_Communication

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_NodeNumberErr
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 43

4.5.14. CPM100_NMTGetState

 Description:

The function CPM100_GetState can get the NMT state from the
specific slaves.

 Syntax:

int CPM100_NMTGetState(BYTE bBoardNo, BYTE bNodeID,
BYTE *bState)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bNodeID: [input] Slave device Node-ID (1~127).
*bState: [output] The NMT state of the slave.
 4: STOPPED
 5: OPERATIONAL
 127: PRE-OPERATIONAL

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_NodeNumberErr
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 44

4.5.15. CPM100_NMTGuarding

 Description:

Use the CPM100_Guarding function to set Guard Time and Life Time
Factor of the specified slave with the specific node ID. Then, CPM100
would automatically send the Guarding message to the slave device
according to the wGuardTime parameters. If the CPM100 doesn’t
receive the confirmation of Guarding message form the salve,
PISO_CPM100 would send EMCY message to the bus. Users need to
use CPM100_ReadEMCY to get the EMCY message. However, if the
slave doesn’t receive the Guarding message during the Node Life time
period (Node Life time = wGuardTime * bLifeTimeFactor), it will be
triggered to send the EMCY message of. It is recommended that
bLifeTimeFactor value is set to more than 1.

 Syntax:

int CPM100_Guarding(BYTE bBoardNo, BYTE bNodeID,
 WORD wGuardTime,
 BYTE bLifeTimeFactor)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bNodeID: [input] Slave device Node-ID (1~127).
wGuardTime: [input] Guard Time (1 ~ 65535).
bLifeTimeFactor: [input] Life Time Factor (1 ~ 255).

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_StatusErr
CPM100_SetGuardErr
CPM100_NodeNumberErr
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 45

4.5.16. CPM100_SendSYNC

 Description:

Use the CPM100_SendSYNC function to send a SYNC message
with the specified COB-ID cyclically. The maxima 5 cyclic SYNC
message can be added.

 Syntax:

int CPM100_SendSYNC(BYTE bBoardNo, WORD wCobid,
 DWORD dwSyncCycle)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
wCobid: [input] COB-ID used by the SYNC object.
dwSyncCycle: [input] The time period of cyclic SYNC transmission.

This parameter is formatted by 0.1ms and the
minimum time period is 0.5ms. If the parameter is 0,
the running SYNC message will be stopped or the
sanding SYNC message will be send once.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_NodeNumberErr
CPM100_CobIdErr
CPM100_SYNCSendErr
CPM100_SYNCSetErr
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 46

4.5.17. CPM100_GetSYNCingID

 Description:

Use this function to get the total SYNC IDs which have been sending.

 Syntax:

int CPM100_GetSYNCingID(BYTE bBoardNo, BYTE *IdNum,
WORD *wSYNCIdList,
DWORD *dwSYNCCycleList)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
*IdNum: [output] The total SYNC ID number.
*wSYNCIdList: [output] This parameter is a maximum 5 array. Per

array is save a SYNC ID that had been sending.
*dwSYNCCycleList: [output] This parameter is a maximum 5 array. Per

array is save a cyclic timer of SYNC ID.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 47

4.5.18. CPM100_ChangeEMCYID

 Description:

The function is used to change the EMCY COB-ID of a slave device.

 Syntax:

int CPM100_ ChangeEMCYID (BYTE bBoardNo, BYTE bNodeID,
 WORD wCobid)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bNodeID: [input] Slave device Node-ID (1~127).
wCobid: [input] COB-ID used by the EMCY object.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_StatusErr
CPM100_NodeNumberErr
CPM100_SDOSendErr
CPM100_SDODataLose
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_CobIdChangeErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 48

4.5.19. CPM100_ChangeSYNCID

 Description:

Users can apply the function to change the SYNC COB-ID of a slave
device.

 Syntax:

int CPM100_ ChangeSYNCID (BYTE bBoardNo, BYTE bNodeID,
 WORD wCobid)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bNodeID: [input] Slave device Node-ID (1~127).
wCobid: [input] COB-ID used by the SYNC object.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_StatusErr
CPM100_NodeNumberErr
CPM100_SDOSendErr
CPM100_SDODataLose
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_CobIdChangeErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 49

4.5.20. CPM100_ReadEMCYCount

 Description:

Obtain the message count of EMCY message in EMCY buffer of
PISO-CPM100(U).

 Syntax:

int CPM100_ReadEMCYCount (BYTE bBoardNo)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).

 Return:

EMCY message count

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 50

4.5.21. CPM100_ReadEMCY

 Description:

This function is used to read the EMCY message from EMCY buffer.

 Syntax:

int CPM100_ ReadEMCY (BYTE bBoardNo, WORD *wCobid,
 BYTE *EMCY_Data, WORD *wYear,

WORD *wMonth, WORD *wDayOfWeek,
WORD *wDay, WORD *wHour,
WORD *wMinute, WORD *wSecond,
WORD *wMilliseconds)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
wCobid: [output] COB-ID used by the EMCY object.
*EMCY_Data: [output] EMCY data.
*wYear: [output] Specifies the current year.
*wMonth: [output] Specifies the current month.
 January = 1, February = 2, and so on.
*wDayOfWeek: [output] Specifies the current day of the week.
 Sunday = 0, Monday = 1, and so on.
*wDay: [output] Specifies the current day of the month.
*wHour: [output] Specifies the current hour.
*wMinute: [output] Specifies the current minute.
*wSecond: [output] Specifies the current second.
*wMilliseconds: [output] Specifies the current millisecond.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_MasterInitErr
CPM100_EMCYFIFOisEmpty

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 51

4.5.22. CPM100_SDOAobrtTransmit

 Description:

This function is used to cancel the SDO transmission to the specific
node. The node parameter is used to specify which SDO
communication for terminating communication between the master and
the specified salve device.

 Syntax:

int CPM100_SDOAbortTransmit (BYTE bBoardNo, BYTE bNodeID,
 WORD wIndex, BYTE bSubIndex)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bNodeID: [input] Slave device Node-ID (1~127).
wIndex: [input] The object index value of the object dictionary.
bSubIndex: [input] The object subindex value of the object dictionary.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_StatusErr
CPM100_NodeNumberErr
CPM100_SDOSendErr
CPM100_SDODataLose
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 52

4.5.23. CPM100_SDOReadData

 Description:

The function is useful to upload the SDO data from a specified slave.
This function supports both expedition mode and segment mode.

 Syntax:

int CPM100_SDOReadData (BYTE bBoardNo, BYTE bNodeID,
WORD wIndex, BYTE bSubIndex,
WORD *pRDatalen, BYTE *pRData)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bNodeID: [input] Slave device Node-ID (1~127).
wIndex: [input] The object index value of the object dictionary.
bSubIndex: [input] The object subindex value of the object dictionary.
*pRDatalen: [output] Total data length.
*pRData: [output] SDO data respond from the specified slave device.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_StatusErr
CPM100_NodeNumberErr
CPM100_SDOSendErr
CPM100_SDODataLose
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 53

4.5.24. CPM100_SDOWriteData

 Description:

The CPM100_SDOWriteData function can send out a SDO message
to the specified salve device. This procedure is also called download
SDO protocol. Because the data length of each object stored in object
dictionary of the node is different, users need to know the data length
when writing the data to the object of object dictionary of specified slave
devices. This function supports both expedition mode and segment
mode.

 Syntax:

int CPM100_SDOWriteData (BYTE bBoardNo, BYTE bNodeID,
WORD wIndex, BYTE bSubIndex,
WORD wWDatalen, BYTE *pWData,
WORD *pRDatalen, BYTE *pRData)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bNodeID: [input] Slave device Node-ID (1~127).
wIndex: [input] The object index value of the object dictionary.
bSubIndex: [input] The object subindex value of the object dictionary.
wWDatalen: [input] Total data size to be written.
* pWData: [input] The SDO data written to slave device.
*pRDatalen: [output] Total data length.
*pRData: [output] SDO data respond from the specified slave device.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_DataLenErr
CPM100_StatusErr
CPM100_NodeNumberErr
CPM100_SDOSendErr
CPM100_SDODataLose

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 54

CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 55

4.5.25. CPM100_DynamicPDO

 Description:

After calling the function, a new PDO COB ID would be added or an
old PDO COB ID would be modified in the PDO object list. If the slave
device has defined the default PDO object (defined by DS301), these
default PDO would be installed automatically when function
CPM100_AddNode is called.

 Syntax:

int CPM100_DynamicPDO(BYTE bBoardNo, BYTE bNodeID,
WORD wCobid, BYTE bRxTxType,
BYTE bPDOEntry, BYTE *pbMappingData)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bNodeID: [input] Slave device Node-ID (1~127).
wCobid: [input] COB-ID used by the PDO object.
bRxTxType: [input] PDO type (0: RxPDO, 1: TxPDO).
bPDOEntry: [input] Entry number of the PDO (1~8).
*pbMappingData: [input] 4-byte information of mapped application

object. Users need to look up the user manual of CAN
slave device to find the information of application object,
and obey the following format to fill this parameter.
pbMappingData [0] : The numbers of bit of specified

application object.
pbMappingData [1] : The subindex of specified

application object.
pbMappingData [2] : The low byte of index of specified

application object.
pbMappingData [3] : The high byte of index of

specified application object.
For example, there is an application object built in the CAN slave device.

This AI application object uses index 0x6401 and subindex 0x06. It is used to
store a 16-bit data. When users add this specified application object in the 3rd
entry of PDO object list of Cob-ID 0x183, the bPDOEntry is set to 3 (indicating

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 56

the PDO entry), pbMappingData[0] is set to 0x10 (for indicating the stored data
is 16-bit), pbMappingData [1] is 0x06 (for indicating the subindex is 0x06),
pbMappingData [2] is 0x01 (for indicating the low byte of the index 0x6401),
and pbMappingData [3] is 0x64 (for indicating the high byte of the index
0x6401). And the mapping result is as below.

Byte 0 1 2 3 4 5 6 7

Original DI 0 DI 1 X X X X X X
After DI 0 DI 1 AI_6_L AI_6_H X X X X
After mapping the object successfully, the PDO object would have total 4

bytes data and 3 entries (per DI entry has one byte data and per AI entry has
two bytes data). If users want to re-mapping a AI application object with index
0x6401 and subindex 0x02 in the 2nd entry of the PDO object. The bPDOEntry
is set to 2, pbMappingData[0] is set to 0x10, pbMappingData [1] is 0x05,
pbMappingData [2] is 0x01, and pbMappingData [3] is 0x64. The result is as
below.

Byte 0 1 2 3 4 5 6 7

Original DI 0 DI 1 AI_6_L AI_6_H X X X X
After DI 0 AI_2_L AI_2_H AI_6_L AI_6_H X X X
After mapping successfully, the DI 1 would be recovered by AI 2, and the

PDO object will have total 5 bytes data and 3 entries.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_DataLenErr
CPM100_StatusErr
CPM100_NodeNumberErr
CPM100_CobIdErr
CPM100_SDOSendErr
CPM100_PDOTypeErr
CPM100_ChannelErr
CPM100_SDODataLose
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 57

4.5.26. CPM100_InstallPDO

 Description:

If there is a PDO object of a CANopen slave which has been mapping
default, but the PDO object is not the default one in DS-301. Users can
use the function to install the PDO object into the CANopen node list.

 Syntax:

int CPM100_InstallPDO(BYTE bBoardNo, BYTE bNodeID,
 WORD wCobid, WORD bPDOIndex)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bNodeID: [input] Slave device Node-ID (1~127).
wCobid: [input] COB-ID used by the PDO object.
bPDOIndex: [input] The index of object dictionary of the PDO object.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_StatusErr
CPM100_NodeNumberErr
CPM100_CobIdErr
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 58

4.5.27. CPM100_RemovePDO

 Description:

The function can remove a TxPDO or RxPDO which has been
installed by the CPM100_DynamicPDO or CPM100_InstallPDO. This
function also can remove single entry mapped in TxPDO or RxPDO.

 Syntax:

int CPM100_RemovePDO(BYTE bBoardNo, BYTE bNodeID,
WORD wCobid, BYTE bRxTxType,
BYTE bPDOEntry)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bNodeID: [input] Slave device Node-ID (1~127).
wCobid: [input] COB-ID used by the PDO object.

 bRxTxType: [input] PDO type (0: RxPDO, 1: TxPDO).
bPDOEntry: [input] PDO mapping object entry value (0 ~ 8). If

bPDOEntry parameter is 0, the specified PDO object will be
removed. If others (1 ~ 8), the specified subindex content of
the PDO will be removed.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_NodeNumberErr
CPM100_CobIdErr
CPM100_PDOEntryErr
CPM100_PDORemoveErr
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 59

4.5.28. CPM100_PDOTxType

 Description:

Call this function to set transmission type of the PDO to the specific
node.

 Syntax:

int CPM100_PDOTxType(BYTE bBoardNo, BYTE bNodeID,
WORD wCobid, BYTE bTxType)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bNodeID: [input] Slave device Node-ID (1~127).
wCobid: [input] COB-ID used by the PDO object.
bTxType: [input] Transmission type of the TxPDO or RxPDO object.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_StatusErr
CPM100_NodeNumberErr
CPM100_CobIdErr
CPM100_SDOSendErr
CPM100_SDODataLose
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 60

4.5.29. CPM100_SetEventTimer

 Description:

Call this function to set event timer of the PDO of the specific node. It is
important that the function is only useful for TxPDO.

 Syntax:

int CPM100_SetEventTimer(BYTE bBoardNo, BYTE bNodeID,
WORD wCobid, WORD wEventTimer)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bNodeID: [input] Slave device Node-ID (1~127).
wCobid: [input] COB-ID used by the PDO object.
wEventTimer: [input] Event timer of the TxPDO object. This parameter

is formatted by 1ms. If the parameter is 0, the event
timer of the PDO will be stopped.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_StatusErr
CPM100_NodeNumberErr
CPM100_CobIdErr
CPM100_SDOSendErr
CPM100_SDODataLose
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 61

4.5.30. CPM100_ChangePDOCobID

 Description:

If users want to change the PDO COB ID, this function would be useful.
When using the function to change PDO COB ID, the mapping data of the
PDO would not need to re-map.

 Syntax:

int CPM100_ChangePDOCobID(BYTE bBoardNo, BYTE bNodeID,
WORD old_CobID, WORD new_CobID)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bNodeID: [input] Slave device Node-ID (1~127).
old_Cobid: [input] Original COB-ID used by the PDO object.
new_Cobid: [input] The new COB-ID will be used by the PDO object.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_StatusErr
CPM100_NodeNumberErr
CPM100_CobIdErr
CPM100_SDOSendErr
CPM100_SDODataLose
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 62

4.5.31. CPM100_PDOWrite

 Description:

The function is used to send out a PDO message to the specified slave
device. Before using this function, users need to use the
CPM100_InstallPDO function to install the PDO object if users want to use
non-default PDO. Then, change the NMT state of target slave device to
operational mode by using the CPM100_NMTChangeState function if the
slave is not in the operational mode. Use the parameter offset to set the start
byte position of PDO data which need to be modified, and use the
parameters * pTData and bTDataLen to point the data and data length which
users want to fill to the PDO data.

 Syntax:

int CPM100_PDOWrite (BYTE bBoardNo, WORD wCobid,
BYTE bOffset, BYTE bTDatalen,
BYTE *pTData)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
wCobid: [input] COB-ID used by the PDO object.
bOffset: [input] The start byte position of PDO data (0 ~ 7).
bTDatalen: [input] data size (bTDatalen + bOffset≦ 8).
*pTData: [output] The data pointer point to the PDO data.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_DataLenErr
CPM100_StatusErr
CPM100_CobIdErr
CPM100_PDOSendErr
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 63

4.5.32. CPM100_PDORemote

 Description:

Use the function to send a RTR (remote-transmit-request) PDO
message to the slave device.

 Syntax:

int CPM100_PDORemote (BYTE bBoardNo, WORD wCobid,
BYTE *pRDatalen, BYTE *pRData,
DWORD *UpperTime, DWORD *LowerTime)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
wCobid: [input] COB-ID used by the PDO object.
*pRDatalen: [output] The data length of the RTR PDO message.
*pRData: [output] The PDO message received from the slave device.
*UpperTime: [output] The address of a variable used to obtain the

higher double-word of time stamp of a CAN message.
*LowerTime: [output] The address of a variable used to obtain the

lower double-word of time stamp of a CAN message. The
time stamp is “(UpperTime << 32)+ LowerTime”. And the
unit of the time stamp is 0.1ms.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_StatusErr
CPM100_CobIdErr
CPM100_PDOSendErr
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 64

4.5.33. CPM100_ReadPDOCount

 Description:

Obtain the message count of non RTR PDO message in PDO buffer
of the specific board.

 Syntax:

int CPM100_ReadPDOCount(BYTE bBoardNo)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).

 Return:

PDO message count

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 65

4.5.34. CPM100_ReadPDOMessage

 Description:

Read the non RTR PDO message from the PDO buffer of the specific
board.

 Syntax:

int CPM100_ReadPDOMessage(BYTE bBoardNo, WORD wCobid,
BYTE *pRDatalen, BYTE *pRData,
DWORD *UpperTime, DWORD *LowerTime)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
wCobid: [input] COB-ID used by the PDO object.
*pRDatalen: [output] The data length of the RTR PDO message.
*pRData: [output] The PDO message received from the slave device.
*UpperTime: [output] The address of a variable used to obtain the

higher double-word of time stamp of a CAN message.
*LowerTime: [output] The address of a variable used to obtain the

lower double-word of time stamp of a CAN message. The
time stamp is “(UpperTime << 32)+ LowerTime”. And the
unit of the time stamp is 0.1ms.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_MasterInitErr
CPM100_PDOFIFOisEmpty

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 66

4.5.35. CPM100_WriteDO

 Description:

This function is used to output one byte (8 channels) DO data to the
specific node.

 Syntax:

int CPM100_WriteDO(BYTE bBoardNo, BYTE bNodeID,
BYTE bDOChannel, BYTE bValue)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bNodeID: [input] Slave device Node-ID (1~127).
bDOChannel: [input] The subindex (>0) of index 0x6200 of specified

application object. Please refer to slave device user
manual for more detail information.

bValue: [input] The value for 8-channel digital output which is used 1
byte for presentation.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_StatusErr
CPM100_NodeNumberErr
CPM100_SDOSendErr
CPM100_SDODataLose
CPM100_ChannelErr
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 67

4.5.36. CPM100_ReadDI

 Description:

Use this function to read one byte (8 channels) DI data from the
specific node.

 Syntax:

int CPM100_ReadDI(BYTE bBoardNo, BYTE bNodeID,
BYTE bDIChannel, BYTE *bValue)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bNodeID: [input] Slave device Node-ID (1~127).
bDIchannel: [input] The subindex (>0) of index 0x6000 of specified

application object. Please refer to slave device user
manual for more detail information.

*bValue: [output] The value for 8-channel digital input which is used 1
byte for presentation.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_StatusErr
CPM100_NodeNumberErr
CPM100_SDOSendErr
CPM100_SDODataLose
CPM100_ChannelErr
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 68

4.5.37. CPM100_WriteAO

 Description:

Use this function to output one channel AO data to the specific node.

 Syntax:

int CPM100_WriteAO(BYTE bBoardNo, BYTE bNodeID,
BYTE bAOChannel, WORD wValue)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bNodeID: [input] Slave device Node-ID (1~127).
bAOchannel: [input] The subindex (>0) of index 0x6411 of specified

application object. Please refer to slave device user
manual for more detail information.

wValue: [input] One AO channel value which is used two bytes for
presentation.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_StatusErr
CPM100_NodeNumberErr
CPM100_SDOSendErr
CPM100_SDODataLose
CPM100_ChannelErr
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 69

4.5.38. CPM100_ReadAI

 Description:

Use this function to read one channel AI data from the specific node.

 Syntax:

int CPM100_ReadAI(BYTE bBoardNo, BYTE bNodeID,
BYTE bAIChannel, WORD *wValue)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bNodeID: [input] Slave device Node-ID (1~127).
bAIchannel: [input] The subindex (>0) of index 0x6401 of specified

application object. Please refer to slave device user
manual for more detail information.

*wValue: [output] Read one AI channel value which is used two bytes
for presentation.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_StatusErr
CPM100_NodeNumberErr
CPM100_SDOSendErr
CPM100_SDODataLose
CPM100_ChannelErr
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 70

4.5.39. CPM100_GetFirmwareVersion

 Description:

Use this function to get the firmware version of the PISO-CPM100(U).

 Syntax:

int CPM100_GetFirmwareVersion(BYTE bBoardNo, WORD *wVersion)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
*wVersion: [output] Firmware version of the PISO-CPM100(U).

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 71

4.5.40. CPM100_COBIDInfo

 Description:

Use this function to get EMCY COB ID, SYNC COB ID, all RxPDO,
and all TxPDO COB ID of the specific slave.

 Syntax:

int CPM100_COBIDInfo(BYTE bBoardNo, BYTE bNodeID,
WORD *wSYNCID, WORD *wEMCYID,
BYTE *bRxPDONum, WORD *wRxPDOID,
BYTE *bTxPDONum, WORD *wTxPDOID)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
bNodeID: [input] Slave device Node-ID (1~127).
*wSYNCID: [output] To Get the SYNC COB ID.
*wEMCYID: [output] To Get the EMCY COB ID.
*bRxPDONum: [output] The number of RxPDO of the slave.
*wRxPDOID: [output] This is an array of total RxPDO COB ID.
*bTxPDONum: [output] The number of TxPDO of the slave.
*wTxPDOID: [output] This is an array of total TxPDO COB ID.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_NodeNumberErr
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 72

4.5.41. CPM100_PDOMappingInfo

 Description:

Use this function to get the mapping status of the PDO of the specific
slave.

 Syntax:

int CPM100_PDOMappingInfo(BYTE bBoardNo, WORD wCobid,
BYTE *bRxTxType, BYTE *bPDOEntry,
BYTE *bLen, BYTE *bRxData,
BYTE *bMappingData)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
wCobid: [input] Slave device Node-ID (1~127).
*bRxTxType: [output] PDO type (0: RxPDO, 1: TxPDO).
*bPDOEntry: [output] The total useful entry of the PDO.
*bLen: [output] The byte number of the PDO.
*bRxData: [output] The last output data of the PDO. The parameter is

only for RxPDO.
*bMappingData: [output] 4-byte information of mapped application

object per entry. So, the size of the bMappingData array
must more than (bPDOEntry * 4). The following
information is for first PDO entry. The second entry is
from bMappingData[4] to bMappingData[7] and so on.
bMappingData [0] : The numbers of bit of specified

application object.
bMappingData [1] : The subindex of specified

application object.
bMappingData [2] : The low byte of index of specified

application object.
bMappingData [3] : The high byte of index of specified

application object.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 73

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_CobIdErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 74

4.5.42. CPM100_GetNodeList

 Description:

Use this function to get the total node ID list that has been added into
the master.

 Syntax:

int CPM100_GetNodeList(BYTE bBoardNo, BYTE *bNodeList)

 Parameter:

bBoardNo: [input] PISO-CPM100(U) DIP switch No.(0~15).
*bNodeList: [output] The node list parameter is a 16-bytes array. Per

byte means un-added/added of 8 node id (0: un-added, 1:
added). For example, the data of bNodeList[0] is 0x2A
(binary data: 0010 1100), this means node id 2,3,and 5
have been added into the master. And the data of
bNodeList[1] is 0x49 (binary data: 0100 1001), this means
node id 8,11,and 14 have added into the master.

 Return:

CPM100_NoError
CPM100_ActiveBoardError
CPM100_SendCmdErr
CPM100_MasterInitErr
CPM100_TimeOut

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 75

5. Demo Programs
There are SDO, PDO, TxType demos and one test program, TestProg, for

VB6.0/VC++/BCB6. Users can refer these source codes to develop various
applications. There is also a tool, CPM_Utility, to control/monitor CANopen
slaves with PISO-CPM100(U) easily and quickly. Users can find these demos
and utility tool in the fieldbus CD or on the web site.

The path of CAN CD
fieldbus_cd://canopen/master/piso-cpm100

The address of the web site is
 http://www.icpdas.com/products/Remote_IO/can_bus/piso-cpm100.htm

5.1. Brief of the demo programs
These demo programs are developed for demonstrating how to use the

CANopen master library to apply the general CANopen communication
protocol, SDO, PDO, NMT, SYNC, and EMCY. Each communication protocol is
achieved by using different functions of CANopen master library. The
relationship between CANopen master library functions and CANopen
communication protocols are displayed in the following description.

NMT Services: CPM100_NMTChangeState, CPM100_NMTGetState,

NMTCPM100_Guarding

SDO Services: CPM100_SDOReadData, CPM100_SDOWriteData,

CPM100_SDOAbortTransmit

PDO Services: CPM100_InstallPDO, CPM100_DynamicPDO,

CPM100_RemovePDO, CPM100_PDOTxType,
CPM100_SetEventTimer, CPM100_PDOWrite,
CPM100_PDORemote, CPM100_ReadPDOCount,
CPM100_ReadPDOMessage, CPM100_ChangePDOCobID

SYNC Services: CPM100_ChangeSYNCID, CPM100_SendSYNC

EMCY Services: CPM100_ChangeEMCYID, CPM100_ReadEMCYCount,

CPM100_ReadEMCY

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 76

SDO demo

When the demo runs, the user interface of the demo is shown below.

Before click the “Configure” button, Users must select “Board No.” and

“Baudrate” firstly. The “Board No.” is the DIP Switch number of
PISO-CPM100(U), and the “Baudrate” is the CANopen communication speed.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 77

Select the “Slave Node Id” and click “Add Node” button to add the slave
into the control list of PISO-CPM100(U).
Attention, the slave must be connected on the CANopen network really before
click “Add Node” button.

There are two SDO functions to use, “Read” button is the

CPM100_SDOReadData, and “Write” button is the CPM100_SDOWriteData.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 78

Input “Object Index” and “Sub-Index” of the object dictionary of the slave,
and click “Read” button to read the object data. The response data would show
on the list box as follows.

Set these values in “Object Index” field, “Sub Index” field, and “Write Data”

field. Then click “Write” button to write the object data. The response message
would show on the list box as follows.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 79

Clicking the “Clear” button would clear all the messages shown on the list box.

If users want to control another slave, users can click “Remove” button to

remove the slave and then select another slave to add. Or if users want to
change another board, the “Shutdown” button would execute
CPM100_ShutdownMaster function to close the board. And then users can
select another board to control.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 80

PDO demo

When the demo runs, the user interface of the demo is shown below.

It is the same as the SDO demo. Firstly, users must select the board
number and baud rate to configure, and select the slave ID to control. After
finishing these steps, users can click the “Total CobId” button to know which
PDO COB ID on the slave can be controlled.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 81

To click “Read” button, users can read the PDO data with “PDO Cob ID”.
And the “PDO Cob ID” can be shown in the “Tx PDO Cob Id:” list.

If users want to output the PDO data to the slave, users must set the
values of “PDO Cob ID”, “Offset”, and “Write Data” in three edit boxes firstly.
The “PDO Cob ID” must be list in the “Rx PDO Cob Id:” list. And the “Offset” is
meaning that PDO data would be output from the specific byte. So, the output
data would not be changed before the “Offset” byte. For example, firstly, if the
“Offset” is “0” and the “Write Data” is “FF FF”. The PDO would output data “FF
FF”. Second, if the “Offset” is changed to “1” and “Write Data” is changed to
“55”. The PDO would output data “FF 55”, the first byte “FF” would not be
changed.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 82

By clicking “PDO Info” button, users can check the information of PDO
mapping status below.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 83

Tx Type demo

When the demo runs, the user interface of the demo is shown below.

This demo can help users to test the TxPDO transmission type of the

slave. For example, input “181” in “PDO Cob ID” and “10” in “Tx Type”, and
then click the “Tx-Type” button to set the transmission type.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 84

When the slave receives 16 (0x10) times SYNC message, the slave would
response the 0x181 PDO message.

To send SYNC message, users have two kinds, there are automatic and
manual modes to uses. For sending SYNC message automatically, users must
set the timer in “Cyclic” liking “1000”. After clicking the “Send SYNC” button,
the PISO-CPM100(U) would send SYNC message per 1000 million seconds.
Anyway, after 16 seconds, the slave would response a PDO message.

For sending SYNC message manually, users must input “0” in “Cyclic”. By
clicking the “Send SYNC” button, the PISO-CPM100(U) would send one SYNC
message per time. After 16 times, the slave would response the PDO
message.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 85

TestProg

When the TestProg runs, the user interface of this program is shown
below.

The first step to use this program is to select the baud rate and board

number. Then click “Active Board” button to control this PISO-CPM100(U).
Except the acting board and adding node, the program has 8 parts to use.

They are Node State, Guarding, Change Cob ID, PDO Setup, SDO Protocol,
PDO Protocol, SYNC Protocol, I/O Control, and Receive List. However, about
the SDO Protocol, PDO Protocol, and the SYNC Protocol can refer to the SDO
demo, PDO demo, and Tx Type demo.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 86

Node State and Guarding:
The part of Node State can get/set the slave working status. There

are four kinds of status; Pre-Operational, Operational, Stop, and Reset
can set to the slave.

The Guarding part can set guarding time to guard the slave. If the bus
between PISO-CPM100(U) and slave is broken, the PISO-CPM100(U)
can detect this condition.

Change Cob ID:
If users want to change COB ID of SYNC or EMCY, this part provides

the function to do that easily.

I/O Control:

Users can read DI/AI and write DO/AO in this I/O Control part. Firstly,
users must set the value for which I/O channel to read/write. And then
click “DI”/”AI” button to read data or input the “Value” with hex format. Also
click “DO”/”AO” button to write data to the slave below.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 87

PDO Setup:
The PDO Setup part has 6 functions to setup PDO parameters. The

following procedures would introduce how to use these 6 functions.
Install PDO:

Select the slave firstly and input the values of PDO ID and PDO
Index. Then click “Install PDO” button to add PDO to the slave and
the PDO is under control. Please refer to the section 4.5.25 for the
more detail.

Installing Dynamic PDO:
Select the slave and input the PDO ID firstly. Then users must

select the I/O type for the PDO and “PDO ch.” for which PDO entry
would be mapped in. Finally, set the “I/O ch.” for which I/O would be
mapped and click the “Dynamic PDO” button to complete the dynamic
mapping. In this part, the “I/O ch.” is the same as the “I/O ch.” in the
I/O Control part. Please refer to the section 4.5.24 for the detail.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 88

Removing PDO:
When users want to remove the PDO object, this function would

be useful. Firstly, select slave and input the PDO ID. Secondly, select
the PDO type of RxPDO or TxPDO which your need. Finally, select
the PDO entry which users want to remove and click “Remove PDO”
button. If the PDO entry is 0, this function would remove this PDO
object completely. Please refer to the section 4.5.26 for the more
detail.

Setting Transmission Type:
Select the slave firstly. Set the PDO ID and the type value for

decimal. And then click the “Set Tx Type” button to set transmission
type. Please refer to the section 4.5.27 for the more detail.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 89

Setting Event Timer:
Select the slave firstly. Set the PDO ID and the timer for decimal.

And click the “Set EventTimer” button to set event timer to the PDO
object of the slave. The timer unit is million second. For more detail,
please refer to the section 4.5.28.

Changing PDO ID:
Select the slave firstly. Set the PDO ID and the “New PDO” for

hex. And click the “Change PDO ID” button to change PDO COB ID.
For more detail, please refer to the section 4.5.29.

Receive List:
The Receive list can receive POD messages with event trigger and

EMCY messages. The Receive list can show maximum 100 messages.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 90

6. CPM_Utility Introduction
The CANopen Master Utility is a master tool of CANopen for

PISO-CPM100(U). CPM_Utility can control the CANopen slave that follow
DS301 and DSP401. If users would not develop CANopen application by
themselves, CPM_Utility is a good choice.

When the CPM_Utility runs, the user interface of this program is shown

below.

There are 9 buttons on the tool bar, from left to right. They are “Board

Configure”, “Node Configure”, “Refresh slave parameter”, “DI/DO control”,
“AI/AO control”, “Save receive messages”, “Save CPM_Utility Setting”, “Load
CPM_Utility Setting”, and “About us”. Following, we would introduce how to
use this tool below.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 91

6.1. Board Configure
The button needs to be executed firstly after the CPM_Utility is running.

The following picture is the form of “Board Configure”.

The “Board No” list would show total PISO-CPM100(U) boards of the PC.
And the “On-line Board No” list would show which PISO-CPM100(U) has been
activated. When users select the “Board No” and “Baudrate”, and then click the
“Active Board” button, the selected board would be activated shown in the
“On-line Board No” list as follows.

The following picture is the main form after active board 0. Because there
is no slave been added, the tree view list, the “Guarding, and Status setting”
group have not any slave list there.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 92

If users want to close the activated board, only need to select the “On-line
Board No” and click the “Close Board” button.

6.2. Node Configuration
The node Configuration can add slaves to the control list of master. The

button needs to be executed after the board has been activated. The following
picture is the form of “Node Configure”.

The “Node No” list shows the total slave IDs from 001 to 127. And the
“On-line Slave” list would show which slave has been added. When users
select the “Node No” and click the “Add slave” button, the selected slave would
be added to the “On-line Slave” list as follows.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 93

The following picture is the main form after adding slaves from the left
selection list. In this example, there are two slaves shown on the tree view list
and the “Guarding and Status setting” group. Users can set guarding function
and work status to slaves in this group.

Expand the Node 1 and Node 2 tree list; users can see the Node, SYNC,
EMCY, RxPDO, and TxPDO five parts below.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 94

Node Part:
The Node part has two pages which are PDO Communication and SDO

Communication. In the PDO Communication page, there are two groups which
are Rx List and Tx List. The Rx List lists the sent PDO messages, and the Tx
List lists the received PDO messages. More detail about these would be
introduced at RxPDO Part and TxPDO Part.

The SDO Communication page also has two groups which are RxSDO
List and Response List. In RxSDO list, there are five buttons to set the list.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 95

 The “Add” button can add the messages from edit box to the list. For
example, set “6200” to “Index”, “01” to “SubIndex”, “01” to “Len”, “55” to “Data”,
and “Write SDO” to “Description”, and then click “Add” button. The message
“W 6200 01 01 – 55: Write SDO” would be added to the list. The “W” of the
message means writing data to the specific slave because “Len” is not 0. If
“Len” is 0, the header of the message would be “R” (Read data from specific
slave).
 If users want to change some values of the messages in the list, key in the
new value in the edit box firstly and click “Change” button to update this
message.
 “Delete” button can delete one of the messages shown in the list. And
“Clear” button can delete all of them.
 Select the messages and click “Send” button to send this message. To
double click this message shows on the list also can send this message. When
a message has been sent, the “Response List” would list what to send. If the
utility has received the response message, the “Response List” would also list
what to receive.

SYNC Part:
 In this part, users can send SYNC message and change SYNC ID. Select
which SYNC ID to send firstly, key in the cyclic timer in the timer edit box, and
click “Send SYNC”. If the timer is 0, the SYNC message would be sent once
per click. But if the timer is not 0, for example 100, the SYNC message would
be sent cyclic with 100 million seconds.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 96

Key in the new SYNC ID in the ID edit box and click “Change SYNC ID”
button to change SYNC ID.

EMCY Part:

The EMCY part can list the EMCY messages and change EMCY ID.
There are two EMCY lists, the Board EMCY and the Node EMCY. The Board
EMCY list is the upper list box; it can show all the EMCY received by the
PISO-CPM100(U). And the Node EMCY is the lower list box; it can only show
the EMCY messages that produced from the specific slave. For example, the
Board EMCY list has two messages but the Node EMCY list has only the node
1 EMCY message in the following picture.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 97

 If users want to change the EMCY ID of the slave, users can key in the
new ID in the EMCY ID edit box and click the “Change EMCY ID” button to
change it.

RxPDO Part:
 In this part, users can set the transmission type, install a new PDO,
change the PDO ID, map a PDO dynamically, and send the PDO message.
 For setting the transmission type, users can select the “RxPDO” label to
see “PDO parameter setup” group below.

 Select the PDO needed to be set the transmission type on the
“Transmission type” list, key in the type value to the “Type” edit box, and then
click the “Set Transmission Type” button to complete this setting.
Note that, the “Event Timer” is useless for RxPDO.

 For installing a new PDO, users can input a new PDO ID in “New PDO”
edit box and then click the “Add” button to add a new PDO. If this PDO is
needed no longer, users can click “Delete” button to remove this PDO. Or to
click “Change PDO ID” button to change the PDO ID to “New PDO”.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 98

 If users want to map the PDO data, they must click PDO ID label in the
“PDO List” or in the “Tree List” to turn to “PDO Mapping State” page firstly. For
example, there are four DO data in the 0x201 PDO ID originally. Users can
select the DO/AO in the DO/AO page and click “Add” button to add the
mapping data to the PDO or click “Change” button to change the original
mapping data. Or click “Remove” button to delete the mapping data from the
PDO that is not needed to use any more.

To send RxPDO, users can click “Add” button to add the PDO data then
click “Send” to send the message or click “Send” button to send directly but not
add to “Msg List”.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 99

All the PDO messages that users send out would be list in the “History”
page as follows. And these messages will also be listed at the “RxPDO” and
“Node 1” page.

TxPDO Part:
 TxPDO Part and RxPDO Part are the same at the most part. Only the
“Event Timer” and “Remote PDO” are not the same. For “Event Timer”, users
can select the “TxPDO” label at the tree list to open the “Event Timer” page. In
this page, users can select the POD to change the event timer and click “Set”
button to set it to the “Timer” value.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 100

 For the remote data, the function is under the PDO label page. For
example “0x181” label page, click the “Remote” button to read the PDO data,
the response data would be shown on the message list, and the “Message
Cnt” box would let users to know how many messages have been received.
And these messages would also be listed at the “TxPDO” and “Node 1” page.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 101

6.3. Refresh slave parameter
When some settings of the slaves on the CPM_Utility are not correctly

(usually in Multi-Master to Single-Slave structure), users can select the slave
on the tree list and click the “Refresh slave parameter” button to refresh the
setting parameter. The CPM_Utility would get the correct setting from the slave
and show on the CPM_Utility.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 102

6.4. DI/DO control
Users can use the DI/DO control to control the DI/DO directly. The DI/DO

control form is shown below.

 Users must select the board number and the slave firstly. Click the “Show
I/O status” button to show the DI and DO control page which users select. And
then the “DI Refresh” timer must be set if there are some DI data needed to be
read. Also, users can click the DO LED to output DO data. Anyway, the DI data
would be refreshed automatically in every DI Refresh time.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 103

6.5. AI/AO control
Users can use the AI/AO control to control the AI/AO directly. The AI/AO

control form is shown below.

Users must select the board number and the slave firstly. Click the “Show
I/O status” button to show the AI and AO control page which users select. And
then the “AI Refresh” timer would be set if there are some AI data needed to be
read. Also, users can drag the AO bar or key in the AO value to output AO data.
Anyway, the AI data will be refreshed automatically in every “AI Refresh” time.

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 104

6.6. Save receive messages
Users can save the total CANopen messages received by the

PISO-CPM100(U) by clicking the button as the following figure. These
messages include SDO messages, PDO messages, and EMCY messages as
the following text file.

 1、The following messages are received by the Node 1 of Board 0.

2、The block 2 is SDO Received Messages. Every SDO message has two
parts. The part 1 is sent from the board, and the part 2 is received from
the board. For example, the part 1 is “R 1000 00 00 – XX: profile”. The
message is meaning that “R” is the read SDO (and if “W” is write SDO),
the “1000 00” is index and sub-index, “00” is data length (because this
message is read message, so the data length is 0), the “XX” is
meaning no data to output, and the “profile” is the user-define
message for describe the SDO message. If the part 2 is “0000001
1000 00 08 – 43 00 10 00 …”, the “0000001” is the message count, the
“1000 00” is index and sub-index, “08” is data length, and the “43 00
10 …” is the response data.

4

3

 2

 1

PISO-CPM100(U) user manual (ver. 1.01) Jan/10/2010 ----------------- 105

3、The block 3 is the TxPDO Received Message. For example, the
“0000000023.4820 – 181 -- 10” is to mean “time stamp – PDO ID --
data”.

 4、Block 4 is the EMCY Received Message.

6.7. Save/Load CPM_Utility Setting
To click this “Save” button can save the total setting of the CPM_Utility to a

*.cpm file. If users want to use these setting at last time, just click the “Load”
button and select the cpm file to load.

6.8. About us
In about us, users can see the software version of the CPM_Utility,

Copyright of our company, e-mail of our service, and the website of our
homepage.

Save Button
Load Button

