[image: image1.jpg]
	
	

[image: image2.jpg]
ICE iPush® Communication Server

Embedded

iceHMsg.ocx
 Programming Guide

By: ICE Technology Corp., March 10, 2004
Ver: 1.3.7
E-Mail \ service@icetechnology.com Tel \ +886-2-23961880 Fax \ +886-2-23961881

Copyright © 2004 ICE Technology Corporation. All Rights Reserved.
iPush® Server is the registered trademark of ICE Technology Corporation.

Table of Content

2Table of Content

3Introduction

3Distribution form and installing

4Properties and Text

4Data Encapsulating and Extracting:

6Packing Outgoing Message

8Parsing Incoming Message

9Property Accepted by iPush® Embedded

Introduction
IceHMsg is an ActiveX control that used for data representation and manipulation. It has a property dictionary whose data can be accessed with string indexes, and a text segment, both are optional. It can encode the data it represents into a byte array, which is useful to be transmitted through iPush® Embedded, and the decoding function is also provided.

This document is organized as the following sections:

· Properties and Text describes data types as well as data access interface

· Producing outgoing messages describes function used to prepare messages for transmission

· Processing incoming messages describes function used to decode such transmission format.

Distribution form and installing
IceHMsg is distributed as a DDL file iceHMsg.ocx. Before use it, you should register it as a system resource, by issuing just one command:

regsvr32 < path to IceHMsg >\iceHMsg.ocx
Then you can see and use it as any ActiveX controls in your system.

Properties and Text
An iceHMsg object may contain many properties. A property can be a string, an integer number, a real number, or a Boolean value. These properties are stored in a dictionary data structure and accessed with their name string.

For each data type, a pair of set/get methods are provided to access a particular property. For example, to set the property BitInput of an iceHMsg object msg to True, you can use the setBooleanProperty method demonstrated below:

msg.setBooleanProperty “BitInput”, True

and use the getBooleanProperty method to retrieve that value afterward:

BitValue = msg.getBooleanProperty(“BitInput”)

The following lists are those data access methods corresponding data types supported by iceHMsg:

Data Encapsulating and Extracting Method:
· setBooleanValue (propName as String, propValue as Boolean)

Set the value of Boolean property named propName to propValue.

· getBooleanValue (propName as String) As Boolean

Retrieve the value of Boolean property named propName.

· setByteValue (propName as String, propValue as Integer)

Set the value of Byte property named propName to propValue.

A Byte value is an integer number ranges from –27 to 27-1

· getByteValue (propName as String) As Integer

Retrieve the value of Byte property named propName.

· setShortValue (propName as String, propValue as Integer)

Set the value of Short property named propName to propValue.

A Short value is an integer number ranges from –216 to 216-1.

· getShortValue (propName as String) As Integer

Retrieve the value of Short property named propName.

· setIntValue (propName as String, propValue as Long)

Set the value of Int property named propName to propValue.

A Int value is an integer number ranges from –231 to 231-1.

· getIntValue (propName as String) As Long

Retrieve the value of Int property named propName.

· setFloatValue (propName as String, propValue as Single)

Set the value of Float property named propName to propValue.

A Float value is a single-precision real number.

· getFloatValue (propName as String) As Single

Retrieve the value of Float property named propName.

· setDoubleValue (propName as String, propValue as Double)

Set the value of Double property named propName to propValue.

A Double value is a double-precision real number.

· getDoubleValue (propName as String) As Double

Retrieve the value of Double property named propName.

· setStringValue (propName as String, propValue as String)

Set the value of String property named propName to propValue.

· getStringValue (propName as String) As String

Retrieve the value of String property named propName.

An iceHMsg object may also have one text segment, which is represented as a string. The interface to access that text segment is:

· setText (text as String)

Set the text segment to text.

· getText () As String

Retrieve the text segment.

There is also methods that remove properties and text segment from a iceHMsg object respectly:

· clearProperties ()

Remove all properties.

· clearText ()

Remove text segment.

Packing Outgoing Message
It is very simple to transform the data of an iceHMsg object into a byte array, which is useful for transmission. The interface is:

· packSubjectMessage () As Variant

As the function name implies, the returned byte array, which is wrapped as a Variant object, is designed to be used as iPush® subject data, but not limited to it.

Take an example:

msg.setFloatProperty “x”, 3.0

msg.setFloatProperty “y”, 4.0

msg.setText “point#1”

bytesMsg = msg.packSubjectMessage()

As result, bytesMsg contains the transmission form of property x set to 3.0, property y set to 4.0, and text segment “point#1”.

Parsing Incoming Message
Transform encoded data back into a iceHMsg is straightforward, the interface is:

· parseSubjectMessage (data) as Boolean

This method returns a Boolean value indicates the parsing is successful or not. The data type of parameter data should be byte array, just like the subject data transmitted from iPush® ActiveX API. Note that previous text segment and all properties will be removed before parsing, even the parsing fails afterward.

For example, with the previously constructed bytesMsg transmitted from iPush® as variant data:

msg.parseSubjectMessage(data)

As a result, msg contains property x, y and text segment as msg in the previous example.

floatX=msg.getFloatProperty (“x”)

and x will be 3.0

floatY=msg.getFloatProperty (“y”)

and y will be 4.0

strText = msg.getText
and we will get strText will be “point#1”

Default Accepted Data Format
Only data format that well defined in I/O module can be recognized by iPush® Embedded. Accepted data format could be expended by developer, please refer to IOModule programming guide for detail description. Following table are default data format accepted by iPush® Embedded:

Default Data Format accepted by iPush® Embedded

	Property Name
	Accepted Data Type
	Example

	AnalogInput
	Float
	Floating number like 1.42857 or 3.14159

	AnalogOutput
	Float
	Floating number like 1.42857 or 3.14159

	DigitalInput
	Integer, Byte
	0-65535, 0-255

	DigitalOutput
	Integer, Byte
	0-65535, 0-255

	BitInput
	Boolean
	TRUE, FALSE (Upper Case needed)

	BitOutput
	Boolean
	TRUE, FALSE (Upper Case needed)

	Report
	N/A
	N/A

Page 8 of 9

