
MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 1

MQtt_X ‘C’ Language API

User's Manual
[Version 1.01]

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 2

Warranty

All products manufactured by ICP DAS Inc. are warranted against defective

materials for a period of one year from the date of delivery to the original purchaser.

Warning

ICP DAS Inc. assumes no liability for damages consequent to the use of this

product. ICP DAS Inc. reserves the right to change this manual at any time without

notice. The information furnished by ICP DAS Inc. is believed to be accurate and

reliable. However, no responsibility is assumed by ICP DAS Inc. for its use, or for

any infringements of patents or other rights of third parties resulting from its use.

Copyright

Copyright 2003-2008 by ICP DAS Inc., LTD. All rights reserved worldwide.

Trademark

The names used for identification only maybe registered trademarks of their

respective companies.

License

The user can use, modify and backup this software on a single machine. The

user may not reproduce, transfer or distribute this software, or any copy, in whole or

in part.

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 3

Table of Contents

1 SUMMARY OF AMENDMENTS .. 4

2 PREFACE ... 5

3 C LANGUAGE OF MQTT_X API AND PROGRAMMING MODEL .. 6

3.1 PROGRAMMING MODEL ... 6
3.1.1 Connecting and disconnecting .. 6
3.1.2 Sending data ... 6
3.1.3 Receiving data .. 7

4 MQTT_X ‘C’ LANGUAGE API ... 8

4.1 ETHERNET INIT .. 8
4.2 MQTT INIT .. 8
4.3 MQTT CLOSE .. 8
4.4 CONNECT ... 8
4.5 DISCONNECT ... 10
4.6 PUBLISH .. 11
4.7 SUBSCRIBE .. 13
4.8 UNSUBSCRIBE .. 14
4.9 GET MESSAGE STATUS .. 16
4.10 RECEIVE PUBLICATION .. 16
4.11 VERSION .. 18
4.12 RETURN CODES ... 18

5 SAMPLE APPLICATIONS .. 20

5.1 ONE BROKER COMMUNICATION WITHOUT X-SERVER .. 20
5.2 ONE BROKER COMMUNICATION WITH X-SERVER .. 21
5.3 DUAL BROKERS COMMUNICATION WITHOUT X-SERVER .. 23
5.4 DUAL BROKERS COMMUNICATION WITH X-SERVER .. 25

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 4

1 Summary of Amendments
Date Changes
25 December 2009 Initial release

 Version 1.01

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 5

2 Preface
This SDK provides a C language implementation of the MQtt_X protocol. The code is
supplied pre-built for Borland C++ on MiniOS7 and is supplied with MQtt_X.lib and
MQtt_X.h to compile the code on uPAC-7186.

MQtt_X – MQ Telemetry Transport for uPAC-7186

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 6

3 C language of MQtt_X API and
programming model

The MQtt_X protocol is built into a shared library on the MiniOS7 and X-Server
platforms (7186EL.lib and TCP_DM32.lib), although the source may be compiled
and linked as appropriate for the development platform.

The API provides functions communicating with IBM micro broker, such as
connecting, disconnecting, publishing, subscribing, unsubscribing, receiving
publications and some additional helper functions. The API is designed to be non-
blocking, so functions will return before an operation, such as publish or subscribe
has completed. The status of these operations can be queried using the message
identifier returned by the API.

3.1 Programming model
The MQtt_X C source code is compiled in a single thread of execution. The single
threaded implementation allows the code to be quickly compiled for evaluation on a
platform. Ethernet_Init and MQtt_Init must be used in uPAC-7186 programming
without X-Server architecture. Ethernet_Init can be ignored in uPAC-7186
programming with X-Server architecture.

3.1.1 Connecting and disconnecting
When MQtt_MQIsdpConnect returns MQISDP_OK this indicates that a connect
message has been successfully built ready to send to the MQtt micro broker. The
protocol is in a state of CONNECTING.
The status of the connection between the device and the WMQTT broker, which can
be:
 MQISDP_CONNECTING - a connection with the broker is being requested, but no
response has been received yet.
 MQISDP_CONNECTED – a response to a connect request has been received, so

the protocol is now connected and ready to send data to the broker.
 MQISDP_DISCONNECTED – a TCP/IP error has occurred and the protocol is

trying to reconnect to the broker.
 MQISDP_CONNECTION_BROKEN – the protocol has been unable to connect to

the broker and all retries have been exhausted, as determined by the RetryInt
parameter of MQtt_MQIsdpconnect.

MQtt_MQIsdpDisconnect must be called to disconnect the application, even if the
connection between the device and the broker is in state
MQISDP_CONNECTION_BROKEN. MQtt_MQIsdpDisconnect frees up resources
as well as closing the TCP/IP connection.

3.1.2 Sending data
To send data to the broker the application must use MQtt_MQIsdpPublish. Every
piece of data published must be associated with a topic.

Data can be published no matter what state the connection to the broker is in, but

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 7

applications need to be aware that if the protocol fails to reconnect to the broker after
a connection error then the messages will not get delivered. In the event of an error
applications can use MQtt_MQIsdp_getMsgStatus to find out what messages have
been delivered.

3.1.3 Receiving data
To receive data an application must first tell the broker what data it is interested in
receiving. This can be done using MQtt_MQIsdpSubscribe to specify all topics that
the application is interested in.

MQtt_MQIsdpRcvPub can be used to receive data. A timeout can be specified, so
that the API blocks until a message arrives, or the timeout expires.
MQtt_MQIsdpRcvPub may return:
 MQISDP_NO_PUBS_AVAILABLE – if there are no publications to receive.
 MQISDP_PUBS_AVAILABLE – if a publication is successfully received and

there are more publications available
 MQISDP_OK – if a publication is successfully received and there are no more

publications available.
 MQISDP_DATA_TRUNCATED – if there is a message to receive, but the buffer

supplied by the application is not large enough.

When an application is no longer interested in receiving data for certain topics it can
call MQtt_MQIsdpUnsubscribe specifying all topics for which it no longer wishes to
receive data.

The MQISDP_CLEAN_START flag has an affect on subscriptions active within the
broker.

If the flag is not specified when connecting then the application must explicitly
unsubscribe from all topics, otherwise subscriptions will remain active within the
broker even after the application has disconnected. Data will be queued up to send
to the application next time it connects.

If the flag is specified then the micro broker will remove any active subscriptions and
outstanding messages when the application disconnects (cleanly or otherwise e.g. a
TCP/IP error).

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 8

4 MQtt_X ‘C’ language API

4.1 Ethernet Init
int Ethernet_Init(void)
Returns:
 0: ok.
 -1: function "llip" error
 -2: function "Ninit" error
 -3: function "Portinit" error

4.2 MQtt Init
int MQtt_Init(int Broker_ID)
Inputs :

Broker_ID; 0 ~ 3

Returns:
 0: ok.
 1: Initiation error
 2: Certification error

4.3 MQtt Close
int MQtt_Close(int Broker_ID)
Inputs :

Broker_ID; 0 ~ 3

Returns:
 Return code:

MQISDP_OK

4.4 Connect
int MQtt_MQIsdpConnect (int Broker_ID,

PUBPARMS *ppp,
MQISDPTI *pApiTaskInfo,
int RetryInt,
int KeepAlive,
int CleanStart)

Inputs:
Broker_ID – Broker ID; 0 ~ 3
ppp – Address of a PUBPARMS
pApiTaskInfo – Address of task information
RetryInt – retry times
KeepAlive – Keep alive time
CleanStart – Whether clean start; TRUE = 1; FALSE = 0

Returns:
 Return code:

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 9

MQISDP_OK
MQISDP_NO_WILL_TOPIC
MQISDP_ALREADY_CONNECTED
MQISDP_HOSTNAME_NOT_FOUND
MQISDP_PERSISTENCE_FAILED
MQISDP_DATA_TOO_BIG

·
If return code is MQISDP_OK, a valid connection handle is returned otherwise
connection handle is set to MQISDP_INV_CONN_HANDLE

PUBPARMS:

Field Data Type Usage
clientId char[24] A NULL terminated string up to

MQISDP_CLIENT_ID_LENGTH (23)
characters in length uniquely identifying the
application to the MQIsdp broker.

pBroker char[32] The hostname or dotted decimal IP address
of the broker.

port int The TCP/IP port number of the broker.

topic char[100] The topic to be associated with the data being
published

qos int Optional parameter. The Quality of Service at
which to deliver the publication – 0, 1 or 2

 A QoS of 0 denotes that the publisher and
broker attempt one-time delivery of the
message but do not take steps above and
beyond those provided by TCP/IP to
ensure message delivery. This level is
sometimes called fire and forget because
the message is sent to its destination
without verification of receipt.

 A QoS setting of 1 specifies that the
message is ensured to be delivered to the
broker; however, it may be delivered more
than once.

 A QoS value of 2 instructs MQtt to deliver
the message once and only once.

retain int Optional parameter. Should the publication be
retained by the broker – 1(yes) or 0(no).

lwtTopic char[32] The last Will topic name

lwtQos int The last Will topic QoS

 A QoS of 0 denotes that the publisher and
broker attempt one-time delivery of the
message but do not take steps above and
beyond those provided by TCP/IP to
ensure message delivery. This level is
sometimes called fire and forget because
the message is sent to its destination
without verification of receipt.

 A QoS setting of 1 specifies that the

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 10

message is ensured to be delivered to the
broker; however, it may be delivered more
than once.

 A QoS value of 2 instructs MQtt to deliver
the message once and only once.

lwtRetain int The last Will topic retain – 1(yes) or 0(no).

lwtData char[32] The last Will topic data

debug int Debug mode – always 0(no).

dataArg int Data Arguement – always 0(no).

hConn MQISDPCH A valid connection handle

lastSentMsg MQISDPMH Address of last sent message handle

4.5 Disconnect
int MQtt_MQIsdpDisconnect(int Broker_ID,

PUBPARMS *ppp)
Inputs:

Broker_ID - Broker ID; 0 ~ 3
ppp - Address of a PUBPARMS

Returns:
 Return code:

MQISDP_OK
MQISDP_PERSISTENCE_FAILED
MQISDP_CONN_HANDLE_ERROR

PUBPARMS:

Field Data Type Usage
clientId char[24] A NULL terminated string up to

MQISDP_CLIENT_ID_LENGTH (23)
characters in length uniquely identifying the
application to the MQIsdp broker.

pBroker char[32] The hostname or dotted decimal IP address
of the broker.

port int The TCP/IP port number of the broker.

topic char[100] The topic to be associated with the data being
published

qos int Optional parameter. The Quality of Service at
which to deliver the publication – 0, 1 or 2

 A QoS of 0 denotes that the publisher and
broker attempt one-time delivery of the
message but do not take steps above and
beyond those provided by TCP/IP to
ensure message delivery. This level is
sometimes called fire and forget because
the message is sent to its destination
without verification of receipt.

 A QoS setting of 1 specifies that the
message is ensured to be delivered to the
broker; however, it may be delivered more

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 11

than once.

 A QoS value of 2 instructs MQtt to deliver
the message once and only once.

retain int Optional parameter. Should the publication be
retained by the broker – 1(yes) or 0(no).

lwtTopic char[32] The last Will topic name

lwtQos int The last Will topic QoS

 A QoS of 0 denotes that the publisher and
broker attempt one-time delivery of the
message but do not take steps above and
beyond those provided by TCP/IP to
ensure message delivery. This level is
sometimes called fire and forget because
the message is sent to its destination
without verification of receipt.

 A QoS setting of 1 specifies that the
message is ensured to be delivered to the
broker; however, it may be delivered more
than once.

 A QoS value of 2 instructs MQtt to deliver
the message once and only once.

lwtRetain int The last Will topic retain – 1(yes) or 0(no).

lwtData char[32] The last Will topic data

debug int Debug mode – always 0(no).

dataArg int Data Arguement – always 0(no).

hConn MQISDPCH A valid connection handle

lastSentMsg MQISDPMH Address of last sent message handle

4.6 Publish
int MQtt_MQIsdpPublish(int Broker_ID,

 PUBPARMS *ppp,
 char *pData,
 int dataLength)

Inputs:
Broker_ID - Broker ID; 0 ~ 3
ppp - Address of a PUBPARMS
pData – Address of publish data
dataLength – Length of publish data

Returns:
 Return code:

MQISDP_OK
MQISDP_CONN_HANDLE_ERROR
MQISDP_Q_FULL
MQISDP_PERSISTENCE_FAILED
MQISDP_DATA_TOO_BIG
MQISDP_CONNECTION_BROKEN

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 12

MQISDP_INVALID_STRUC_LENGTH

PUBPARMS:

Field Data Type Usage
clientId char[24] A NULL terminated string up to

MQISDP_CLIENT_ID_LENGTH (23)
characters in length uniquely identifying the
application to the MQIsdp broker.

pBroker char[32] The hostname or dotted decimal IP address
of the broker.

port int The TCP/IP port number of the broker.

topic char[100] The topic to be associated with the data being
published

qos int Optional parameter. The Quality of Service at
which to deliver the publication – 0, 1 or 2

 A QoS of 0 denotes that the publisher and
broker attempt one-time delivery of the
message but do not take steps above and
beyond those provided by TCP/IP to
ensure message delivery. This level is
sometimes called fire and forget because
the message is sent to its destination
without verification of receipt.

 A QoS setting of 1 specifies that the
message is ensured to be delivered to the
broker; however, it may be delivered more
than once.

 A QoS value of 2 instructs MQtt to deliver
the message once and only once.

retain int Optional parameter. Should the publication be
retained by the broker – 1(yes) or 0(no).

lwtTopic char[32] The last Will topic name

lwtQos int The last Will topic QoS

 A QoS of 0 denotes that the publisher and
broker attempt one-time delivery of the
message but do not take steps above and
beyond those provided by TCP/IP to
ensure message delivery. This level is
sometimes called fire and forget because
the message is sent to its destination
without verification of receipt.

 A QoS setting of 1 specifies that the
message is ensured to be delivered to the
broker; however, it may be delivered more
than once.

 A QoS value of 2 instructs MQtt to deliver
the message once and only once.

lwtRetain int The last Will topic retain – 1(yes) or 0(no).

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 13

lwtData char[32] The last Will topic data

debug int Debug mode – always 0(no).

dataArg int Data Arguement – always 0(no).

hConn MQISDPCH A valid connection handle

lastSentMsg MQISDPMH Address of last sent message handle

4.7 Subscribe
int MQtt_MQIsdpSubscribe(int Broker_ID,

SUBPARMS *ppp)
Inputs:

Broker_ID - Broker ID; 0 ~ 3
ppp - Address of a SUBPARMS

Returns:
 Return code:

MQISDP_CONN_HANDLE_ERROR
MQISDP_Q_FULL
MQISDP_PERSISTENCE_FAILED
MQISDP_DATA_TOO_BIG
MQISDP_CONNECTION_BROKEN
MQISDP_INVALID_STRUC_LENGTH

SUBPARMS:

Field Data Type Usage
clientId char[24] A NULL terminated string up to

MQISDP_CLIENT_ID_LENGTH (23)
characters in length uniquely identifying the
application to the MQIsdp broker.

pBroker char[32] The hostname or dotted decimal IP address
of the broker.

Port int The TCP/IP port number of the broker.

topic char[100] The topic to be associated with the data being
published

qos int Optional parameter. The Quality of Service at
which to receive the publication – 0, 1 or 2

 A QoS of 0 denotes that the publisher and
broker attempt one-time delivery of the
message but do not take steps above and
beyond those provided by TCP/IP to
ensure message delivery. This level is
sometimes called fire and forget because
the message is sent to its destination
without verification of receipt.

 A QoS setting of 1 specifies that the
message is ensured to be received from
the broker; however, it may be received
more than once.

 A QoS value of 2 instructs MQtt to receive
the message once and only once.

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 14

retain int Optional parameter. Should the publication be
retained by the broker – 1(yes) or 0(no).

lwtTopic char[32] The last Will topic name

lwtQos int The last Will topic QoS

 A QoS of 0 denotes that the publisher and
broker attempt one-time delivery of the
message but do not take steps above and
beyond those provided by TCP/IP to
ensure message delivery. This level is
sometimes called fire and forget because
the message is sent to its destination
without verification of receipt.

 A QoS setting of 1 specifies that the
message is ensured to be received from
the broker; however, it may be received
more than once.

 A QoS value of 2 instructs MQtt to receive
the message once and only once.

lwtRetain int The last Will topic retain – 1(yes) or 0(no).

lwtData char[32] The last Will topic data

debug int Debug mode – always 0(no).

dataArg int Data Arguement – always 0(no).

hConn MQISDPCH A valid connection handle

lastSentMsg MQISDPMH Address of last sent message handle

4.8 Unsubscribe
int MQtt_MQIsdpUnsubscribe(int Broker_ID,

SUBPARMS *ppp)
Inputs:

Broker_ID - Broker ID; 0 ~ 3
ppp - Address of a SUBPARMS

Returns:
 Return code:

MQISDP_CONN_HANDLE_ERROR
MQISDP_Q_FULL
MQISDP_PERSISTENCE_FAILED
MQISDP_DATA_TOO_BIG
MQISDP_CONNECTION_BROKEN
MQISDP_INVALID_STRUC_LENGTH

SUBPARMS:

Field Data Type Usage
clientId char[24] A NULL terminated string up to

MQISDP_CLIENT_ID_LENGTH (23)
characters in length uniquely identifying the
application to the MQIsdp broker.

pBroker char[32] The hostname or dotted decimal IP address
of the broker.

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 15

Port int The TCP/IP port number of the broker.

topic char[100] The topic to be associated with the data being
published

qos int Optional parameter. The Quality of Service at
which to receive the publication – 0, 1 or 2

 A QoS of 0 denotes that the publisher and
broker attempt one-time delivery of the
message but do not take steps above and
beyond those provided by TCP/IP to
ensure message delivery. This level is
sometimes called fire and forget because
the message is sent to its destination
without verification of receipt.

 A QoS setting of 1 specifies that the
message is ensured to be received from
the broker; however, it may be received
more than once.

 A QoS value of 2 instructs MQtt to receive
the message once and only once.

retain int Optional parameter. Should the publication be
retained by the broker – 1(yes) or 0(no).

lwtTopic char[32] The last Will topic name

lwtQos int The last Will topic QoS

 A QoS of 0 denotes that the publisher and
broker attempt one-time delivery of the
message but do not take steps above and
beyond those provided by TCP/IP to
ensure message delivery. This level is
sometimes called fire and forget because
the message is sent to its destination
without verification of receipt.

 A QoS setting of 1 specifies that the
message is ensured to be received from
the broker; however, it may be received
more than once.

 A QoS value of 2 instructs MQtt to receive
the message once and only once.

lwtRetain int The last Will topic retain – 1(yes) or 0(no).

lwtData char[32] The last Will topic data

debug int Debug mode – always 0(no).

dataArg int Data Arguement – always 0(no).

hConn MQISDPCH A valid connection handle

lastSentMsg MQISDPMH Address of last sent message handle

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 16

4.9 Get Message Status
int MQtt_MQIsdp_getMsgStatus(int Broker_ID,

 MQISDPCH hConn,
 MQISDPMH hMsg)

Inputs:
Broker_ID - Broker ID; 0 ~ 3
hConn - A valid connection handle
hMsg - A valid message handle

Returns:
 Return code:

MQISDP_CONN_HANDLE_ERROR
MQISDP_MSG_HANDLE_ERROR
MQISDP_DELIVERED
MQISDP_RETRYING
MQISDP_IN_PROGRESS

MQISDP_DELIVERED is the final state than a message can get into. A message is
delivered once all the Quality of Service MQtt protocol flows are complete.

Messages with a QoS of 0 will be discarded if the TCP/IP connection is down. The
application cannot query the state of a publication sent at QoS 0 because the
protocol does not know if delivery is successful or not.

MQISDP_MSG_HANDLE_ERROR is returned if an invalid message handle is
supplied.

4.10 Receive Publication
int MQtt_MQIsdpRcvPub(int Broker_ID,

 SUBPARMS *ppp,
 char *pMatchData,
 long *topicLength,
 long *dataLength)

Inputs:
Broker_ID - Broker ID; 0 ~ 3
ppp - Address of a SUBPARMS

Returns:
 Return code:

MQISDP_CONN_HANDLE_ERROR
MQISDP_MSG_HANDLE_ERROR
MQISDP_DELIVERED
MQISDP_RETRYING
MQISDP_IN_PROGRESS

 pMatchData - The first topicLength bytes of this buffer contain the topic, which is
followed by dataLength bytes of message data.

 topicLength - The length in bytes of the topic
 dataLength - The length in bytes of the data associated with the topic

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 17

SUBPARMS:

Field Data Type Usage
clientId char[24] A NULL terminated string up to

MQISDP_CLIENT_ID_LENGTH (23)
characters in length uniquely identifying the
application to the MQIsdp broker.

pBroker char[32] The hostname or dotted decimal IP address
of the broker.

Port int The TCP/IP port number of the broker.

topic char[100] The topic to be associated with the data being
published

qos int Optional parameter. The Quality of Service at
which to receive the publication – 0, 1 or 2

 A QoS of 0 denotes that the publisher and
broker attempt one-time delivery of the
message but do not take steps above and
beyond those provided by TCP/IP to
ensure message delivery. This level is
sometimes called fire and forget because
the message is sent to its destination
without verification of receipt.

 A QoS setting of 1 specifies that the
message is ensured to be received from
the broker; however, it may be received
more than once.

 A QoS value of 2 instructs MQtt to receive
the message once and only once.

retain int Optional parameter. Should the publication be
retained by the broker – 1(yes) or 0(no).

lwtTopic char[32] The last Will topic name

lwtQos int The last Will topic QoS

 A QoS of 0 denotes that the publisher and
broker attempt one-time delivery of the
message but do not take steps above and
beyond those provided by TCP/IP to
ensure message delivery. This level is
sometimes called fire and forget because
the message is sent to its destination
without verification of receipt.

 A QoS setting of 1 specifies that the
message is ensured to be received from
the broker; however, it may be received
more than once.

 A QoS value of 2 instructs MQtt to receive
the message once and only once.

lwtRetain int The last Will topic retain – 1(yes) or 0(no).

lwtData char[32] The last Will topic data

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 18

debug int Debug mode – always 0(no).

dataArg int Data Arguement – always 0(no).

hConn MQISDPCH A valid connection handle

lastSentMsg MQISDPMH Address of last sent message handle

4.11 Version
int MQtt_MQIsdp_version(int Broker_ID)

Inputs:

Broker_ID - Broker ID; 0 ~ 3

Returns:
 Return code:

Version number

4.12 Return Codes
Return Code Value Explanation

MQISDP_OK 0 Success

MQISDP_PROTOCOL_VERSION_ERROR 1001 The WMQTT broker does not
support this version of the
WMQTT protocol

MQISDP_HOSTNAME_NOT_FOUND 1002 If a hostname is used in the
connection parameters then this
indicates that DNS resolution of
the hostname failed.

MQISDP_Q_FULL 1003 The limit on the amount of data in
the process of being delivered has
been reached. Space will be freed
up as messages are delivered or
discarded.

MQISDP_FAILED 1004 Failure

MQISDP_PUBS_AVAILABLE 1005 Publications are available to be
received.

MQISDP_NO_PUBS_AVAILABLE 1006 No publications are available to be
received.

MQISDP_PERSISTENCE_FAILED 1007 When connecting or sending data
the persistence implementation
reported an error.
Investigate the persistence
implementation to resolve the
problem.

MQISDP_CONN_HANDLE_ERROR 1008 An invalid connection handle has
been specified.

MQISDP_NO_WILL_TOPIC 1010 Option MQISDP_WILL has been
supplied on MQIsdp_connect, but
there is no Will topic.

MQISDP_INVALID_STRUC_LENGTH 1011 An incorrect length supplied in a
structure causes the send task to
attempt to read beyond the end of
the structure.

MQISDP_DATA_LENGTH_ERROR 1012 The data length parameter of
MQIsdp_publish is less than zero.

MQISDP_DATA_TOO_BIG 1013 The data supplied is bigger than

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 19

the WMQTT protocol can handle

MQISDP_ALREADY_CONNECTED 1014 MQIsdp_connect has been called
when a connection already exists
for the application.

MQISDP_CONNECTION_BROKEN 1017 All attempts by the WMQTT client
to establish a connection with the
WMQTT broker have been
exhausted.
MQIsdp_getMsgStatus,
MQIsdp_status can be used to
find what messages have been
delivered and why the connection
failed. MQIsdp_receivePub can
receive waiting publications.
The application must disconnect
before it is able to send any more
data.

MQISDP_DATA_TRUNCATED 1018 The receive buffer supplied for
MQIsdp_receivePub is not big
enough for the data.

MQISDP_CLIENT_ID_ERROR 1019 The WMQTT broker refused the
connection attempt because of a
problem with the client identifier.

MQISDP_BROKER_UNAVAILABLE 1020 The WMQTT broker has refused
the
connection attempt.

MQISDP_SOCKET_CLOSED 1021 The remote socket was closed
unexpectedly terminating
communications.

MQISDP_OUT_OF_MEMORY 1022 No more memory can be allocated
for handling the API call.

 1031 Certification error.

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 20

5 Sample applications

5.1 One broker communication without X-Server
This demo shows how to use MQtt_X library in 7186.
Step 1: Initiate the controller.

Step 2: Initiate the Ethernet adapter.

Step 3: Initiate MQtt client.

Step 4: Connect MQtt client to miro broker(IP:192.168.1.91).

//Step1. Initiate the controller.

 InitLib();

 InstallCom1(115200, 8, 0, 1);

//Step2. Initiate the Ethernet adapter.

 iRet=Ethernet_Init();

 if(iRet==NoError)

 printCom1("Inint Ethernet ok.\n\r");

 else

 printCom1("Inint Ethernet error.\n\r");

//Step3. Initiate MQtt client.

 iRet = MQtt_Init(0);

 if(iRet!=0)

 {

 // Initial MQtt_X library error.

 printCom1("Initial MQtt_X library error.\n\r");

 }

 else

 {

 // Initial MQtt_X library ok.

 printCom1("Initial MQtt_X library OK.\n\r");

 }

//Step4. Connect MQtt client to miro broker(IP:192.168.1.91).

 pubParms.port = 1883;

 subParms.port = 1888;

 sprintf(pubParms.pBroker,"%s","192.168.1.91");

 sprintf(subParms.pBroker,"%s","192.168.1.91");
 :

:
iRet = MQtt_MQIsdpConnect(0, &pubParms, pApiTaskParms, 2, 5, 1);

 :

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 21

Step 5: Subscribe Topic

Step 6: It is a loop function which receive data published from other MQtt clients and
publish its data to other MQtt clients.

Full project could be seen in MQttX_1B.PRJ.

5.2 One broker communication with X-Server
This demo shows how to use MQtt_X library in 7186.
Step 1: Initiate the controller.

//Step5. Subscribe Topic.

 subParms.hConn = pubParms.hConn;

 subParms.qos = 1;

 subParms.timeout = 50;

 //Sub topic 1

 sprintf(subParms.topic,"%s","uPAC101/XBoard/DO/ch0");

 iRet = MQtt_MQIsdpSubscribe(0, &subParms);

 if(iRet!=0)

 {

 // MQtt_MQIsdpSubscribe 1 error.

 printCom1("MQtt_MQIsdpSubscribe 1 error.\n\r");

 }

 else

 {

 // MQtt_MQIsdpSubscribe 1 OK.

 printCom1("MQtt_MQIsdpSubscribe 1 OK.\n\r");

 }
 :

:

//Step6. Begin the loop function

 for(;;)

 {

 if((GetTimeTicks()-lStart_TimeTick)>50)

 {

 lStart_TimeTick=GetTimeTicks();

//Step6.1 Recieve Publish
 :

:

:

//Step6.2 Publish
:

:

:

}

}

//Step1. Initiate the controller.

 InitLib();

 InstallCom1(115200, 8, 0, 1);

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 22

Step 2: Initiate MQtt client.

Step 3: Connect MQtt client to miro broker(IP:192.168.1.91).

Step 4: Subscribe Topic

//Step2. Initiate MQtt client.

 //======= Initiate MQtt client =======

 iRet = MQtt_Init(0);

 if(iRet!=0)

 {

 // Initial MQtt_X library error.

 printCom1("Initial MQtt_X library error.\n\r");

 }

 else

 {

 // Initial MQtt_X library ok.

 printCom1("Initial MQtt_X library OK.\n\r");

 }

 //=======End Initiate MQtt client =======

//Step3. Connect MQtt client to miro broker(IP:192.168.1.91).

 pubParms.port = 1883;

 subParms.port = 1888;

 sprintf(pubParms.pBroker,"%s","192.168.1.91");

 sprintf(subParms.pBroker,"%s","192.168.1.91");
 :

:
iRet = MQtt_MQIsdpConnect(0, &pubParms, pApiTaskParms, 2, 5, 1);

 :

//Step4. Subscribe Topic.

 subParms.hConn = pubParms.hConn;

 subParms.qos = 1;

 subParms.timeout = 50;

 //Sub topic 1

 sprintf(subParms.topic,"%s","uPAC101/XBoard/DO/ch0");

 iRet = MQtt_MQIsdpSubscribe(0, &subParms);
 :

:

:

:

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 23

Step 5: It is a loop function which receive data published from other MQtt clients and
publish its data to other MQtt clients.

Full project could be seen in MQttX_1X.PRJ.

5.3 Dual brokers communication without X-Server
This demo shows how to use MQtt_X library in 7186(connect to two micro brokers).
Step 1: Initiate the controller.

Step 2: Initiate the Ethernet adapter.

Step 3-1: Initiate MQtt client 1.

 if((GetTimeTicks()-lStart_TimeTick)>50)

 {

 lStart_TimeTick=GetTimeTicks();

//Step5.1 Recieve Publish
 :

:

:

:

//Step5.2 Publish
:

:

:

:

}

//Step1. Initiate the controller.

 InitLib();

 InstallCom1(115200, 8, 0, 1);

//Step2. Initiate the Ethernet adapter.

 iRet=Ethernet_Init();

 if(iRet==NoError)

 printCom1("Inint Ethernet ok.\n\r");

 else

 printCom1("Inint Ethernet error.\n\r");

//Step3-1. Initiate MQtt client 1.

 iRet = MQtt_Init(0);

 if(iRet!=0)

 {

 // Initial MQtt_X library error.

 printCom1("Initial MQtt_X library error.\n\r");

 }

 else

 {

 // Initial MQtt_X library ok.

 printCom1("Initial MQtt_X library OK.\n\r");

 }

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 24

Step 3-2: Initiate MQtt client 2.

Step 4-1: Connect MQtt client to miro broker 1(IP:192.168.1.91).

Step 4-2: Connect MQtt client to miro broker 2(IP:192.168.1.94).

Step 5-1: Subscribe Topic to micro broker 1.

//Step3-2. Initiate MQtt client 2.

 iRet = MQtt_Init(1);

 if(iRet!=0)

 {

 // Initial MQtt_X library error.

 printCom1("Initial MQtt_X library error.\n\r");

 }

 else

 {

 // Initial MQtt_X library ok.

 printCom1("Initial MQtt_X library OK.\n\r");

 }

//Step4-1. Connect MQtt client to miro broker 1(IP:192.168.1.91).

 pubParms_1.port = 1883;

 subParms_1.port = 1888;

 sprintf(pubParms_1.pBroker,"%s","192.168.1.91");

 sprintf(subParms_1.pBroker,"%s","192.168.1.91");
 :

:
iRet = MQtt_MQIsdpConnect(0, &pubParms_1, pApiTaskParms, 2, 5, 1);

 :

//Step4-2. Connect MQtt client to miro broker 2(IP:192.168.1.94).

 pubParms_2.port = 1883;

 subParms_2.port = 1888;

 sprintf(pubParms_2.pBroker,"%s","192.168.1.94");

 sprintf(subParms_2.pBroker,"%s","192.168.1.94");
 :

:
iRet = MQtt_MQIsdpConnect(1, &pubParms_2, pApiTaskParms, 2, 5, 1);

 :

//Step5-1. Subscribe Topic to micro broker 1.

 subParms_1.hConn = pubParms_1.hConn;

 subParms_1.qos = 1;

 subParms_1.timeout = 50;

 //Sub topic 1

 sprintf(subParms_1.topic,"%s","uPAC101/XBoard/DO/ch0");

 iRet = MQtt_MQIsdpSubscribe(0, &subParms_1);
 :

:

:

:

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 25

Step 5-2: Subscribe Topic to micro broker 2.

Step 6: It is a loop function which receive data published from other MQtt clients and
publish its data to other MQtt clients via micro broker 1 and micro broker 2.

Full project could be seen in MQttX_2B.PRJ.

5.4 Dual brokers communication with X-Server
This demo shows how to use MQtt_X library in 7186.
Step 1: Initiate the controller.

Step 2-1: Initiate MQtt client 1.

//Step5-2. Subscribe Topic to micro broker 2.

 subParms_2.hConn = pubParms_2.hConn;

 subParms_2.qos = 1;

 subParms_2.timeout = 50;

 //Sub topic 1

 sprintf(subParms_2.topic,"%s","uPAC101/XBoard/DO/ch0");

 iRet = MQtt_MQIsdpSubscribe(1, &subParms_2);
 :

:

:

:

//Step6. Begin the loop function

 for(;;)

 {

 if((GetTimeTicks()-lStart_TimeTick)>50)

 {

 lStart_TimeTick=GetTimeTicks();

//Step6.1 Recieve Publish from micro broker 1
:

:

//Step6.2 Publish to micro broker 1
 :

:

//Step6.3 Recieve Publish from micro broker 2
 :

:

//Step6.4 Publish to micro broker 2
 :

:

//Step1. Initiate the controller.

 InitLib();

 InstallCom1(115200, 8, 0, 1);

//Step2-1. Initiate MQtt client 1.

 //======= Initiate MQtt client =======

 iRet = MQtt_Init(0);
:

:

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 26

Step 2-2: Initiate MQtt client 2.

Step 3-1: Connect MQtt client to miro broker 1(IP:192.168.1.91).

Step 3-2: Connect MQtt client to miro broker 2(IP:192.168.1.94).

Step 4-1: Subscribe Topic to micro broker 1.

Step 4-2: Subscribe Topic to micro broker 2.

//Step2-2. Initiate MQtt client 2.

 //======= Initiate MQtt client =======

 iRet = MQtt_Init(1);
:

:

//Step3-1. Connect MQtt client to miro broker 1(IP:192.168.1.91).

 pubParms_1.port = 1883;

 subParms_1.port = 1888;

 sprintf(pubParms_1.pBroker,"%s","192.168.1.91");

 sprintf(subParms_1.pBroker,"%s","192.168.1.91");
 :

:
iRet = MQtt_MQIsdpConnect(0, &pubParms_1, pApiTaskParms, 2, 5, 1);

 :

//Step3-2. Connect MQtt client to miro broker 1(IP:192.168.1.94).

 pubParms_2.port = 1883;

 subParms_2.port = 1888;

 sprintf(pubParms_2.pBroker,"%s","192.168.1.94");

 sprintf(subParms_2.pBroker,"%s","192.168.1.94");
 :

:
iRet = MQtt_MQIsdpConnect(1, &pubParms_2, pApiTaskParms, 2, 5, 1);

 :

//Step4-1. Subscribe Topic to micro broker 1.

 subParms_1.hConn = pubParms_1.hConn;

 subParms_1.qos = 1;

 subParms_1.timeout = 50;

 //Sub topic 1

 sprintf(subParms_1.topic,"%s","uPAC101/XBoard/DO/ch0");

 iRet = MQtt_MQIsdpSubscribe(0, &subParms_1);
 :

:

//Step4-2. Subscribe Topic to micro broker 2.

 subParms_2.hConn = pubParms_2.hConn;

 subParms_2.qos = 1;

 subParms_2.timeout = 50;

 //Sub topic 1

 sprintf(subParms_2.topic,"%s","uPAC101/XBoard/DO/ch0");

 iRet = MQtt_MQIsdpSubscribe(1, &subParms_2);
 :

:

MQtt_X ‘C’ language API

Ver: 1.01 Date: Dec-25 2009 Page: 27

Step 5: It is a loop function which receive data published from other MQtt clients and
publish its data to other MQtt clients via micro broker 1 and micro broker 2.

Full project could be seen in MQttX_2X.PRJ.

if((GetTimeTicks()-lStart_TimeTick)>50)

 {

 lStart_TimeTick=GetTimeTicks();

//Step5.1 Recieve Publish from micro broker 1
:

:

//Step5.2 Publish to micro broker 1
 :

:

//Step5.3 Recieve Publish from micro broker 2
 :

:

//Step5.4 Publish to micro broker 2
 :

:

}

	Summary of Amendments
	Preface
	C language of MQtt_X API and programming model
	Programming model
	Connecting and disconnecting
	Sending data
	Receiving data

	MQtt_X ‘C’ language API
	Ethernet Init
	MQtt Init
	MQtt Close
	Connect
	Disconnect
	Publish
	Subscribe
	Unsubscribe
	Get Message Status
	Receive Publication
	Version
	Return Codes

	Sample applications
	One broker communication without X-Server
	One broker communication with X-Server
	Dual brokers communication without X-Server
	Dual brokers communication with X-Server

