

PISO-CM100-D/T

User’s Manual

Warranty

All products manufactured by ICP DAS are warranted
against defective materials for a period of one year from
the date of delivery to the original purchaser.

Warning

ICP DAS assume no liability for damages consequent
to the use of this product. ICP DAS reserves the right to
change this manual at any time without notice. The
information furnished by ICP DAS is believed to be
accurate and reliable. However, no responsibility is
assumed by ICP DAS for its use, nor for any infringements
of patents or other rights of third parties resulting from its
use.

Copyright

Copyright 2007 by ICP DAS. All rights are reserved.

Trademark

The names used for identification only maybe
registered trademarks of their respective companies.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 1

Tables of Content
1 General Information..6

1.1 Introduction ..6
1.2 Features..7
1.3 Specifications ..8
1.4 Product Check List ..9

2 Hardware Configuration...10
2.1 Board Layout..10
2.2 Jumper Selection ... 11
2.3 Connector Pin Assignment ...12

2.3.1 5-pin screw terminal connector12
2.3.2 9-pin D-sub male connectors ...13
2.3.3 Wire connection ..14

2.4 LED Indicator & PISO-CM100-D/T Mode15
2.5 Hardware Installation...16

3 Driver Introduction ...17
3.1 Software Installation..17
3.2 Software Architecture..22

4 APIs for Windows Application...25
4.1 Windows API Definitions and Descriptions...............................25

4.1.1 CM100_GetDllVersion ...29
4.1.2 CM100_GetBoardInf ..30
4.1.3 CM100_TotalBoard ..31
4.1.4 CM100_TotalCM100Board ..31
4.1.5 CM100_TotalDNM100Board ..32
4.1.6 CM100_TotalCPM100Board ..32
4.1.7 CM100_GetCM100BoardSwitchNo.................................33
4.1.8 CM100_GetDNM100BoardSwitchNo34
4.1.9 CM100_GetCPM100BoardSwitchNo35
4.1.10 CM100_GetCardPortNum ...36
4.1.11 CM100_ActiveBoard..37
4.1.12 CM100_CloseBoard...38
4.1.13 CM100_BoardIsActive...39
4.1.14 CM100_ AdujstDateTime...40
4.1.15 CM100_Reset ...41
4.1.16 CM100_Init ...42
4.1.17 CM100_HardwareReset...43

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 2

4.1.18 CM100_Check186Mode...44
4.1.19 CM100_Status ..45
4.1.20 CM100_AddCyclicTxMsg ..47
4.1.21 CM100_DeleteCyclicTxMsg ..49
4.1.22 CM100_EnableCyclicTxMsg ...50
4.1.23 CM100_DisableCyclicTxMsg ..51
4.1.24 CM100_OutputByte ...52
4.1.25 CM100_InputByte ..53
4.1.26 CM100_ClearSoftBuffer <For default firmware>54
4.1.27 CM100_ClearBufferStatus <For default firmware>................55
4.1.28 CM100_ClearDataOverrun <For default firmware>56
4.1.29 CM100_Config <For default firmware>...................................57
4.1.30 CM100_ConfigWithoutStruct <For default firmware>60
4.1.31 CM100_RxMsgCount <For default firmware>61
4.1.32 CM100_ReceiveMsg <For default firmware>62
4.1.33 CM100_ReceiveWithoutStruct <For default firmware>64
4.1.34 CM100_SendMsg <For default firmware>66
4.1.35 CM100_SendWithoutStruct <For default firmware>..............67
4.1.36 CM100_SJA1000Config <For user-defined firmware>68
4.1.37 CM100_DPRAMInttToCM100 <For user-defined firmware>69
4.1.38 CM100_DPRAMWriteByte <For user-defined firmware>.........70
4.1.39 CM100_DPRAMWriteWord <For user-defined firmware>71
4.1.40 CM100_DPRAMWriteDword <For user-defined firmware>72
4.1.41 CM100_DPRAMWriteMultiByte <For user-defined firmware> 73
4.1.42 CM100_DPRAMReadByte <For user-defined firmware>.........74
4.1.43 CM100_DPRAMReadWord <For user-defined firmware>75
4.1.44 CM100_DPRAMReadDword <For user-defined firmware>76
4.1.45 CM100_DPRAMReadMultiByte <For user-defined firmware> 77
4.1.46 CM100_DPRAMMemset <For user-defined firmware>............78
4.1.47 CM100_ReceiveCmd <For user-defined firmware>79
4.1.48 CM100_SendCmd <For user-defined firmware>......................80
4.1.49 CM100_InstallUserISR <For user-defined firmware>81
4.1.50 CM100_RemoveUserISR <For user-defined firmware>...........82

4.2 Windows API Return Codes Troubleshooting...........................83
5 Functions of Firmware Library ..85

5.1 Firmware Library Definitions and Descriptions85
5.1.1 L1Off ...89
5.1.2 L1On ...89

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 3

5.1.3 L2Off ...90
5.1.4 L2On ...90
5.1.5 DPRAMInttToHost ...91
5.1.6 UserDPRAMIrqFunc <must be called once >92
5.1.7 DPRAMWriteByte ..93
5.1.8 DPRAMWriteWord ...94
5.1.9 DPRAMWriteDword ...95
5.1.10 DPRAMWriteMultiByte ..96
5.1.11 DPRAMReadByte...97
5.1.12 DPRAMReadWord ...98
5.1.13 DPRAMReadDword ...99
5.1.14 DPRAMReadMultiByte ..100
5.1.15 DPRAMMemset..101
5.1.16 DPRAMReceiveCmd..102
5.1.17 DPRAMSendCmd ..103
5.1.18 DebugPrint <assist with CM100_DEBUG_MONITOR.EXE>104
5.1.19 GetKbhit <assist with debug cable and 7188xw.exe>................105
5.1.20 Print <assist with debug cable and 7188xw.exe>.......................106
5.1.21 GetTime ..107
5.1.22 SetTime ..108
5.1.23 GetDate ..109
5.1.24 SetDate ... 110
5.1.25 GetWeekDay .. 111
5.1.26 ReadNVRAM .. 112
5.1.27 WriteNVRAM .. 113
5.1.28 GetTimeTicks100us... 114
5.1.29 GetTimeTicks ... 115
5.1.30 DelayMs.. 116
5.1.31 CM100_InstallUserTimer... 117
5.1.32 T_StopWatchXXX series functions 118
5.1.33 T_CountDownTimerXXX series functions...................120
5.1.34 CM100_EEPROMReadByte...122
5.1.35 CM100_EEPROMReadMultiByte123
5.1.36 CM100_EEPROMWriteByte...124
5.1.37 CM100_EEPROMWriteMultiByte125
5.1.38 UserCANIrqFunc <must be called once>126
5.1.39 SJA1000HardwareReset ...127
5.1.40 SetCANBaud ..128

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 4

5.1.41 GetCANBaud..129
5.1.42 SetCANMask ..130
5.1.43 GetCANMask..132
5.1.44 CANConfig ...133
5.1.45 EnableSJA1000..134
5.1.46 DisableSJA1000...134
5.1.47 GetCANStatus..135
5.1.48 ClearDataOverrunStatus...136
5.1.49 SendCANMsg...137
5.1.50 ClearTxSoftBuffer..138
5.1.51 GetCANMsg ...139
5.1.52 ClearRxSoftBuffer ...141
5.1.53 RxMsgCount ..141
5.1.54 AddCyclicTxMsg ...142
5.1.55 DeleteCyclicTxMsg..143
5.1.56 EnableCyclicTxMsg...144
5.1.57 DisableCyclicTxMsg..145
5.1.58 ResetCyclicTxBuf..145
5.1.59 SystemHardwareReset ...146
5.1.60 SystemInit ..146
5.1.61 GetLibVer ...147
5.1.62 RefreshWDT...147
5.1.63 UserInitFunc <must be called once>....................................148
5.1.64 UserLoopFunc <must be called once>149

5.2 Firmware Library Return Codes Troubleshooting150
6 Application Programming..152

6.1 Windows Programming With Default Firmware152
6.2 Introduction of CANUtility Tool ..160
6.3 Debug Tools for User-defined Firmware Programming..........172
6.4 User-defined Firmware Programming......................................177

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 5

1 General Information

1.1 Introduction

The CAN (Controller Area Network) is a serial communication protocol,
which efficiently supports distributed real-time control with a very high level of
security. It is especially suited for networking "intelligent" devices as well as
sensors and actuators within a system or sub-system. In CAN networks, there
is no addressing of subscribers or stations in the conventional sense, but
instead prioritized messages are transmitted. As a stand-alone CAN controller,
PISO-CM100 represents a powerful and economic solution. The PISO-CM100
with a 186 CPU inside has one CAN bus communication port with either a
5-pin screw terminal connector or a 9-pin D-sub connector. It can be used as
master/slave function to cover a wide range of CAN applications. In addition,
the PISO-CM100 uses the new Phillips SJA1000T and transceiver
82C250/251, which provide the bus arbitration and error detection. It can be
installed in a 5V 32-bit PCI slot and is supported with actual “Plug & Play”
technology.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 6

1.2 Features

 33MHz 32bit 5V PCI bus (V2.1) plug and play technology

 Follow ISO11898-2 specification

 Philip SJA1000T CAN controller

 Philip 82C250 CAN transceiver

 CAN controller frequency :16 MHz

 2500Vrms photo-isolation protection on CAN side

 Jumper select 120Ω terminator resistor for CAN bus

 One CAN communication port

 Compatible with CAN specification 2.0 parts A and B

 Provide default baud 10Kbps, 20Kbps, 50Kbps, 125Kbps, 250Kbps,

500Kbps, 800Kbps, and 1Mbps

 Allow user-defined baud

 2048 records reception buffer and 256 records transmission buffer

 Cyclic transmission precision: ±0.5ms precision when cyclic time is

below 10ms , ±1% error when cyclic time exceeds 10ms.

 Provide 5 sets of cyclic transmission.

 Timestamp of CAN message with at least ±1ms precision

 186 compactable CPU inside

 8K bytes DPRAM inside

 RTC(Real Time Clock) inside

 2 indication LED (one for green and another for red)

 Support user-defined firmware

 Support firmware update

 VC++, VB, BCB demos and libraries are given

 C/C++ function libraries of firmware side is given

 Driver supported for Windows 98/Me/NT/2000/XP

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 7

1.3 Specifications

 CAN controller: Phillips SJA1000T

 CAN controller frequency :16 MHz

 CAN transceiver: Phillips 82C250.

 Follow ISO11898-2 specification

 One CAN communication port

 Compatible with CAN specification 2.0 parts A and B

 Jumper select 120Ω terminator resistor for CAN bus

 Provide default baud 10Kbps, 20Kbps, 50Kbps, 125Kbps, 250Kbps,

500Kbps, 800Kbps, and 1Mbps

 Allow user-defined baud

 Connector: 5-pin screw terminal connector or 9-pin D-sub male

connector.

 Isolation voltage: 2500Vrms on CAN side

 33MHz 32bit 5V PCI bus (V2.1) plug and play technology

 186 compactable CPU

 8K bytes DPRAM (1K bytes for system)

 512 K bytes Flash memory (128K bytes for system, others for

firmware)

 512K bytes SRAM

 RTC (real time clock) inside

 2K EEPROM (256 bytes for system)

 31 bytes NVRAM

 Power requirements:

5V@400mA

 Environment:

Operating temp: 0~60℃

Storage temp: -20~80℃

Humidity: 0~90% non-condensing

Dimensions: 127mm X 121mm

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 8

1.4 Product Check List

Besides this manual, the package includes the following items:

 PISO-CM100 CAN card

 Software CD ROM

 Quickstart

 One debug cable (model number is 4PCA-0904)

It is recommended that users read the release note first. All the
important information needed will be provided in the release note as
following:

 Where you can find the software driver, utility and demo programs.

 How to install software & utility.

 How to program users’ applications with PISO-CM100 D/T.

 The definitions of function library, error code, LED status, and pin

assignment.

 The basic solution of troubleshooting.

Attention !

If any of these items are missing or damaged, please contact your local
field agent. Keep aside the shipping materials and carton in case you want to
ship or store the product in the future.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 9

2 Hardware Configuration

This section will describe the hardware settings of the PISO-CM100. This
information includes the wire connection and terminal resistance configuration
for the CAN network.

2.1 Board Layout

Figure2.1 PISO-CM100-D board layout

Note: PISO-CM100-T layout is similar with PISO-CM100-D. The only difference is

the position of CAN port connector. The positions of jumper or DIP switch are
the same. Therefore, users can also refer to the PISO-CM100-D layout to
configure the jumper or DIP switch if they use PISO-CM100-T.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 10

2.2 Jumper Selection

The following table shows the definition of jumpers or DIP switch. Users need to
refer to this table to configure the PISO-CM100- D/T hardware.

Jumper Description Status

CAN Port 120Ω terminal resistance.
Enable Disable

JP1

JP3

Reset pin for download error. If users
want to update firmware but the
process is fail, users can enable this
jumper to reset the PISO-CM100-D/T
into download mode.

Enable Disable

JP4

Debug port for user-defined firmware.
Users can connect the debug port with
the PC RS-232 port via the debug
cable.

4-pin connector for JP4
D-Sub 9 pin connector

for PC RS-232 port

DIP switch

DIP switch is used to set the
PISO-CM100 board No. Switch1 is for
bit0, switch2 is for bit1 and so forth. For
example, if the left-hand-side switch
(switch 1) is ON, the board No. is set to
1. The range of board No. is from 0 to
15. Be careful that the board No. for
each PISO-CM100-D/T, PISO-DNM
100-D/T and PISO-CPM100-D/T must
be unique in the PC.

This situation indicates the

board No. 1.

Table 2.1 Jumper or DIP switch selections

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 11

2.3 Connector Pin Assignment

The PISO-CM100-T is equipped with one 5-pin screw terminal

connector and the PISO-CM100-D is equipped with one 9-pin D-sub male
connector for wire connection of the CAN bus. The connector’s pin
assignment is specified as following:

2.3.1 5-pin screw terminal connector

The 5-pin screw terminal connector of the CAN bus interface is shown in

Figure 2.2. The details for the pin assignment are presented in Table 2.2.

Figure2.2 5-pin screw terminal connector

Pin No. Signal Description
1 N/A No use
2 CAN_H CAN_H bus line (dominant high)
3 CAN_SHLD Optional CAN Shield
4 CAN_L CAN_L bus line (dominant low)
5 N/A No use

Table 2.2: Pin assignment of 5-pin screw terminal connector

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 12

2.3.2 9-pin D-sub male connectors

The 9-pin D-sub male connector of the CAN bus interface is shown in

Figure 2.3 and the corresponding pin assignments are given in Table 2.3.

Figure2.3 9-pin D-sub male connector

Pin No. Signal Description
1 N/A No use
2 CAN_L CAN_L bus line (dominant low)
3 N/A No use
4 N/A No use
5 CAN_SHLD Optional CAN Shield
6 N/A No use
7 CAN_H CAN_H bus line (dominant high)
8 N/A No use
9 N/A No use

Table 2.3 Pin assignment of the 9-pin D-sub male connector

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 13

2.3.3 Wire connection

In order to minimize the reflection effects on the CAN bus line, the CAN
bus line has to be terminated at both ends by two terminal resistances as in the
following figure. According to the ISO 11898-2 spec, each terminal resistance
is 120Ω (or between 108Ω~132Ω). The length related resistance should have
70 mΩ/m. Users should check the resistances of the CAN bus, before they
install a new CAN network.

12
0Ω

120Ω

CAN_H

CAN_L

Device NDevice 2Device 1 . . .

Figure 2.4 CAN bus network topology

Moreover, to minimize the voltage drop over long distances, the terminal

resistance should be higher than the value defined in the ISO 11898-2. The
following table can be used as a good reference.

Bus Cable Parameters
Bus Length

(meter)
Length Related

Resistance
(mΩ/m)

Cross Section
(Type)

Terminal
Resistance

(Ω)

0~40 70 0.25(23AWG)~
0.34mm2(22AWG)

124 (0.1%)

40~300 < 60 0.34(22AWG)~
0.6mm2(20AWG)

127 (0.1%)

300~600 < 40 0.5~0.6mm2

(20AWG)
150~300

600~1K < 20 0.75~0.8mm2

(18AWG)
150~300

Table 2.4 Relationship between cable characteristics and terminal resistance

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 14

2.4 LED Indicator & PISO-CM100-D/T Mode

The LED status will be changed when PISO-CM100-D/T is in different
mode. There are three modes, and each mode describes as following:

1. Download mode: In this case, Green LED and red LED will flash once per
second. (When green LED is ON, red LED is OFF. When
red LED is ON, green LED is OFF). At the same time,
PISO-CM100-D/T will prepare to update the firmware
from Utility. Therefore, users can use Utility to download
the newer default firmware or the user-defined firmware.

2. Firmware mode: If PISO-CM100-D/T uses default firmware, the green
LED will be flashed once when PISO-CM100-D/T
receive or transmit one CAN message to CAN bus
successfully. If bus loading is heavy, the green LED will
turn on always. When some error occurs, the red LED
will turn on. Users can use CM100_Status() function to
get the situation except buffer status. Reading or
sending CAN messages can get the buffer status from
the return code of functions. If PISO-CM100-D/T uses
user-defined firmware, users can design the green LED
or red LED status by themselves.

3. Firmware reset mode: If users enable JP3 described in section 2.2, both
red and green LED will turn on about 1 second. At
the same time, PISO-CM100-D/T is forced to enter
download mode. When PISO-CM100-D/T is out of
control because of user-defined firmware or some
problems, use this method to reset firmware and
download newer firmware again.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 15

2.5 Hardware Installation

When users want to use PISO-CM100-D/T, the hardware installation
needs to be finished as following steps.

1. Shutdown your personal computer.

2. Configure the DIP switch and JP1 of the PISO-CM100-D/T for the board No.
and the terminal resistance. The more detail information could be found on
the figure 2.1 and table 2.1.

3. Check JP3 and JP4 status of PISO-CM100-D/T. If necessary, enable them.

4. Find an empty PCI slot for the PISO-CM100-D/T on the mother board of the
personal computer. Plug the configured PISO-CM100-D/T into this empty
PCI slot.

5. Plug the CAN bus cable(s) into the 5-pin screw terminal connector or the
9-pin D-sub connector.

When the procedure described above is completed, turn on the PC.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 16

3 Driver Introduction

3.1 Software Installation

The PISO-CM100-D/T can be used in Windows 98/Me/NT/2000/XP
environments. Users need to get proper driver for their operation system.
These drivers are in Field Bus CD in the PISO-CM100-D/T package. The path
is CAN\PCI\PISO-CM100. Also, users can find them from our website as
following.

http://www.icpdas.com/download/can/PCI_Interface.htm

The recommended installation procedure is given as below:

Step 1: Shut down your PC.

Step 2: Plug your PISO-CM100-D/T into an available PCI slot.

Step 3: Boot up your PC. When system detects a new card and pop up a
wizard dialog for driver installation, cancel this dialog and skip the
procedure of driver installation.

Step 4: Get the proper PISO-CM100-D/T driver for your operation system.
These drivers can be found in CD of PISO-CM100-D/T package or
our website.

Step 5: Install the driver and reboot your PC. In the following description, the
installation procedure for Windows XP is given for an example. The
installation procedure for other operation system is similar with the
one for Windows XP. Please refer to the installation procedure of
Windows XP.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 17

http://www.icpdas.com/download/can/PCI_Interface.htm

The driver installation procedure for Window XP is shown as below:
Step1: Execute PISO-CM100.exe file. Then, the installation procedure starts.

Step2: Confirm the driver installation path. This may concern with where the

demos, debug and utility tools are.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 18

Step3: Click Install button to continue.

Step4: Afterwards, the files of driver and tools are copied to your disk.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 19

Step5: When finishing the installation, the register procedures are running in
two consult dialogs. Please wait until these consult dialogs are finished.

Step6: If users had installed the driver for PISO-CAN200, PISO-CAN400 or
PISO-CM100 series boards. One of register dialog may look like
following figure. Just ignore the message and close the dialog.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 20

Step7: When all procedures are finished, reset your PC to enable the
PISO-CM100-D/T driver.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 21

3.2 Software Architecture

The basic software architecture of PISO-CM100-D/T is shown in the
following figure. The Windows 98/Me/NT/2000/XP APIs for PISO-CM100-D/T
are provided by cm100.dll. Users can apply this dll file in VC++, VB and
Borland C++ Builder to create the Windows applications. Through the kernel
driver, KP_CM100.sys and windrvr6.sys, The Windows applications
communicate with PISO-CM100-D/T via PCI bus and DPRAM.

Figure 3.1 PISO-CM100-D/T Basic Software Architecture

Except the PISO-CM100-D/T provides the basic functions for the general

purpose applications, users can even design their special firmware for various
CAN applications. If users just need the general functions, apply the APIs
marked with “<for default firmware>” to build their Windows applications. By
applying these APIs, users can configure the CAN controller, get the status of

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 22

CAN controller, send/receive CAN messages to/from CAN bus and send CAN
messages with cyclic transmission engine. These features help users to reach
the purposes of bus monitor, bus access, network debugging, basic network
set up … and etc. The software architecture is shown below.

Figure 3.2 PISO-CM100-D/T Default Firmware Software Architecture

Besides, for some special applications, PISO-CM100-D/T provides the

flexibilities to arrange the user-defined firmware. This feature may be helpful
and powerful for some applications which have complex application protocols
or need to improve the system efficiency. Users can interpret the raw CAN
messages by the pre-defined application protocols on MiniOS7 platform, and
feedback the useful and simplified data to users’ Windows applications. This
software architecture can have the real-time processing feature, increase the
execution performance and efficiently reduce the PC CPU loading. The
software architecture is shown below.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 23

Figure 3.2 PISO-CM100-D/T User-defined Firmware Software Architecture

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 24

4 APIs for Windows Application

In this chapter, the APIs for both default firmware and user-defined
firmware are described. The content includes the CM100.dll APIs introductions,
error code description and the simple method of troubleshooting. It is helpful to
development users’ application. The section 4.1 shows the list and information
of all APIs supported by CM100.dll. The section 4.2 shows the explication of
the return codes of the API functions. It can help users to have the basic
troubleshooting.

4.1 Windows API Definitions and Descriptions

All the functions provided by the CM100.dll are listed in the following table
and the detailed information for every function presented in the following
sub-section.

Function definition Page Note

WORD CM100_GetDllVersion(void) 29 ○△

Int CM100_GetBoardInf(BYTE BoardNo, DWORD *dwVID, DWORD *dwDID,
DWORD *dwSVID, DWORD *dwSDID,
DWORD *dwSAuxID, DWORD *dwIrqNo)

30

○△

Int CM100_TotalBoard(void) 31 ○△

Int CM100_TotalCM100Board(void) 31 ○△

Int CM100_TotalDNM100Board(void) 32 ○△

Int CM100_TotalCPM100Board(void) 32 ○△

Int CM100_GetCM100BoardSwitchNo(BYTE BoardCntNo,
BYTE *BoardSwitchNo)

33
○△

Int CM100_GetDNM100BoardSwitchNo(BYTE BoardCntNo,
BYTE *BoardSwitchNo)

34
○△

Int CM100_GetCPM100BoardSwitchNo(BYTE BoardCntNo,
BYTE *BoardSwitchNo)

35
○△

Int CM100_GetCardPortNum(BYTE BoardNo, BYTE *bGetPortNum) 36 ○△

Int CM100_ActiveBoard(BYTE BoardNo) 37 ○△

Int CM100_CloseBoard(BYTE BoardNo) 38 ○△

int CM100_BoardIsActive(BYTE BoardNo) 39 ○△

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 25

Function definition Page Note

int CM100_AdujstDateTime(BYTE BoardNo) 40 ○△

int CM100_Reset(BYTE BoardNo, BYTE Port) 41 ○△

int CM100_Init(BYTE BoardNo, BYTE Port) 42 ○△

int CM100_HardwareReset(BYTE BoardNo, BYTE Port) 43 ○△

int CM100_Check186Mode(BYTE BoardNo, BYTE *Mode) 44 ○△

int CM100_Status(BYTE BoardNo, BYTE Port, BYTE *bStatus) 45 ○△

int CM100_AddCyclicTxMsg(BYTE BoardNo, BYTE Port, BYTE Mode,
DWORD MsgID, BYTE RTR, BYTE DataLen,
BYTE *Data, DWORD TimePeriod,
BYTE *Handle)

47 ○△

int CM100_DeleteCyclicTxMsg(BYTE BoardNo, BYTE Port, BYTE Handle) 49 ○△

int CM100_EnableCyclicTxMsg(BYTE BoardNo, BYTE Port, BYTE Handle) 50 ○△

int CM100_DisableCyclicTxMsg(BYTE BoardNo, BYTE Port, BYTE Handle) 51 ○△

void CM100_OutputByte(BYTE BoardNo, BYTE Port, WORD wOffset,
BYTE bValue)

52
○△

BYTE CM100_InputByte(BYTE BoardNo, BYTE Port, WORD wOffset) 53 ○△

int CM100_ClearSoftBuffer(BYTE BoardNo, BYTE Port) 54 ○

int CM100_ClearBufferStatus(BYTE BoardNo, BYTE Port) 55 ○

int CM100_ClearDataOverrun(BYTE BoardNo, BYTE Port) 56 ○

int CM100_Config(BYTE BoardNo, BYTE Port, ConfigStruct *CanConfig) 57 ○

int CM100_ConfigWithoutStruct(BYTE BoardNo, BYTE Port,
DWORD AccCode, DWORD AccMask,
BYTE BaudRate, BYTE BT0,
BYTE BT1)

60 ○

int CM100_RxMsgCount(BYTE BoardNo, BYTE Port) 61 ○

int CM100_ReceiveMsg(BYTE BoardNo, BYTE Port,
PacketStruct *CanPacket)

62 ○

int CM100_ReceiveWithoutStruct(BYTE BoardNo, BYTE Port, BYTE *Mode,
DWORD *MsgID, BYTE *RTR,
BYTE *DataLen, BYTE *Data ,
DWORD *UpperTime ,
DWORD *LowerTime)

64 ○

int CM100_SendMsg(BYTE BoardNo, BYTE Port, PacketStruct *CanPacket) 66 ○

int CM100_SendWithoutStruct(BYTE BoardNo, BYTE Port, BYTE Mode,
DWORD MsgID, BYTE RTR, BYTE DataLen,
BYTE *Data)

67 ○

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 26

Function definition Page Note

int CM100_SJA1000Config(BYTE BoardNo, BYTE Port, DWORD AccCode,
DWORD AccMask, BYTE BaudRate, BYTE BT0,
BYTE BT1)

68
△

int CM100_DPRAMInttToCM100(BYTE BoardNo, BYTE Port, BYTE Data) 69 △

int CM100_DPRAMWriteByte(BYTE BoardNo, BYTE Port, WORD Address,
BYTE Data)

70 △

int CM100_DPRAMWriteWord(BYTE BoardNo, BYTE Port, WORD Address,
WORD Data)

71 △

int CM100_DPRAMWriteDword(BYTE BoardNo, BYTE Port, WORD Address,
DWORD Data)

72 △

int CM100_DPRAMWriteMultiByte(BYTE BoardNo, BYTE Port,
WORD Address, BYTE *Data,
WORD DataNum)

73 △

int CM100_DPRAMReadByte(BYTE BoardNo, BYTE Port, WORD Address,
BYTE *Data)

74 △

int CM100_DPRAMReadWord(BYTE BoardNo, BYTE Port, WORD Address,
WORD *Data)

75 △

int CM100_DPRAMReadDword(BYTE BoardNo, BYTE Port, WORD Address,
DWORD *Data)

76 △

int CM100_DPRAMReadMultiByte(BYTE BoardNo, BYTE Port,
WORD Address, BYTE *Data,
WORD DataNum)

77 △

int CM100_DPRAMMemset(BYTE BoardNo, BYTE Port, WORD Address,
BYTE Data, WORD DataNum)

78 △

int CM100_ReceiveCmd(BYTE BoardNo, BYTE Port, BYTE *Data,
WORD *DataNum)

79 △

int CM100_SendCmd(BYTE BoardNo, BYTE Port, BYTE *Data,
WORD DataNum)

80 △

int CM100_InstallUserISR(BYTE BoardNo, void (*UserISR)(BYTE BoardNo,
BYTE InttValue))

81 △

int CM100_RemoveUserISR(BYTE BoardNo) 82 △

Table 4.1 PISO-CM100-D/T Windows APIs List

Note: In table 3.1, the mark ○ and △ indicate the valid condition of API
functions. The function marked by ○ or △ presents that this function
is useful when the PISO-CM100-D/T is default CM100 firmware inside

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 27

or user-defined firmware inside respectively. If users use default
firmware, all of the functions marked by ○ could be applied. However,
if users design their own firmware by using firmware library (firmware
library is described in section 3.4), only the functions marked by △ is
useful. The functions marked with ○ △ can be used with default
firmware or in user-defined firmware.

In order to make the descriptions more simplified and clear, the attributes for
the both the input and output parameter functions are given as [input] and
[output] respectively, as shown in following table.

Keyword Set parameter by user before

calling this function?
Get the data from this parameter

after calling this function?

[input] Yes No

[output] No Yes

Table 4.2 Description of API parameter Hint

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 28

4.1.1 CM100_GetDllVersion

 Description:

Obtain the version information of CM100.dll driver.

 Syntax:

WORD CM100_GetDllVersion(void)

 Parameter:

None

 Return:

DLL version information. For example: If 100(hex) is return, it means
driver version is 1.00.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 29

4.1.2 CM100_GetBoardInf

 Description:

Obtain the information of PISO-CM100-D/T, PISO-DNM100-D/T or
PISO-CPM100-D/T, which include vender ID, device ID and interrupt
number.

 Syntax:

int CM100_GetBoardInf(BYTE BoardNo, DWORD *dwVID,
DWORD *dwDID, DWORD *dwSVID,
DWORD *dwSDID, DWORD *dwSAuxID,
DWORD *dwIrqNo)

 Parameter:

BoardNo: [input] Switch No of PISO-CM100-D/T, PISO-DNM100-D/T or
PISO-CPM100-D/T DIP. The value is form 0 to 15.

*dwVID: [output] The address of a variable which is used to receive the
vendor ID.

*dwDID: [output] The address of a variable used to receive device ID.
*dwSVID: [output] The address of a variable applied to receive

sub-vendor ID.
*dwSDID: [output] The address of a variable applied to receive

sub-device ID.
*dwSAuxID: [output] The address of a variable used to receive

sub-auxiliary ID.
*dwIrqNo: [output] The address of a variable used to receive logical

interrupt number.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 30

4.1.3 CM100_TotalBoard

 Description:

Obtain the total board number of PISO-CM100-D/T,
PISO-DNM100- D/T, and PISO-CPM100-D/T boards installed in the PCI
bus.

 Syntax:

Int CM100_TotalBoard(void)

 Parameter:

None

 Return:

Return the scanned total board number.

4.1.4 CM100_TotalCM100Board

 Description:

Obtain the total board number of PISO-CM100-D/T installed in the
PCI bus.

 Syntax:

Int CM100_TotalCM100Board(void)

 Parameter:

None

 Return:

Return the scanned total PISO-CM100-D/T number.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 31

4.1.5 CM100_TotalDNM100Board

 Description:

Obtain the total board number of PISO-DNM100-D/T installed in the
PCI bus.

 Syntax:

Int CM100_TotalDNM100Board(void)

 Parameter:

None

 Return:

Return the scanned total PISO-DNM100-D/T number.

4.1.6 CM100_TotalCPM100Board

 Description:

Obtain the total board number of PISO-CPM100-D/T plugged in the
PCI bus.

 Syntax:

Int CM100_TotalCPM100Board(void)

 Parameter:

None

 Return:

Return the scanned total PISO-CPM100-D/T number.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 32

4.1.7 CM100_GetCM100BoardSwitchNo

 Description:

Obtain the DIP switch No. of PISO-CM100-D/T.

 Syntax:

Int CM100_GetCM100BoardSwitchNo(BYTE BoardCntNo,
BYTE *BoardSwitchNo)

 Parameter:

BoardCntNo: [input] The number of specified PISO-CM100-D/T. For
example, if the first PISO-CM100-D/T is applied, this
value is 0. If the second board is applied, this value is 1.

* BoardSwitchNo: [output] The address of a variable used to get the DIP
switch No. of PISO-CM100-D/T.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 33

4.1.8 CM100_GetDNM100BoardSwitchNo

 Description:

Obtain the DIP switch No. of PISO-DNM100-D/T.

 Syntax:

Int CM100_GetDNM100BoardSwitchNo(BYTE BoardCntNo,
BYTE *BoardSwitchNo)

 Parameter:

BoardCntNo: [input] The number of specified PISO-DNM100-D/T. For
example, if the first PISO-DNM100-D/T is applied, this
value is 0. If the second board is applied, this value is 1.

* BoardSwitchNo: [output] The address of a variable used to get the DIP
switch No. of PISO-DNM100-D/T.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board number.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 34

4.1.9 CM100_GetCPM100BoardSwitchNo

 Description:

Obtain the DIP switch No. of PISO-CPM100-D/T installed in the
PCI bus.

 Syntax:

Int CM100_GetCPM100BoardSwitchNo(BYTE BoardCntNo,
BYTE *BoardSwitchNo)

 Parameter:

BoardCntNo: [input] The number of specified PISO-DNM100-D/T. For
example, if the first PISO-DNM100-D/T is applied, this
value is 0. If the second board is applied, this value is 1.

* BoardSwitchNo: [output] The address of a variable used to get the DIP
switch No. of PISO-CPM100-D/T.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 35

4.1.10 CM100_GetCardPortNum

 Description:

Obtain the port numbers of PISO-CM100-D/T, PISO-DNM100-D/T,
or PISO-CPM100-D/T installed in the PCI bus.

 Syntax:

Int CM100_GetCardPortNum(BYTE BoardNo, BYTE *bGetPortNum)

 Parameter:

BoardNo: [input] Switch No of PISO-CM100-D/T, PISO-DNM100-D/T or
PISO-CPM100-D/T DIP. The value is form 0 to 15.

* bGetPortNum: [output] The address of a variable used to obtain the
port numbers of PISO-CM100-D/T.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 36

4.1.11 CM100_ActiveBoard

 Description:
Activate PISO-CM100-D/T. It must be called once before using the

other functions of PISO-CM100-D/T APIs.

 Syntax:

int CM100_ActiveBoard(BYTE BoardNo)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board can not be activated or kernel

driver can not be found.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 37

4.1.12 CM100_CloseBoard

 Description:
Stop and close the kernel driver and release the device resource

from computer device resource. This method must be called once
before exiting the user’s application program.

 Syntax:

int CM100_CloseBoard(BYTE BoardNo)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 38

4.1.13 CM100_BoardIsActive

 Description:

Obtain the active status of the specific board.

 Syntax:

int CM100_BoardIsActive(BYTE BoardNo)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

 Return:

0: means the board is inactive.

1: means the board is active.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 39

4.1.14 CM100_ AdujstDateTime

 Description:

Adjust date and time of PISO-CM100-D/T by using PC time.

 Syntax:

int CM100_AdujstDateTime(BYTE BoardNo)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.
CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.
CM100_ActiveBoardError: This board is not activated.
CM100_SetDateTimeFailure: Set date and time failure.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 40

4.1.15 CM100_Reset

 Description:

Reset the CAN controller, SJA1000, of the PISO-CM100-D/T.

 Syntax:

int CM100_Reset(BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: Port number is not correct.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 41

4.1.16 CM100_Init

 Description:

Initiate the CAN controller.

 Syntax:

int CM100_Init(BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: Port number is not correct.

CM100_TimeOut: The PISO-CM100-D/T has no response.

CM100_ModeError: This board is in download mode, and can’t be

changed to firmware mode.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 42

4.1.17 CM100_HardwareReset

 Description:

Reset the PISO-CM100 hardware, such as CAN controller, DPRAM,
186 CPU, …, and so forth.

 Syntax:

int CM100_HardwareReset(BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: Port number is not correct.

CM100_TimeOut: The PISO-CM100-D/T has no response.

CM100_ModeError: This board is in download mode, and can’t be

changed to firmware mode.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 43

4.1.18 CM100_Check186Mode

 Description:

Obtain the specified PISO-CM100-D/T if it is in download mode or
in firmware mode.

 Syntax:

int CM100_Check186Mode(BYTE BoardNo, BYTE *Mode)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).
*Mode: [output] The address of a variable used to get the

PISO-CM100-D/T mode. If this value is 0, it indicates that the
PISO-CM100-D/T is in download mode. If 1, it is in firmware
mode. When PISO-CM100-D/T is in download mode, it can
only update the firmware and the firmware will not work at the
same time. Users can use CM100_Init() function to set the
PISO-CM100-D/T into firmware mode.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_TimeOut: The PISO-CM100-D/T has no response.

CM100_InitError: The PISO-CM100-D/T replies erroneously.

CM100_ModeError: This board is in download mode, and can’t be

changed to firmware mode.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 44

4.1.19 CM100_Status

 Description:

Obtain the status of the CAN controller for the specific
PISO-CM100-D/T400/200 board.

 Syntax:

int CM100_Status(BYTE BoardNo, BYTE Port, BYTE *bStatus)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

*bStatus: [output] The address of a variable is applied to get the status

value of CAN controller.

Bit NAME VALUE STATUS

1 bus-off
bit 7 Bus Status

0 bus-on

1 error
bit 6 Error Status

0 ok

1 transmit
bit 5 Transmit Status

0 idle

1 receive
bit 4 Receive Status

0 idle

1 complete
bit 3 Transmission Complete Status

0 incomplete

1 release
bit 2 Transmit Buffer Status

0 locked

1 overrun
bit 1 Data Overrun Status

0 absent

1 full/not empty
bit 0 Receive Buffer Status

0 empty

Table 4.3 Bit interpretation of the bStatus.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 45

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: Port number is not correct.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 46

4.1.20 CM100_AddCyclicTxMsg

 Description:

Add a cyclic transmission message into cm100 firmware.
Afterwards, uses can enable or disable this cyclic transmission
messages by using CM100_EnableCyclicTxMsg() and
CM100_DelectCyclicTxMsg() functions. The maximum number of the
transmission messages is 5. After adding a cyclic transmission
message, the handle for this message will be returned. The less value
of handle indicates the higher priority of this cyclic transmission
message.

 Syntax:

int CM100_AddCyclicTxMsg(BYTE BoardNo, BYTE Port, BYTE Mode,
DWORD MsgID, BYTE RTR,
BYTE DataLen, BYTE *Data,
DWORD TimePeriod, BYTE *Handle)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

Mode: [input] 0 for 11-bit message ID, 1 for 29-bit message ID.

MsgID: [input] CAN message ID.

RTR: [input] Set remote-transmit-request is used or not. 0 is for useless,

1 is for useful.

DataLen: [input] CAN message data length. The maximum value is 8.

*Data: [input] The start address of the data buffer of a CAN message.

The maximum space of *Data is 8 bytes.

TimePeriod: [input] The time period of cyclic transmission. This

parameter is formatted by 0.1ms. The minimum value is 5.

*Handle: [output] The address of a variable is used to get the handle of
PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 47

a cyclic transmission. When users want to enable or disable

the specified cyclic transmission, this value must be needed.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: Port number is not correct.

CM100_TimeOut: The PISO-CM100-D/T has no response.

CM100_SetCyclicMsgFailure: The cyclic transmission messages are

over 5 messages or PISO-CM100-D/T

replies erroneously.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 48

4.1.21 CM100_DeleteCyclicTxMsg

 Description:

Remove the specified cyclic transmission message which is added
by CM100_AddCyclicTxMsg() function.

 Syntax:

int CM100_DeleteCyclicTxMsg(BYTE BoardNo, BYTE Port,

BYTE Handle)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

Handle: [input] The handle of cyclic transmission message which is

obtained by CM100_AddCyclicTxMsg() function.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: Port number is not correct.

CM100_TimeOut: The PISO-CM100-D/T has no response.

CM100_SetCyclicMsgFailure: The PISO-CM100-D/T replies

erroneously.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 49

4.1.22 CM100_EnableCyclicTxMsg

 Description:

Enable the cyclic transmission message which is added by
CM100_AddCyclicTxMsg() function before. After enabling the specified
cyclic transmission message, PISO-CM100-D/T will transmit the
specified CAN message by configured time period.

 Syntax:

int CM100_EnableCyclicTxMsg(BYTE BoardNo, BYTE Port,

BYTE Handle)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

Handle: [input] The handle of cyclic transmission message which is

obtained by CM100_AddCyclicTxMsg() function.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: Port number is not correct.

CM100_TimeOut: The PISO-CM100-D/T has no response.

CM100_SetCyclicMsgFailure: The PISO-CM100-D/T replies

erroneously.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 50

4.1.23 CM100_DisableCyclicTxMsg

 Description:

Disable the cyclic transmission message which is enabled by
CM100_EnableCyclicTxMsg() function.

 Syntax:

int CM100_DisableCyclicTxMsg(BYTE BoardNo, BYTE Port,

BYTE Handle)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

Handle: [input] The handle of cyclic transmission message which is

obtained by CM100_AddCyclicTxMsg() function.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: Port number is not correct.

CM100_TimeOut: The PISO-CM100-D/T has no response.

CM100_SetCyclicMsgFailure: The PISO-CM100-D/T replies

erroneously.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 51

4.1.24 CM100_OutputByte

 Description:

Write the data to the specified CAN controller register, SJA1000
register, of the PISO-CM100-D/T.

 Syntax:

void CM100_OutputByte(BYTE BoardNo, BYTE Port, WORD wOffset,

BYTE bValue)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

wOffset: [input] The register address of SJA1000.

bValue: [input] The value written to the specified register.

 Return:

None

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 52

4.1.25 CM100_InputByte

 Description:

Read the data from the specified CAN controller register, SJA1000
register, of the PISO-CM100-D/T.

 Syntax:

BYTE CM100_InputByte(BYTE BoardNo, BYTE Port, WORD wOffset)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

wOffset: [input] The register address of SJA1000.

 Return:

The value read from the specified register.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 53

4.1.26 CM100_ClearSoftBuffer <For default firmware>

 Description:

Clear the software buffer of the PISO-CM100-D/T. When users use
these functions, CM100_SendMsg(), CM100_SendWithoutStruct(),
CM100_ReceiveMsg() or CM100_ReceiveWithoutStuct(), and get the
error code, CM100_SoftBufferIsFull, this function may be needed.

 Syntax:

int CM100_ClearSoftBuffer(BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_TimeOut: The PISO-CM100-D/T has no response.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 54

4.1.27 CM100_ClearBufferStatus <For default firmware>

 Description:

Clear the software buffer of the PISO-CM100-D/T. When users use
these functions, CM100_SendMsg(), CM100_SendWithoutStruct(),
CM100_ReceiveMsg() or CM100_ReceiveWithoutStuct(), and get the
error code, CM100_SoftBufferIsFull, this function may be needed.

 Syntax:

int CM100_ClearBufferStatus(BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: Port number is not correct.

CM100_TimeOut: The PISO-CM100-D/T has no response.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 55

4.1.28 CM100_ClearDataOverrun <For default firmware>

 Description:

Clear the data overrun status of CAN controller, SJA1000. When
users use CM100_Status() to get the status value of CAN controller. If
users obtain the data status is ON, this function may be needed.

 Syntax:

int CM100_ClearDataOverrun(BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 56

4.1.29 CM100_Config <For default firmware>

 Description:

Configure the baud, message filter of CAN controller. After calling
this function, the PISO-CM100 can start to send/receive CAN messages
to/from the CAN network.

 Syntax:

int CM100_Config(BYTE BoardNo, BYTE Port,
ConfigStruct *CanConfig)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).
Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.
* CanConfig: [input] The address of a ConfigStruct structure variable

used to configure the PISO-CM100-D/T. The ConfigStruct
structure is defined as following:
typedef struct{

 BYTE AccCode[4];
 BYTE AccMask[4];
 BYTE BaudRate;
 BYTE BT0,BT1;

} ConfigStruct;
AccCode[4]: Acceptance code of CAN controller.

 AccMask[4]: Acceptance mask of CAN controller.
The AccCode is used for deciding what kind
of ID the CAN controller will accept. The
AccMask is used for deciding which bit of ID
will need to check with AccCode. If the bit of
AccMask is set to 0, it means that the bit in
the same position of ID need to be checked,
and that ID bit value needs to match the bit of
AccCode in the same position.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 57

AccCode and AccMask Bit Position Filter Target

high byte of the high word bit7~bit0 bit10 ~ bit3 of ID

low byte of the high word bit7~bit5 bit2 ~ bit0 of ID

low byte of the high word bit4 RTR

low byte of the high word bit3~bit0 no use

high byte of the low word bit7~bit0 bit7 ~ bit0 of 1st byte data

low byte of the low word bit7~bit0 bit7 ~ bit0 of 2nd byte data

Table 4.4 AccCode and AccMask Definition For 11-bit ID

AccCode and AccMask Bit Position Filter Target

high byte of the high word bit7~bit0 bit28~ bit21 of ID

low byte of the high word bit7~bit0 bit20 ~ bit13 of ID

high byte of the low word bit7~bit0 bit12 ~ bit5 of ID

low byte of the low word bit7~bit3 bit4 ~ bit0 of ID

low byte of the low word bit2 RTR

low byte of the low word bit1~bit0 no use

Table 4.5 AccCode and AccMask Definition For 29-bit ID

For example (In 29 bit ID message):

 Array[0] Array[1] Array[2] Array[3]

AccCode : 00h 00h 00h A0h

AccMask : FFh FFh FFh 1Fh

ID bit bit28~bit21 bit20~bit13 bit12~bit5 bit4~bit0

ID Value : xxxx xxxx xxxx xxxx xxxx xxxx 101x x will be accepted

(Note: The mark “x” means don’t care. And the mark “h” behind the value means hex format.)

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 58

BaudRate:

Value Description

0 User-defined baud
(BT0,BT1 are needed)

1 10 K bps

2 20 K bps

3 50 K bps

4 125 K bps

5 250 K bps

6 500 K bps

7 800 K bps

8 1000 K bps

Table 4.6 Relation Between BaudRate value and Baud

 BT0, BT1: User-defined baud rate (used only if
BaudRate=0). For example, set BT0=0x04
and BT1=0x1C, then baud setting for the
CAN controller is 100Kbps. For more
detailed baud setting, please refer to manual
of SJA1000 CAN controller.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: Port number is not correct.

CM100_TimeOut: The PISO-CM100-D/T has no response.

CM100_InitError: The PISO-CM100-D/T replies erroneously.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 59

4.1.30 CM100_ConfigWithoutStruct <For default firmware>

 Description:

This function is similar with CM100_Config(). The difference is the
input parameters of function. This function uses no structure parameter
so that it is easy to be applied in some program environment, such as
VB. Therefore, about the input parameters of this function, please refer
to the CM100_Config() function for the more detailed information.

 Syntax:

int CM100_ConfigWithoutStruct(BYTE BoardNo, BYTE Port,
DWORD AccCode, DWORD AccMask,
BYTE BaudRate, BYTE BT0,
BYTE BT1)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).
Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.
AccCode: [input] Acceptance code of CAN controller.
AccMask: [input] Acceptance mask of CAN controller.
BaudRate: [input] The baud indicator of CAN controller.

 BT0: [input] User-defined baud.
BT1: [input] User-defined baud.

For more information about these parameters, please refer to the
section 3.2.28.

 Return:

CM100_NoError: OK
CM100_DriverError: Kernel driver is not opened.
CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.
CM100_ActiveBoardError: This board is not activated.
CM100_PortNumberError: Port number is not correct.
CM100_TimeOut: The PISO-CM100-D/T has no response.
CM100_InitError: The PISO-CM100-D/T replies erroneously.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 60

4.1.31 CM100_RxMsgCount <For default firmware>

 Description:

Obtain the number of CAN messages available in the reception
software buffer.

 Syntax:

int CM100_RxMsgCount(BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

 Return:

The number of CAN messages in software buffer.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 61

4.1.32 CM100_ReceiveMsg <For default firmware>

 Description:

Obtain the received message from software buffer. Before using
this function, the CAN controller must be configured by using
CM100_Config() or CM100_ConfigWithoutStruct() functions.

 Syntax:

int CM100_ReceiveMsg(BYTE BoardNo, BYTE Port,
PacketStruct *CanPacket)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.
*CanPacket: [output] The address of a PacketStruct structure variable

used to get a CAN message. The PacketStruct structure is
defined as following:
typedef struct packet{

LONGLONG MsgTimeStamps;
BYTE mode;
DWORD id;
BYTE rtr;
BYTE len;
BYTE data[8];

} PacketStruct;
MsgTimeStamps: This parameter will record the time when

PISO-CM100-D/T got a CAN message.
This is formatted by 0.1 ms. The time
base of this value refers to the hardware
clock of PISO-CM100-D/T. When the
personal computer boots up, the
hardware clock starts to count.

mode: 0 for 11-bit message ID, 1 for 29-bit message ID.
id: CAN message ID.
rtr: 0 for remote-transmit-request format is not used, 1 for

remote-transmit-request is used.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 62

len: Data length of a CAN message
data[8]: data of a CAN message

 Return:

CM100_NoError: OK
CM100_DriverError: Kernel driver is not opened.
CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.
CM100_ActiveBoardError: This board is not activated.
CM100_PortNumberError: Port number is not correct.
CM100_SoftBufferIsEmpty: There is no CAN message in reception

software buffer.
CM100_SoftBufferIsFull: Users can still get CAN message from the

reception software buffer, but the software
buffer is overflow.

CM100_TimeOut: The PISO-CM100-D/T has no response.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 63

4.1.33 CM100_ReceiveWithoutStruct <For default firmware>

 Description:

Obtain a received message from software buffer. This function is
similar with CM100_ReceiveMsg() function. The difference is that this
function doesn’t use any structure parameter. It is easy to use in some
program environment, such as VB. Therefore, the input parameters of
function can refer to CM100_ReceiveMsg() for more detailed
information.

 Syntax:

int CM100_ReceiveWithoutStruct(BYTE BoardNo, BYTE Port,

BYTE *Mode, DWORD *MsgID,

BYTE *RTR, BYTE *DataLen,

BYTE *Data , DWORD *UpperTime ,

DWORD *LowerTime)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

*Mode: [output] The address of a variable used to get the mode of a

CAN message. If value is 0, the received CAN message is with

11-bit ID. The 29-bit ID of a CAN message will have value 1.

*MsgID: [output] The address of a variable used to get the CAN

message ID.

*RTR: [output] The address of a variable used to obtain the status of this

CAN message. 0 for remote-transmit-request format is not used,

1 for remote- transmit-request is used.

*DataLen: [output] The address of a variable used to obtain the data
PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 64

length of a CAN message. The range of this value is from 0

to 8.

*Data: [output] The start address of a buffer used to get the data of a

CAN message. Users need to put an 8-byte element array in this

filed.

*UpperTime: [output] The address of a variable used to obtain the

higher double-word of time stamp of a CAN message.

*LowerTime: [output] The address of a variable used to obtain the lower

double-word of time stamp of a CAN message. The unit of

UpperTime and LowerTime are 0.1ms.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: Port number is not correct.

CM100_SoftBufferIsEmpty: There is no CAN message in reception

software buffer.

CM100_SoftBufferIsFull: Users can still get CAN message from the

reception software buffer, but the software

buffer is overflow.

CM100_TimeOut: The PISO-CM100-D/T has no response.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 65

4.1.34 CM100_SendMsg <For default firmware>

 Description:

Send a CAN message to software transmission buffer. When the
CAN bus is idle, this CAN message will be sent to CAN network.

 Syntax:

int CM100_SendMsg(BYTE BoardNo, BYTE Port,

PacketStruct *CanPacket)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

*CanPacket: [input] The address of a PacketStruct structure variable

used to describe the sent CAN message. About the

definition of PacketStruct, please refer to the description of

CM100_ReceiveMsg() function.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: Port number is not correct.

CM100_TimeOut: The PISO-CM100-D/T has no response.

CM100_SoftBufferIsFull: The transmission software buffer is overflow.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 66

4.1.35 CM100_SendWithoutStruct <For default firmware>

 Description:

Send a CAN message to software transmission buffer. When the
CAN bus is idle, this CAN message will be sent to CAN network. This
function is similar with CM100_SendMsg() function. The difference is
that this function doesn’t use any structure parameter. It is easy to use
in some program environment, such as VB. Therefore, the input
parameters of function can refer to CM100_SendMsg() for more
detailed information.

 Syntax:

int CM100_SendWithoutStruct(BYTE BoardNo, BYTE Port, BYTE Mode,
DWORD MsgID, BYTE RTR,
BYTE DataLen, BYTE *Data)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).
Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.
Mode: [input] 0 for 11-bit message ID, 1 for 29-bit message ID.
MsgID: [input] CAN message ID.
RTR: [input] 0 for remote-transmit-request format is not used, 1 for

remote-transmit-request is used.
DataLen: [input] Data length of a transmitted CAN message. The

maximum value is 8.
*Data: [input] The start address of a buffer is used to store the

transmitted data of a CAN message.

 Return:

CM100_NoError: OK
CM100_DriverError: Kernel driver is not opened.
CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.
CM100_ActiveBoardError: This board is not activated.
CM100_PortNumberError: The port number is not correct.
CM100_TimeOut: The PISO-CM100-D/T has no response.
CM100_SoftBufferIsFull: The transmission software buffer is overflow.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 67

4.1.36 CM100_SJA1000Config <For user-defined firmware>

 Description:

Configure the message filter and baud of CAN controller, SJA1000.
About the input parameters of this function, please refer to the
CM100_Config() function for the more detailed information.

 Syntax:

int CM100_SJA1000Config(BYTE BoardNo, BYTE Port,
DWORD AccCode, DWORD AccMask,
BYTE BaudRate, BYTE BT0, BYTE BT1)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).
Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.
AccCode: [input] Acceptance code of CAN controller.
AccMask: [input] Acceptance mask of CAN controller.
BT0: [input] User-defined baud.
BT1: [input] User-defined baud.

For the more information about these parameters, please refer to
the section 3.2.28.

 Return:

CM100_NoError: OK
CM100_DriverError: Kernel driver is not opened.
CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.
CM100_ActiveBoardError: This board is not activated.
CM100_PortNumberError: The port number is not correct.
CM100_TimeOut: The PISO-CM100-D/T has no response.
CM100_InitError: The PISO-CM100-D/T replies erroneously.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 68

4.1.37 CM100_DPRAMInttToCM100 <For user-defined firmware>

 Description:

Send an interrupt signal to PISO-CM100-D/T. This interrupt signal
will pass to the user-defined firmware. Therefore, users can do
something for it. Be careful about that too many interrupt signals at a
short time will affect the normal procedure of the user-defined firmware.

 Syntax:

int CM100_DPRAMInttToCM100(BYTE BoardNo, BYTE Port,

BYTE Data)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

Data: [input] Interrupt indicator. The range is from 0x00 to 0xdf. Users

can define their own interrupt indicator and do some specified

thing for it in user-defined firmware.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_DpramOverRange: The data of input parameter is over 0xdf.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 69

4.1.38 CM100_DPRAMWriteByte <For user-defined firmware>

 Description:

Write one byte data into the specified address of DPRAM of
PISO-CM100-D/T. The DPRAM space which can be applied is from
address 0 to 6999.

 Syntax:

int CM100_DPRAMWriteByte(BYTE BoardNo, BYTE Port,

WORD Address, BYTE Data)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

Address: [input] The specified address of DPRAM where users want to

write data.

Data: [input] The byte data written to the DPRAM of PISO-CM100-D/T.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_DpramOverRange: The Address of input parameter is over

6999.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 70

4.1.39 CM100_DPRAMWriteWord <For user-defined firmware>

 Description:

Write one word data into the specified address of DPRAM of
PISO-CM100-D/T. The DPRAM space which can be applied is from
address 0 to 6999.

 Syntax:

int CM100_DPRAMWriteWord(BYTE BoardNo, BYTE Port,

WORD Address, WORD Data)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

Address: [input] The specified address of DPRAM where users want to

write data.

Data: [input] The word data written to the DPRAM of PISO-CM100-D/T.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_DpramOverRange: The Address of input parameter is over

6998.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 71

4.1.40 CM100_DPRAMWriteDword <For user-defined firmware>

 Description:

Write one double-word data into the specified address of DPRAM
of PISO-CM100-D/T. The DPRAM space which can be applied is from
address 0 to 6999.

 Syntax:

int CM100_DPRAMWriteDword(BYTE BoardNo, BYTE Port,

WORD Address, DWORD Data)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

Address: [input] The specified address of DPRAM where users want to

write data.

Data: [input] The double-word data written to the DPRAM of

PISO-CM100-D/T.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_DpramOverRange: The Address of input parameter is over

6996.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 72

4.1.41 CM100_DPRAMWriteMultiByte <For user-defined firmware>

 Description:

Write multi-byte data into specified address of DPRAM of
PISO-CM100-D/T. The DPRAM space which can be applied is from
address 0 to 6999.

 Syntax:

int CM100_DPRAMWriteMultiByte(BYTE BoardNo, BYTE Port,

WORD Address, BYTE *Data,

WORD DataNum)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

Address: [input] The specified start address of DPRAM where users

want to write data.

*Data: [input] The start address of a byte array written to the DPRAM of

PISO-CM100-D/T.

DataNum: [input] The byte number of an data array written to the

DPRAM of PISO-CM100-D/T.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_DpramOverRange: The sum of Address and DataNum of input

parameters is over 6999.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 73

4.1.42 CM100_DPRAMReadByte <For user-defined firmware>

 Description:

Read one byte data from the specified address of DPRAM of
PISO-CM100-D/T. The DPRAM space which can be applied is from
address 0 to 6999.

 Syntax:

int CM100_DPRAMReadByte(BYTE BoardNo, BYTE Port,

WORD Address, BYTE *Data)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

Address: [input] The specified address of DPRAM where users want to

read data.

*Data: [output] The address of a variable used to receive the data

obtained by CM100_DPRAMReadByte() function.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_DpramOverRange: The Address of input parameter is over

6999.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 74

4.1.43 CM100_DPRAMReadWord <For user-defined firmware>

 Description:

Read one word data from the specified address of DPRAM of
PISO-CM100-D/T. The DPRAM space which can be applied is from
address 0 to 6999.

 Syntax:

int CM100_DPRAMReadWord(BYTE BoardNo, BYTE Port,

WORD Address, WORD *Data)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

Address: [input] The specified address of DPRAM where users want to

read data.

*Data: [output] The address of a variable applied to receive the data

obtained by CM100_DPRAMReadWord() function.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_DpramOverRange: The Address of input parameter is over

6998.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 75

4.1.44 CM100_DPRAMReadDword <For user-defined firmware>

 Description:

Read one double-word data from the specified address of DPRAM
of PISO-CM100-D/T. The DPRAM space which can be applied is from
address 0 to 6999.

 Syntax:

int CM100_DPRAMWriteDword(BYTE BoardNo, BYTE Port,

WORD Address, DWORD *Data)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

Address: [input] The specified address of DPRAM where users want to

write data.

*Data: [output] The address of a variable applied to receive the data

obtained by CM100_DPRAMReadDword() function.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_DpramOverRange: The Address of input parameter is over

6996.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 76

4.1.45 CM100_DPRAMReadMultiByte <For user-defined firmware>

 Description:

Read multi-byte data into the specified address of DPRAM of
PISO-CM100-D/T. The DPRAM space which can be applied is from
address 0 to 6999.

 Syntax:

int CM100_DPRAMReadMultiByte(BYTE BoardNo, BYTE Port,
WORD Address, BYTE *Data,
WORD DataNum)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).
Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.
Address: [input] The specified start address of DPRAM where users

read to write data.
*Data: [output] The start address of a byte array applied to receive the

DPRAM data.
DataNum: [input] The byte numbers which users will want to read from

the DPRAM of PISO-CM100-D/T.

 Return:

CM100_NoError: OK
CM100_DriverError: Kernel driver is not opened.
CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.
CM100_ActiveBoardError: This board is not activated.
CM100_PortNumberError: The port number is not correct.
CM100_DpramOverRange: The sum of Address and DataNum of input

parameters is over 6999.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 77

4.1.46 CM100_DPRAMMemset <For user-defined firmware>

 Description:

Set multi-byte DPRAM data to be the specified value. The DPRAM
space which can be applied is from address 0 to 6999.

 Syntax:

int CM100_DPRAMMemset(BYTE BoardNo, BYTE Port,

WORD Address, BYTE Data,

WORD DataNum)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

Address: [input] The specified start address of DPRAM where users

want to write data.

Data: [input] The data written to DPRAM of PISO-CM100-D/T.

DataNum: [input] The byte numbers which users will want to write to

DPRAM of PISO-CM100-D/T.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_DpramOverRange: The sum of Address and DataNum of input

parameters is over 6999.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 78

4.1.47 CM100_ReceiveCmd <For user-defined firmware>

 Description:

Use this function to receive the command transmitted from the
user-defined firmware. When users use DPRAMSendCmd() to a send
command in the user-defined firmware, call this function to receive the
command from the user-defined firmware. If users do not receive the
command until another command is given from the user-defined
firmware, the former one will be covered by the latter one. About
DPRAMSendCmd(), please refer to 3.4.17 for more information.

 Syntax:

int CM100_ReceiveCmd(BYTE BoardNo, BYTE Port, BYTE *Data,
WORD *DataNum)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).
Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.
*Data: [output] The start address of a byte array applied to receive the

command from DPRAM of PISO-CM100-D/T.
*DataNum: [output] The address of a variable applied to receive the

command length.

 Return:

CM100_NoError: OK
CM100_DriverError: Kernel driver is not opened.
CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.
CM100_ActiveBoardError: This board is not activated.
CM100_PortNumberError: The port number is not correct.
CM100_NoDpramCmd: There is no command transmitted from

user-defined firmware.
CM100_DpramOverRange: The command length is over 512 bytes.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 79

4.1.48 CM100_SendCmd <For user-defined firmware>

 Description:

Call this function to send the command to user-defined firmware.
The maximum command length is 512 bytes. Afterwards, users can use
DPRAMReceiveCmd() function of firmware library to get this command.
About DPRAMReceiveCmd() function, please refer to section 3.4.16 for
more detailed information.

 Syntax:

int CM100_SendCmd(BYTE BoardNo, BYTE Port, BYTE *Data,

WORD DataNum)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

Port: [input] CAN port No. For PISO-CM100-D/T, this value is always 1.

*Data: [input] The start address of a byte array of a sent command.

DataNum: [input] The word value indicates how many bytes users will

send to user-defined firmware.

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_DpramOverRange: The command length is over 512 bytes.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 80

4.1.49 CM100_InstallUserISR <For user-defined firmware>

 Description:

Using this function can allow users to apply ISR (interrupt service
routine). When users put their ISR into this function, all of interrupt
signals defined by users in user-defined firmware will trigger the users’
ISR. Besides, the interrupt signal, CAN_COMM_CMD_FROM_CM100,
defined in “cm100.h” will also pass to users’ ISR when CM100.dll get a
command from the user-defined firmware.

 Syntax:

int CM100_InstallUserISR(BYTE BoardNo,
void (*UserISR)(BYTE BoardNo, BYTE InttValue))

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).
(*UserISR)(BYTE BoardNo, BYTE InttValue)): [input] The pointer which

points a function with format “void XXX(Byte
BoardNo, Byte InttValue)”. The XXX is the function
name of users’ ISR. The parameter, BoardNo,
indicates the number of the board which produces an
interrupt signal. The parameter, InttValue, is the
interrupt indicator which may be the value
CAN_COMM_CMD_FROM_CM100 or be the
interrupt indicator transmitted from user-defined
firmware.

 Return:

CM100_NoError: OK
CM100_DriverError: Kernel driver is not opened.
CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.
CM100_ActiveBoardError: This board is not activated.
CM100_DpramOverRange: The command length is over 512 bytes.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 81

4.1.50 CM100_RemoveUserISR <For user-defined firmware>

 Description:

When users don’t need the ISR function, call this function to
remove users ISR.

 Syntax:

int CM100_RemoveUserISR(BYTE BoardNo)

 Parameter:

BoardNo: [input] PISO-CM100-D/T DIP switch No. (0~15).

 Return:

CM100_NoError: OK

CM100_DriverError: Kernel driver is not opened.

CM100_BoardNumberError: BoardNo exceeds the current scanned

total board numbers.

CM100_ActiveBoardError: This board is not activated.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 82

4.2 Windows API Return Codes Troubleshooting

Return
Code Error ID Troubleshooting

0 CM100_NoError OK

1 CM100_DriverError

1. Reinstall PISO-CM100-D/T driver correctly.
2. Unplug the PISO-CM100-D/T, and plug it

again and turn on your PC until find it in the
list of hardware management of Windows.

2 CM100_ActiveBoardError

1. Set the BoardNo parameter of function to
match the DIP switch No..

2. Turn off all programs which may activate
this board.

3. Each PISO-CM100-D/T, PISO-DNM- D/T,
or PISO-CPM-D/T has unique DIP switch
No..

4. Reinstall PISO-CM100-D/T driver correctly.
5. Unplug the PISO-CM100-D/T, and plug it

again and turn on your PC until find it in the
list of hardware management of Windows.

3 CM100_BoardNumberError

1. Set the BoardNo parameter of function to
match the DIP switch No..

2. Each PISO-CM100-D/T, PISO-DNM- D/T,
or PISO-CPM-D/T has unique DIP switch
No..

3. Unplug the PISO-CM100-D/T, and plug it
again and turn on your PC until find it in the
list of hardware management of Windows.

4 CM100_PortNumberError 1. Set the Port parameter to 1 if users use
PISO-CM100-D/T.

7 CM100_InitError
1. Retry the function again.
2. Call the function CM100_Init() and

configure PISO-CM100-D/T again.

21 CM100_SoftBufferIsEmpty 1. Wait for a while and call the function again.

22 CM100_SoftBufferIsFull
1. Use CM100_ClearBufferStatus() to clear

the status of buffer overflow.
2. Reduce the bus loading of CAN network

23 CM100_TimeOut

1. Wait for a while and call the function again.
2. Call the function CM100_Init() and

configure PISO-CM100-D/T again.
3. Update default firmware again by using

Utility if default firmware is used.
4. Confirm if user-defined firmware is in

PISO-CM100-D/T or not by using Utility

24 CM100_SetCyclicMsgFailure

1. Check if users already use 5 the cyclic
messages.

2. Call the function CM100_Init() and
configure PISO-CM100-D/T again.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 83

Return
Code Error ID Troubleshooting

25 CM100_DpramOverRange
1. Check the Address or DataNum

parameters of function if each of them or
the sum of them exceeds 6999.

26 CM100_NoDpramCmd 1. Wait for a while and call the function again.

27 CM100_ModeError 1. Update the default firmware again by Utility
tool if it is used.

30 CM100_NoFileInside

1. Update the default firmware again by using
Utility if it is used.

2. Confirm if user-defined firmware is in
PISO-CM100-D/T or not by using Utility

31 CM100_DownloadFailure
1. Close Utility and try to update the firmware

one minute later.
2. Call your distributor to solve this problem

32 CM100_EEPROMDamage 1. Call your distributor to solve this problem

33 CM100_NotEnoughSpace
1. The file size of the user-defined firmware is

too large to put it into the
PISO-CM100-D/T.

34 CM100_StillDownloading
1. Close Utility and try to update firmware one

minute later.
2. Call your distributor to solve this problem

35 CM100_BoardModeError 1. Close Utility and try to update the firmware
one minute later.

36 CM100_SetDateTimeFailure 1. Call your distributor to solve this problem.

Table 4.7 Return Code Troubleshooting

Note: If users’ problem can’t be fixed after following the recommended

methods. Please contact your distributor or email to
service@icpdas.com to solve the problem.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 84

mailto:service@icpdas.com

5 Functions of Firmware Library

If the default firmware is used, users do not need to read this chapter. This
chapter introduces all the functions provided by firmware library, 186COMM.lib.
The content includes the description and list of functions of 186COMM.lib,
error code description, and simple method of troubleshooting. It is helpful to
build the user-defined firmware. The section 5.1 shows the list and information
of all functions supported by 186COMM.lib. The section 5.2 is the basic
troubleshooting when users apply the functions of 186COMM.lib and get an
unexpected return code.

5.1 Firmware Library Definitions and Descriptions

When users want to design their own firmware, the functions of firmware
library are needed. In order to reduce the development cycle, the firmware
library, 186COMM.lib, provides 4 callback functions. If users want to do some
initial job, put the program into UserInitFunc() callback function. Users’ normal
procedure can be put in UserLoopFunc(). The firmware library will execute this
callback function as soon as possible. If users would like to process some
interrupt signal from DPRAM or CAN controller, use callback functions,
UserDPRAMIrqFunc() and UserCANIrqFunc(), to do that. These 4 callback
functions must be applied once in users’ .c file. The architecture is show as
figure 5.1.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 85

Figure 5.1 Firmware Library Operation Architecture

Besides, 186COMM.lib also supports some functions for handling the
hardware of PISO-CM100-D/T, such DPRAM access functions, EEPROM
access functions, NVRAM access functions, LED control functions, real time
clock access function, timer functions, debug functions, and CAN bus access
functions. Users can use Borland C/C++ or Turbo C/C++ to compile
user-defined firmware. By the way, the Turbo C++ 1.01 or Turbo C 2.0 can be
free downloaded in the website http://dn.codegear.com/museum. All the
functions are listed in the table 5.1 and detailed information for every function
is presented in the following sub-section.

Function definition Page

void L1Off(void) 89

void L1On(void) 89

void L2Off(void) 90

void L2On(void) 90

void DPRAMInttToHost(char InttValue) 91

void UserDPRAMIrqFunc(unsigned char INTT) 92

int DPRAMWriteByte(unsigned int Address, unsigned char Data) 93

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 86

http://dn.codegear.com/museum

Function definition Page

int DPRAMWriteWord(unsigned int Address, unsigned int Data) 94

int DPRAMWriteDword(unsigned int Address, unsigned long Data) 95

int DPRAMWriteMultiByte(unsigned int Address, char *Data, unsigned int DataNum) 96

int DPRAMReadByte(unsigned int Address, unsigned char *Data) 97

int DPRAMReadWord(unsigned int Address, unsigned int *Data) 98

int DPRAMReadDword(unsigned int Address, unsigned long *Data) 99

int DPRAMReadMultiByte(unsigned int Address, char *Data, unsigned int DataNum) 100

int DPRAMMemset(unsigned int Address, char data, unsigned int DataNum) 101

int DPRAMReceiveCmd(char *Data, unsigned int *DataNum) 102

int DPRAMSendCmd(char *Data, unsigned int DataNum) 103

int DebugPrint(const char *fmt,...) 104

int GetKbhit(void) 105

int Print(const char *fmt, ...) 106

void GetTime(int *hour, int *minute, int *sec) 107

int SetTime(int hour, int minute, int sec) 108

void GetDate(int *year, int *month, int *day) 109

int SetDate(int year, int month, int day) 110

int GetWeekDay(void) 111

int ReadNVRAM(int Address) 112

int WriteNVRAM(int Address, int data) 113

unsigned long GetTimeTicks100us(void) 114

long GetTimeTicks(void) 115

void DelayMs(unsigned int DelayTime_ms) 116

void CM100_InstallUserTimer(void (*Fun)(void)) 117

void T_StopWatchStart(STOPWATCH *sw) 118

unsigned long T_StopWatchGetTime(STOPWATCH *sw) 118

void T_StopWatchPause(STOPWATCH *sw) 118

void T_StopWatchContinue(STOPWATCH *sw) 118

void T_CountDownTimerStart(COUNTDOWNTIMER *cdt, unsigned long timems) 120

void T_CountDownTimerPause(COUNTDOWNTIMER *cdt) 120

void T_CountDownTimerContinue(COUNTDOWNTIMER *cdt) 120

int T_CountDownTimerIsTimeUp(COUNTDOWNTIMER *cdt) 120

unsigned long T_CountDownTimerGetTimeLeft(COUNTDOWNTIMER *cdt) 120

int CM100_EEPROMReadByte(unsigned int Block, unsigned int Address,
unsigned char *Data)

122

int CM100_EEPROMReadMultiByte(unsigned int Block, unsigned int Address,
char *Data, unsigned int DataNum) 123

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 87

Function definition Page
int CM100_EEPROMWriteByte(unsigned int Block, unsigned int Address,

unsigned char Data) 124

int CM100_EEPROMWriteMultiByte(unsigned int Block, unsigned int Address,
char *Data, unsigned int DataNum) 125

void UserCANIrqFunc(unsigned char INTT) 126

void SJA1000HardwareReset(void) 127

int SetCANBaud(unsigned long Baud, char BT0, char BT1) 128

void GetCANBaud(unsigned long *Baud, char *BT0, char *BT1) 129

int SetCANMask(long AccCode, long AccMask) 130

void GetCANMask(long *AccCode, long *AccMask) 132
int CANConfig(unsigned long Baud, char BT0, char BT1, long AccMask,

long AccCode) 133

void EnableSJA1000(void) 134

void DisableSJA1000(void) 134

int GetCANStatus(void) 135

void ClearDataOverrunStatus(void) 136

int SendCANMsg(char Mode, unsigned long MsgID, char RTR, char DataLen,

char *Data)
137

void ClearTxSoftBuffer(void) 138
int GetCANMsg(char *Mode, unsigned long *MsgID, char *RTR, char *DataLen,

char *Data, unsigned long *UpperTime, unsigned long *LowerTime) 139

void ClearRxSoftBuffer(void) 141

int RxMsgCount(void) 141
int AddCyclicTxMsg(char Mode, unsigned long MsgID, char RTR, char DataLen,

char *Data, unsigned long TimePeriod, unsigned char *Handle) 142

int DeleteCyclicTxMsg(unsigned char Handle) 143

int EnableCyclicTxMsg(unsigned char Handle) 144

int DisableCyclicTxMsg(unsigned char Handle) 145

void ResetCyclicTxBuf(void) 145

void SystemHardwareReset(void) 146

void SystemInit(void) 146

int GetLibVer(void) 147

void RefreshWDT(void) 147

void UserInitFunc(void) 148

void UserLoopFunc(void) 149

Table 5.1 Functions List of Firmware Library For User-defined Firmware

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 88

5.1.1 L1Off

 Description:

Turn off the red LED of PISO-CM100-D/T.

 Syntax:

void L1Off(void)

 Parameter:

None

 Return:

None

5.1.2 L1On

 Description:

Turn on the red LED of PISO-CM100-D/T.

 Syntax:

void L1On(void)

 Parameter:

None

 Return:

None

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 89

5.1.3 L2Off

 Description:

Turn off the green LED of PISO-CM100-D/T.

 Syntax:

void L2Off(void)

 Parameter:

None

 Return:

None

5.1.4 L2On

 Description:

Turn on the green LED of PISO-CM100-D/T.

 Syntax:

void L1Off(void)

 Parameter:

None

 Return:

None

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 90

5.1.5 DPRAMInttToHost

 Description:

Call this function to signal the users’ Windows applications an
interrupt. When users’ applications receive the interrupt signal from the
user-defined firmware, check the value of interrupt indicator to know the
meaning of this interrupt. Therefore, the user-defined firmware can
communicate with the Windows applications by the definitions of
interrupt indicators. Because of the interrupt mechanism, too many calls
of this function will increase PC CPU loading and disturb the normal
procedure of users’ Windows applications.

 Syntax:

void DPRAMInttToHost(char InttValue)

 Parameter:

InttValue: [input] The interrupt indicator sent to users’ Windows
application. The range is from 0x00 ~ 0xdf.

 Return:

None

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 91

5.1.6 UserDPRAMIrqFunc <must be called once >

 Description:

This is a callback function, and must be call once in user-defined
firmware. When firmware library receives an interrupt signal from users’
Windows applications, it will pass the interrupt indicator from users’
Windows applications to this function. Users can have some proper
procedures in this function to process each interrupt indicator. It is not
allowed to put an infinite loop in to this function, and users must keep
the program of this function as short as possible.

 Syntax:

void UserDPRAMIrqFunc(unsigned char INTT)

 Parameter:

INTT: [input] The interrupt indicator from users’ Windows application.

 Return:

None

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 92

5.1.7 DPRAMWriteByte

 Description:

Write one byte data into the specified address of DPRAM of
PISO-CM100-D/T. The DPRAM space which can be applied is from
address 0 to 6999.

 Syntax:

int DPRAMWriteByte(unsigned int Address, unsigned char Data)

 Parameter:

Address: [input] The specified address of DPRAM where users want to
write data.

Data: [input] The byte data written to the DPRAM of PISO-CM100-D/T.

 Return:

_NO_ERR: OK
_DPRAM_OVER_RANGE: The Address of input parameter is over

6999.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 93

5.1.8 DPRAMWriteWord

 Description:

Write one word data into the specified address of DPRAM of
PISO-CM100-D/T. The DPRAM space which can be applied is from
address 0 to 6999.

 Syntax:

int DPRAMWriteWord(unsigned int Address, unsigned int Data)

 Parameter:

Address: [input] The specified address of DPRAM where users want to
write data.

Data: [input] The word data written to the DPRAM of PISO-CM100-D/T.

 Return:

_NO_ERR: OK
_DPRAM_OVER_RANGE: The Address of input parameter is over

6998.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 94

5.1.9 DPRAMWriteDword

 Description:

Write one double-word data into the specified address of DPRAM
of PISO-CM100-D/T. The DPRAM space which can be applied is from
address 0 to 6999.

 Syntax:

int DPRAMWriteDword(unsigned int Address, unsigned long Data)

 Parameter:

Address: [input] The specified address of DPRAM where users want to
write data.

Data: [input] The double-word data written to the DPRAM of
PISO-CM100-D/T.

 Return:

_NO_ERR: OK
_DPRAM_OVER_RANGE: The Address of input parameter is over

6996.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 95

5.1.10 DPRAMWriteMultiByte

 Description:

Write multi-byte data into the specified address of DPRAM of
PISO-CM100-D/T. The DPRAM space which can be applied is from
address 0 to 6999.

 Syntax:

int DPRAMWriteMultiByte(unsigned int Address, char *Data,

unsigned int DataNum)

 Parameter:

Address: [input] The specified start address of DPRAM where users
want to write data.

*Data: [input] The start address of a byte array written to the DPRAM of
PISO-CM100-D/T.

DataNum: [input] The byte numbers of an data array written to the
DPRAM of PISO-CM100-D/T.

 Return:

_NO_ERR: OK

_DPRAM_OVER_RANGE: The sum of Address and DataNum of input

parameters is over 6999.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 96

5.1.11 DPRAMReadByte

 Description:

Read one byte data from specified the address of DPRAM of
PISO-CM100-D/T. The DPRAM space which can be applied is from
address 0 to 6999.

 Syntax:

int DPRAMReadByte(unsigned int Address, unsigned char *Data)

 Parameter:

Address: [input] The specified address of DPRAM where users want to

read data.

*Data: [output] The address of a variable used to receive the data

obtained by DPRAMReadByte() function.

 Return:

_NO_ERR: OK

_DPRAM_OVER_RANGE: The Address of input parameter is over

6999.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 97

5.1.12 DPRAMReadWord

 Description:

Read one word data from the specified address of DPRAM of
PISO-CM100-D/T. The DPRAM space which can be applied is from
address 0 to 6999.

 Syntax:

int DPRAMReadWord(unsigned int Address, unsigned int *Data)

 Parameter:

Address: [input] The specified address of DPRAM where users want to

read data.

*Data: [output] The address of a variable applied to receive the data

obtained by DPRAMReadWord() function.

 Return:

_NO_ERR: OK

_DPRAM_OVER_RANGE: The Address of input parameter is over

6998.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 98

5.1.13 DPRAMReadDword

 Description:

Read one double-word data from the specified address of DPRAM
of PISO-CM100-D/T. The DPRAM space which can be applied is from
address 0 to 6999.

 Syntax:

int DPRAMReadDword(unsigned int Address, unsigned long *Data)

 Parameter:

Address: [input] The specified address of DPRAM where users want to

read data.

*Data: [output] The address of a variable applied to receive the data

obtained by DPRAMReadDword() function.

 Return:

_NO_ERR: OK

_DPRAM_OVER_RANGE: The Address of input parameter is over

6996.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 99

5.1.14 DPRAMReadMultiByte

 Description:

Write the multi-byte data into the specified address of DPRAM of
PISO-CM100-D/T. The DPRAM space which can be applied is from
address 0 to 6999.

 Syntax:

int DPRAMReadMultiByte(unsigned int Address, char *Data,

unsigned int DataNum)

 Parameter:

Address: [input] The specified start address of DPRAM where users

want to read data.

*Data: [output] The start address of a byte array applied to receive the

data from DPRAM of PISO-CM100-D/T.

DataNum: [input] The byte numbers which users will want to read from

the DPRAM of PISO-CM100-D/T.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

_NO_ERR: OK

_DPRAM_OVER_RANGE: The sum of Address and DataNum of input

parameters is over 6999.

100

5.1.15 DPRAMMemset

 Description:

Set the multi-byte DPRAM data to be the specified value. The
DPRAM space which can be applied is from address 0 to 6999.

 Syntax:

int DPRAMMemset(unsigned int Address, char data,

unsigned int DataNum)

 Parameter:

Address: [input] The specified start address of DPRAM where users

want to write data.

Data: [input] The data written to DPRAM of PISO-CM100-D/T.

DataNum: [input] The byte numbers which users will want to write to

DPRAM of PISO-CM100-D/T.

 Return:

_NO_ERR: OK

_DPRAM_OVER_RANGE: The sum of Address and DataNum of input

parameters is over 6999.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

101

5.1.16 DPRAMReceiveCmd

 Description:

Use this function to receive the command transmitted from the
windows applications. When users use CM100_SendCmd() to a send
command in Windows application, call this function to receive the
command which comes from users’ Windows application. If users do not
receive the command until another command is given from users
Windows application, the former one will be covered by the latter one.
About CM100_SendCmd(), please refer to 3.2.47 for more information.

 Syntax:

int DPRAMReceiveCmd(char *Data, unsigned int *DataNum)

 Parameter:

*Data: [output] The start address of a byte array is applied to receive the

command from DPRAM of PISO-CM100-D/T.

*DataNum: [output] The address of a variable is applied to receive the

command length.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

_NO_ERR: OK

_NO_DPRAM_CMD: There is no command transmitted from

user-defined firmware.

_DPRAM_OVER_RANGE: The command length is over 512 bytes.

102

5.1.17 DPRAMSendCmd

 Description:

Call this function to send the command to the Windows applications.
The maximum command length is 512 bytes. Afterwards, users can use
CM100_ReceiveCmd() function of Windows library to get this command.
About CM100_ReceiveCmd() function, please refer to section 3.2.46 for
more detailed information. The maximum command length can’t exceed
to 512 bytes.

 Syntax:

int DPRAMSendCmd(char *Data, unsigned int DataNum)

 Parameter:

*Data: [input] The start address of a byte array of a sent command.

DataNum: [input] The word value indicates how many bytes users will

send to the user-defined firmware.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

_NO_ERR: OK

_DPRAM_OVER_RANGE: The command length is over 512 bytes.

103

5.1.18 DebugPrint <assist with CM100_DEBUG_MONITOR.EXE>

 Description:

This function is used for debugging of the user-defined firmware.
Call this function to send debug the messages from user-defined
firmware to CM100_DEBUG_MONITOR.exe Windows program. The
use method of this function is similar with the standard C function printf().
When users use this function, execute CM100_DEBUG_MONITOR
program and active PISO-CM100-D/T board to see the debug
information. If the PISO-CM100-D/T board has been activated by other
Windows programs, users don’t need to activate the PISO-CM100-D/T
again in CM100_DEBUG_MONITOR. For the more detailed information
about CM100_DEBUG_MONITOR, please refer to section 6.3. The
maximum string length can’t exceed 100 bytes.

 Syntax:

int DebugPrint(const char *fmt,...)

 Parameter:

* fmt: [input] The string of debug information. The maximum length of
*fmt string is 100 bytes. Please refer to standard C function printf()
to know how to use this parameters. If users need new-line
function, add “\r\n” in the end of the string of debug information.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

_NO_ERR: OK

_DPRAM_OVER_RANGE: The string of debug information length is

over 100 bytes.

104

5.1.19 GetKbhit <assist with debug cable and 7188xw.exe>

 Description:

This function is used for debugging of the user-defined firmware.
Call this function to get a character keyed from keyboard. GetKbhit()
function is similar with standard C function GetKbhit(). When users
connect the debug port of the PISO-CM100-D/T with available the
RS-232 COM port of PC via the debug cable shown in section 2.2 and
execute 7188xw.exe Windows program, a character keyed from
keyboard will be caught by this function.

 Syntax:

int GetKbhit(void)

 Parameter:

None

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

The return code is the received character from keyboard input when

7188xw.exe is executed and focused.

105

5.1.20 Print <assist with debug cable and 7188xw.exe>

 Description:

This function is used for debugging of the user-defined firmware.
Call this function to send debug information to 7188xw.exe Windows
program. Print() function is similar with standard C function printf().
When users connect the debug port of PISO-CM100-D/T with the
available RS-232 COM port of PC via the debug cable shown in section
2.2 and execute 7188xw.exe Windows program, the debug information
sent by using this function will be put to the window of 7188xe.wxe.

 Syntax:

int Print(const char *fmt, ...)

 Parameter:

* fmt: [input] The data format of keyboard input. Please refer to standard

C function printf() to know how to use this parameters.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

If it is successful, the return code is a non-zero value except the value of

EOF (defined by standard C/C++ language).

106

5.1.21 GetTime

 Description:

Use this function to get the current time from real time clock.

 Syntax:

void GetTime(int *hour, int *minute, int *sec)

 Parameter:

*hour: [output] The address of a variable used to receive the hour value

of current time.

*minute: [output] The address of a variable used to receive the minute

value of current time.

*sec: [output] The address of a variable used to receive the second

value of current time.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

None.

107

5.1.22 SetTime

 Description:

Use this function to modify the time of real time clock.

 Syntax:

int SetTime(int hour, int minute, int sec)

 Parameter:

hour: [input] The hour value set to real time clock.

minute: [input] The minute value set to real time clock.

sec: [input] The second value set to real time clock.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

_NO_ERR: OK

_SET_TIME_ERROR: The input value of hour, minute or sec is invalid.

108

5.1.23 GetDate

 Description:

Use this function to get the current date from real time clock.

 Syntax:

void GetDate(int *year, int *month, int *day)

 Parameter:

*year: [output] The address of a variable used to receive the year value

of current date.

*month: [output] The address of a variable used to receive the month

value of current date.

*day: [output] The address of a variable used to receive the day value of

current date.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

None.

109

5.1.24 SetDate

 Description:

Use this function to modify the date of real time clock.

 Syntax:

int SetDate(int year, int month, int day)

 Parameter:

year: [input] The year value set to real time clock.

month: [input] The month value set to real time clock.

day: [input] The day value set to real time clock.

 Return:

_NO_ERR: OK

_SET_DATE_ERROR: The input value of year, month or day is invalid.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 110

5.1.25 GetWeekDay

 Description:

Use this function to obtain what day is today.

 Syntax:

int GetWeekDay(void)

 Parameter:

None.

 Return:

Return Code Meaning

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

Table 5.2 Relation Between Return Code and Day of Week

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 111

5.1.26 ReadNVRAM

 Description:

Use this function to get one-byte data of NVRAM.

 Syntax:

int ReadNVRAM(int Address)

 Parameter:

Address: [input] The NVRAM address where users will read the data.

The range of this parameter is from 0 to 30.

 Return:

_ACCESS_NVRAM_FAILE: The address of NVRAM is invalid.

Others: The value obtained from NVRAM. The range of return value is

from 0 to 255.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 112

5.1.27 WriteNVRAM

 Description:

Use this function to write one-byte data to specified address of
NVRAM. If system has no power, the data stored in NVRAM will not
disappear.

 Syntax:

int WriteNVRAM(int Address, int data)

 Parameter:

Address: [input] The NVRAM address where users will write the data.

The range of this parameter is from 0 to 30.

data: [input] The data written to NVRAM. The range of this parameter is

from 0 to 255. If value is over 255, only low byte of data will be

written to NVRAM.

 Return:

_NO_ERR: OK.

_ACCESS_NVRAM_FAILE: The address of NVRAM is invalid.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 113

5.1.28 GetTimeTicks100us

 Description:

Read PISO-CM100-D/T time ticks by using this function. When the
firmware starts, PISO-CM100-D/T time ticks are counted. Reset the
firmware will clean the accumulated counters of this value. If the
accumulated counters are over the range of an unsigned long value, the
counters are also reset to 0.

 Syntax:

unsigned long GetTimeTicks100us(void)

 Parameter:

None.

 Return:

The time ticks numbers when firmware started. The unit is 0.1 ms.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 114

5.1.29 GetTimeTicks

 Description:

Call this function to read PISO-CM100-D/T time ticks. When
PISO-CM100-D/T has power, the time ticks are counted. This function
can’t be called in interrupt service routine. Reset the operation system
of PISO-CM100-D/T will clean the accumulated counters of this value. If
the accumulated counters are over the range of an unsigned long value,
the counters are also reset to 0.

 Syntax:

long GetTimeTicks(void)

 Parameter:

None

 Return:

The time ticks numbers. The unit is 1 ms.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 115

5.1.30 DelayMs

 Description:

Use this function to pending the procedure of user-defined firmware.
Because of watch dog mechanism, users can’t delay for a long time.
The PISO-CM100-D/T watch dog timer is set to 800 ms. It is
recommend that if users want to delay the procedure of user-defined
firmware more than 500 ms. The RefreshWDT() function must be
applied to avoid the watch dog timeout. This function is not allowed to
put into interrupt service routine. If users want to use delay functions in
interrupt service routine, it is strongly recommended to put this part of
the codes of interrupt service routine into UserLoopFunc().

 Syntax:

void DelayMs(unsigned int DelayTime_ms)

 Parameter:

DelayTime_ms: [input] The delay time of procedure. The unit is 1 ms.

 Return:

None

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 116

5.1.31 CM100_InstallUserTimer

 Description:

This function can allow users to use timer interrupt. When users put
their timer interrupt service routine in this function, this interrupt service
routine will be executed every millisecond. Be careful that too much
program in the interrupt service routine will disturb the normal procedure
of user-defined firmware.

 Syntax:

void CM100_InstallUserTimer(void (*Fun)(void))

 Parameter:

(*Fun)(void): [input] The pointer which points a function with format “void

XXX(void)”. The XXX is the name of a function.

 Return:

None

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 117

5.1.32 T_StopWatchXXX series functions

 Description:

Call this function to use a stopwatch. There are 4 functions for
stopwatch operation. When users want to start a stopwatch,
T_StopWatchStart() must be applied. Then, users can use
T_StopWatchGetTime() to obtain the current time counts of this
stopwatch. If users need to disable the time counter, use
T_StopWatchPause() to achieve this purpose. Call
T_StopWatchContinue() to enable this timer counter again. If users
want to use more than one stopwatch, just input the different variable of
structure STOPWATCH into these 4 functions. One structure variable
will be mapped to one stopwatch. The time unit of these 4 functions and
the members of STOPWATCH structure are millisecond.

 Syntax:

void T_StopWatchStart(STOPWATCH *sw)

unsigned long T_StopWatchGetTime(STOPWATCH *sw)

void T_StopWatchPause(STOPWATCH *sw)

void T_StopWatchContinue(STOPWATCH *sw)

 Parameter:

*sw: [output] The address of a STOPWATCH structure variable applied

to describe the stopwatch. The member of STOPWATCH structure

is shown as following:

typedef struct {

 unsigned long ulStart;

 unsigned long ulPauseTime;

 unsigned int uMode;

}STOPWATCH;

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 118

Parameter ulStart obtains the start time of stopwatch. Parameter

ulPauseTime will return the last pause time of stopwatch.

Parameter uMode returns the status of the stopwatch. If uMode

is 0, it means that the stopwatch pauses. If uMode is 1, the

stopwatch is running.

 Return:

The return code of T_StopWatchGetTime() is the current time counts

after the stopwatch started.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 119

5.1.33 T_CountDownTimerXXX series functions

 Description:

Call this function to use a countdown timer. There are 5 functions
for countdown timer operation. When users want to start a countdown
timer, T_CountDownTimerStart() must be applied. Then, If users need
to disable the countdown timer, use T_CountDownTimerPause() to
achieve this purpose. Call T_CountDownTimerContinue() to enable this
countdown timer again. Users can use T_CountDownTimerIsTimeUp()
to check if the countdown timer is timeout or not. Or, use
T_CountDownTimerGetTimeLeft() to obtain the rest time of countdown
timer. If users want to use more than one countdown timer, just input the
different variable of structure COUNTDOWNTIMER into these 5
functions. One structure variable will be mapped to one countdown
timer. The time unit of these 5 functions and the members of
COUNTDOWNTIMER structure are millisecond.

 Syntax:

void T_CountDownTimerStart(COUNTDOWNTIMER *cdt,
unsigned long timems)

void T_CountDownTimerPause(COUNTDOWNTIMER *cdt)
void T_CountDownTimerContinue(COUNTDOWNTIMER *cdt)
int T_CountDownTimerIsTimeUp(COUNTDOWNTIMER *cdt)
unsigned long T_CountDownTimerGetTimeLeft(

COUNTDOWNTIMER *cdt)

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Parameter:

timems: [input] The time interval which indicates that how much time the
countdown timer will countdown.

*cdt: [output] The address of a COUNTDOWNTIMER structure variable
used to describe the countdown timer. The member of
COUNTDOWNTIMER structure is shown as following:

typedef struct {
unsigned long ulTime;
unsigned long ulStartTime;
unsigned long ulPauseTime;

120

unsigned int uMode;
} COUNTDOWNTIMER;

Using parameter ulTime will get time interval of countdown timer.
Parameter ulStartTime returns the start time of countdown timer.
Parameter ulPauseTime can obtain the last pause time of
countdown timer. Parameter uMode returns the status of the
countdown timer. If uMode is 0, it means that the countdown
timer pauses. If uMode is 1, the countdown timer is running.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

The return code of T_CountDownTimerIsTimeUp() is _NO_ERR or
_COUNT_DOWN_TIMER_TIME_UP. If the countdown timer is timeout,
the return code is _COUNT_DOWN_TIMER_TIME_UP. If not, the
return code is _NO_ERR. The return code of
T_CountDownTimerGetTimeLeft() is the rest time of the countdown
timer.

121

5.1.34 CM100_EEPROMReadByte

 Description:

Use this function to read the data of the specified address of
EEPROM.

 Syntax:

int CM100_EEPROMReadByte(unsigned int Block,

unsigned int Address,

unsigned char *Data)

 Parameter:

Block: [input] The EEPROM block No.. The range is from 0 to 6.

Address: [input] The EEPROM address where users will read the data.

Each block has 256 bytes. Therefore, the range of this

parameter is from 0 to 255.

*data: [output] The address of a variable used to obtain the data of

specified address of EEPROM

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

_NO_ERR: OK.

_EEPROM_OVER_RANGE: The block No. is over 6, or the address is

over 256.

122

5.1.35 CM100_EEPROMReadMultiByte

 Description:

Use this function to read some data from EEPROM.

 Syntax:

int CM100_EEPROMReadMultiByte(unsigned int Block,

unsigned int Address,

char *Data,

unsigned int DataNum)

 Parameter:

Block: [input] The EEPROM block No.. The range is from 0 to 6.

Address: [input] The start EEPROM address where users will write the

data. Each block has 256 bytes. Therefore, the range of this

parameter is from 0 to 255.

*data: [output] The start address of a byte array used to receive the data

from EEPROM

DataNum: [input] The parameter indicates that how many data users

want to obtain.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

_NO_ERR: OK.

_EEPROM_OVER_RANGE: The block No. is over 6, or the address is
over 256. Or the specified range of
reading data is over the block 6 and
address 255.

123

5.1.36 CM100_EEPROMWriteByte

 Description:

Use this function to write the data to specified address of EEPROM.
If system has no power, the data stored in EEPROM will not disappear.

 Syntax:

int CM100_EEPROMWriteByte(unsigned int Block,

unsigned int Address,

unsigned char Data)

 Parameter:

Block: [input] The EEPROM block No.. The range is from 0 to 6.

Address: [input] The EEPROM address where users will write the data.

Each block has 256 bytes. Therefore, the range of this

parameter is from 0 to 255.

data: [input] The data written to EEPROM

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

_NO_ERR: OK.

_EEPROM_ACCESS_ERROR: Can’t write data to specified EEPROM

address. The EEPROM may be

damaged.

_EEPROM_OVER_RANGE: The block No. is over 6, or the address is

over 256.

124

5.1.37 CM100_EEPROMWriteMultiByte

 Description:

Use this function to write some data to specified address of
EEPROM. If system has no power, the data stored in EEPROM will not
disappear.

 Syntax:

int CM100_EEPROMWriteMultiByte(unsigned int Block,
unsigned int Address,
char *Data,
unsigned int DataNum)

 Parameter:

Block: [input] The EEPROM block No.. The range is from 0 to 6.
Address: [input] The EEPROM address where users will write the data.

Each block has 256 bytes. Therefore, the range of this
parameter is from 0 to 255.

*data: [output] The start address of a byte array used to store the data
written to EEPROM.

DataNum: [input] The parameter indicates that how many data users
want to write.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

_NO_ERR: OK.
_EEPROM_ACCESS_ERROR: Can’t write data to specified EEPROM

address. The EEPROM may be
damaged.

_EEPROM_OVER_RANGE: The block No. is over 6, or the address is
over 256. Or the specified range of writing
data is over the block 6 and address 255.

125

5.1.38 UserCANIrqFunc <must be called once>

 Description:

This is a callback function, and must be call once in user-defined
firmware. When the firmware library receives an interrupt signal from
CAN controller, this function will pass the interrupt indicator of CAN
controller. The interrupt indicator shows what kinds of CAN controller
interrupt are active. Therefore, users only need to design their interrupt
routine according to deal with the different interrupt indicators. It is not
allowed to put an infinite loop in to this function, and users must keep
the program of this function as short as possible.

 Syntax:

void UserCANIrqFunc(unsigned char INTT)

 Parameter:

INTT: [input] The interrupt indicator from CAN controller. The meanings

of indicators are shown as following.

Indicator (Hex) Meaning

0x01 Receive a message successfully

0x02 Transmit a message successfully

0x04 Error warring

0x08 Data Overrun

0x10 CAN controller wake-up

0x20 Bus Passive

0x40 Arbitration Lost

0x80 Bus Error

Table 5.3 CAN Interrupt Indicator Description

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

None

126

5.1.39 SJA1000HardwareReset

 Description:

Reset the CAN controller by reset the pin of SJA1000. After calling
this function, users must configure the baud and message mask of CAN
controller. Then, use EnableSJA1000() to activate the SJA1000 to send
and receive CAN messages.

 Syntax:

void SJA1000HardwareReset(void)

 Parameter:

None

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

None

127

5.1.40 SetCANBaud

 Description:

Set the CAN baud of CAN controller.

 Syntax:

int SetCANBaud(unsigned long Baud, char BT0, char BT1)

 Parameter:

Baud: [input] The baud of CAN controller. There are 12 kinds of
supported baud. They are 5K, 10K, 20K, 25K, 50K, 100K, 125K,
200K, 250K, 500K, 800K, 1M bps. If these bauds can not satisfy,
set this parameter 0 and define the BT0 and BT1 of SJA1000 by
users.

BT0: [input] User-defined baud.
BT1: [input] User-defined baud. For the more information about how to

use BT0 and BT1, please refer to the data sheet of SJA1000.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

_NO_ERR: OK.
_CAN_CHIP_SOFT_RESET_ERR: SJA1000 can’t be reset by software.

The CAN controller may be
damaged.

128

5.1.41 GetCANBaud

 Description:

Get the current CAN baud of CAN controller.

 Syntax:

void GetCANBaud(unsigned long *Baud, char *BT0, char *BT1)

 Parameter:

*Baud: [output] The address of a variable used to obtain the baud of
CAN controller. If this parameter is 0, the BT0 and BT1 are
useful.

*BT0: [output] The address of a variable used to get the BT0 value
obtained from SJA1000.

*BT1: [output] The address of a variable used to get the BT1 value
obtained from SJA1000. For more information about how to use
BT0 and BT1, please refer to the data sheet of SJA1000.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

None

129

5.1.42 SetCANMask

 Description:

Set the message mask of CAN controller.

 Syntax:

int SetCANMask(long AccCode, long AccMask)

 Parameter:

AccCode: [input] Acceptance code of CAN controller

AccMask: [input] Acceptance mask of CAN controller.

The AccCode is used for deciding what kind of ID the CAN
controller will accept. The AccMask is used for deciding which
bit of ID will need to check with AccCode. If the bit of
AccMask is set to 0, it means that the bit in the same position
of ID need to be checked, and that ID bit value needs to
match the bit of AccCode in the same position.

AccCode and AccMask Bit Position Filter Target

high byte of the high word bit7~bit0 bit10 ~ bit3 of ID

low byte of the high word bit7~bit5 bit2 ~ bit0 of ID

low byte of the high word bit4 RTR

low byte of the high word bit3~bit0 no use

high byte of the low word bit7~bit0 bit7 ~ bit0 of 1st byte data

low byte of the low word bit7~bit0 bit7 ~ bit0 of 2nd byte data

Table 5.3 AccCode and AccMask Definition For 11-bit ID

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

130

AccCode and AccMask Bit Position Filter Target

high byte of the high word bit7~bit0 bit28~ bit21 of ID

low byte of the high word bit7~bit0 bit20 ~ bit13 of ID

high byte of the low word bit7~bit0 bit12 ~ bit5 of ID

low byte of the low word bit7~bit3 bit4 ~ bit0 of ID

low byte of the low word bit2 RTR

low byte of the low word bit1~bit0 no use

Table 5.4 AccCode and AccMask Definition For 29-bit ID

For example (In 29 bit ID message):

AccCode : 00h 00h 00h A0h

AccMask : FFh FFh FFh 1Fh

ID bit bit28~bit21 bit20~bit13 bit12~bit5 bit4~bit0

ID Value : xxxx xxxx xxxx xxxx xxxx xxxx 101x x will be accepted

(Note: The mark “x” means don’t care. And the mark “h” behind the value means hex format.)

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

_NO_ERR: OK.
_CAN_CHIP_SOFT_RESET_ERR: SJA1000 can’t be reset by software.

The CAN controller may be
damaged.

131

5.1.43 GetCANMask

 Description:

Get the current message mask status of CAN controller.

 Syntax:

void GetCANMask(long *AccCode, long *AccMask)

 Parameter:

* AccCode: [output] The address of a variable used to obtain the

acceptance code of SJA1000.

* AccMask: [output] The address of a variable used to obtain the

acceptance mask of SJA1000.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

None

132

5.1.44 CANConfig

 Description:

Configure the baud, message filter of CAN controller. After calling
this function, users need to call EnableSJA1000() to active CAN
controller, SJA1000.

 Syntax:

int CANConfig(unsigned long Baud, char BT0, char BT1, long AccMask,

long AccCode)

 Parameter:

Baud: [input] The baud of CAN controller.

 BT0: [input] User-defined baud.

BT1: [input] User-defined baud.

AccCode: [input] Acceptance code of CAN controller.

AccMask: [input] Acceptance mask of CAN controller.

For the more information about these parameters, please

refer to the section 3.4.49 and 3.4.51.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

_NO_ERR: OK.

_CAN_CHIP_SOFT_RESET_ERR: SJA1000 can’t be reset by software.

The CAN controller may be damaged.

133

5.1.45 EnableSJA1000

 Description:

Use this function to activate SJA1000. Afterwards, users can send/
receive CAN messages by other functions.

 Syntax:

void EnableSJA1000(void)

 Parameter:

None

 Return:

None

5.1.46 DisableSJA1000

 Description:

Call DisableSJA1000() to stop the functions of transmission CAN
messages, reception CAN messages and interrupt.

 Syntax:

void DisableSJA1000(void)

 Parameter:

None

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

None

134

5.1.47 GetCANStatus

 Description:

Obtain the status register of SJA1000 by using this function.

 Syntax:

int GetCANStatus(void)

 Parameter:

None

 Return:

The return code is the value of status register of SJA1000. Its meanings
is described below.

Bit NO. Description
7 (MSB) Bus status. 1 for bus off, 0 for bus on.

6 Error status. 1 for at least one error, 0 for OK.

5 SJA1000 Transmit status. 1 for transmitting, 0 for idle.

4 SJA1000Receive status. 1 for receiving, 0 for idle.

3 SJA1000 Transmit complete status. 1 for complete, 0 for incomplete.

2 SJA1000 Transmit buffer status. 1 for released, 0 for locked

1 Data overrun status. 1 for SJA1000 reception buffer overrun, 0 for OK.

0 (LSB) Receive buffer status. 1 for at least one message stored in the SJA1000

reception buffer, 0 for empty.

Table 5.5 The Description of Status Register of SJA1000

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

135

5.1.48 ClearDataOverrunStatus

 Description:

When the data overrun status is obtained by using GetCANStatus(),
call this function to clear this status.

 Syntax:

void ClearDataOverrunStatus(void)

 Parameter:

None

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

None

136

5.1.49 SendCANMsg

 Description:

Send a CAN message to software transmission buffer. When the
CAN bus is idle, this CAN message will be send to CAN network.

 Syntax:

int SendCANMsg(char Mode, unsigned long MsgID, char RTR,
char DataLen, char *Data)

 Parameter:

Mode: [input] 0 for 11-bit message ID, 1 for 29-bit message ID.
MsgID: [input] CAN message ID.
RTR: [input] 0 for remote-transmit-request format is not used, 1 for

remote-transmit-request is used.
DataLen: [input] Data length of a transmitted CAN message. The

maximum value is 8.
*Data: [input] The start address of a buffer used to store the transmitted

data of a CAN message.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

_NO_ERR: OK.
_SOFT_BUF_FULL: Transmission software buffer is full. Users need to

transmit CAN message later. Or, use function
ClearTxSoftBuffer() to clear the CAN transmission
buffer.

137

5.1.50 ClearTxSoftBuffer

 Description:

Call this function to clear the transmission software buffer of CAN
messages.

 Syntax:

void ClearTxSoftBuffer(void)

 Parameter:

None

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

None

138

5.1.51 GetCANMsg

 Description:

Obtain a received CAN message from the software buffer.

 Syntax:

int GetCANMsg(char *Mode, unsigned long *MsgID, char *RTR,

char *DataLen, char *Data, unsigned long *UpperTime,

unsigned long *LowerTime)

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Parameter:

*Mode: [output] The address of a variable used to get the mode of a

CAN message. If value is 0, the received CAN message is with

11-bit ID. The 29-bit ID of a CAN message will have value 1.

*MsgID: [output] The address of a variable used to get the CAN

message ID.

*RTR: [output] The address of a variable used to obtain the status of this

CAN message. 0 for remote-transmit-request format is not used,

1 for remote- transmit-request is used.

*DataLen: [output] The address of a variable used to obtain the data

length of a CAN message. The range of this value is from 0

to 8.

*Data: [output] The start address of a buffer used to get the data of a

CAN message. Users need to put an 8-byte element array in this

filed.

*UpperTime: [output] The address of a variable used to obtain the

higher double-word of time stamp of a CAN message.

139

*LowerTime: [output] The address of a variable used to obtain the lower

double-word of time stamp of a CAN message. The unit for

UpperTime and LowerTime is 0.1ms.

 Return:

_NO_ERR: OK.

_RX_SOFT_BUF_EMPTY: The reception software buffer of CAN

message is full. Users need to use

ClearRxSoftBuffer() to clear this status

when this return code is got.

_SOFT_BUF_FULL: Reception software buffer is full. Users need to

use function ClearRxSoftBuffer() to clear the CAN

transmission buffer.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

140

5.1.52 ClearRxSoftBuffer

 Description:

Call this function to clear the reception software buffer of CAN
messages.

 Syntax:

void ClearRxSoftBuffer(void)

 Parameter:

None

 Return:

None

5.1.53 RxMsgCount

 Description:

Call this function to know how many available CAN messages
stored in the reception software buffer.

 Syntax:

int RxMsgCount(void)

 Parameter:

None

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

The return code is the numbers of CAN messages stored in reception
software buffer.

141

5.1.54 AddCyclicTxMsg

 Description:

Add a cyclic transmission message into the cyclic transmission
engine. Afterwards, uses can enable or disable this cyclic transmission
messages by using EnableCyclicTxMsg() and DelectCyclicTxMsg()
functions. Maximum 5 set of cyclic transmission messages can be
applied. After adding a cyclic transmission message, the handle for this
message will be returned. The less value of handle indicates the higher
priority of this cyclic transmission message.

 Syntax:

int AddCyclicTxMsg(char Mode, unsigned long MsgID, char RTR,
char DataLen, char *Data,
unsigned long TimePeriod, unsigned char *Handle)

 Parameter:

Mode: [input] 0 for 11-bit message ID, 1 for 29-bit message ID.
MsgID: [input] CAN message ID.
RTR: [input] Set the remote-transmit-request is used or not. 0 is for

useless, 1 is for useful.
DataLen: [input] CAN message data length. The maximum value is 8.
*Data: [input] The start address of the data buffer of a CAN message.

The maximum space of *Data is 8 bytes.
TimePeriod: [input] The time period of cyclic transmission. This

parameter is formatted by 0.1ms. The minimum value is 5.
*Handle: [output] The address of a variable used to get the handle of a

cyclic transmission. When users want to enable or disable the
specified cyclic transmission, this value must be needed.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

_NO_ERR: OK
_CYCLIC_CONFIG_ERR: The cyclic transmission messages are over 5

messages or the time period is less than
0.5ms.

142

5.1.55 DeleteCyclicTxMsg

 Description:

Remove a cyclic transmission message which is added by
AddCyclicTxMsg() function before.

 Syntax:

int DeleteCyclicTxMsg(unsigned char Handle)

 Parameter:

Handle: [input] The handle of the cyclic transmission message which is
obtained by AddCyclicTxMsg() function.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

_NO_ERR: OK
_CYCLIC_HANDLE_ERR: The handle value can’t be found in the cyclic

transmission engine.

143

5.1.56 EnableCyclicTxMsg

 Description:

Enable a cyclic transmission message which is added by
AddCyclicTxMsg() function before. After enable the specified cyclic
transmission message, PISO-CM100-D/T will transmit the specified
CAN message by configured time period.

 Syntax:

int EnableCyclicTxMsg(unsigned char Handle)

 Parameter:

Handle: [input] The handle of cyclic transmission message which is
obtained by AddCyclicTxMsg() function.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

_NO_ERR: OK
_CYCLIC_HANDLE_ERR: The handle value can’t be found in the cyclic

transmission engine.

144

5.1.57 DisableCyclicTxMsg

 Description:

Disable a cyclic transmission message which is enabled by
EnableCyclicTxMsg() function before.

 Syntax:

int DisableCyclicTxMsg(unsigned char Handle)

 Parameter:

Handle: [input] The handle of cyclic transmission message which is
obtained by AddCyclicTxMsg() function.

 Return:

_NO_ERR: OK
_CYCLIC_HANDLE_ERR: The handle value can’t be found in the cyclic

transmission engine.

5.1.58 ResetCyclicTxBuf

 Description:

Clear the software buffer of cyclic transmission engine. After calling
this function, all of the transmitted cyclic messages stop the procedure,
and all of cyclic messages are removed from the cyclic transmission
engine.

 Syntax:

void ResetCyclicTxBuf(void)

 Parameter:

None

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:None

145

5.1.59 SystemHardwareReset

 Description:

Use this function to reset all hardware of PISO-CM100-D/T
included 186 CPU.

 Syntax:

void SystemHardwareReset(void)

 Parameter:

None

 Return:

None

5.1.60 SystemInit

 Description:

Use this function to initiate the DPRAM, LEDs, cyclic transmission
engine, CAN transmission software buffer, and CAN controller.

 Syntax:

void SystemInit(void)

 Parameter:

None

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

None

146

5.1.61 GetLibVer

 Description:

Get the version of the firmware library.

 Syntax:

int GetLibVer(void)

 Parameter:

None

 Return:

The return code is the version of the firmware library. For example: If
100(hex) is return, it means driver version is 1.00.

5.1.62 RefreshWDT

 Description:

Call this function to refresh the watchdog of PISO-CM100-D/T.
When users design the user-defined firmware, this function must be
called where the users’ procedure may have a processed period more
than 500ms. If RefreshWDT() is not called in 800ms, the 186 CPU of
PISO-CM100-D/T will be reset.

 Syntax:

void RefreshWDT(void)

 Parameter:

None

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

None

147

5.1.63 UserInitFunc <must be called once>

 Description:

When users design the user-defined firmware, this callback
function must be called once. Users can put some procedures into this
function. These procedures are those which will be executed only one
time in user-defined firmware. When PISO-CM100-D/T boots up, the
firmware library will call this callback function once.

 Syntax:

void UserInitFunc(void)

 Parameter:

None

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

None

148

5.1.64 UserLoopFunc <must be called once>

 Description:

When users design the user-defined firmware, this callback
function must be called as soon as possible. Users can put their main
procedures into this function. Then, the main procedure will be executed
in every period of time. The time period is correlated with the complexity
of users’ main procedure. When PISO-CM100-D/T boots up, the
firmware library will call UserInitFunc() once and then call
UserLoopFunc() in every period of time until PISO-CM100-D/T is turned
off. It is not allowed to put a infinite loop in this function.

 Syntax:

void UserLoopFunc(void)

 Parameter:

None

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

 Return:

None

149

5.2 Firmware Library Return Codes Troubleshooting

If default firmware is used, users do not need to read this section.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

Return
Code Error ID Troubleshooting

-19 _SET_TIME_ERROR 1. Check the time format of input
parameters, and retry it again.

-18 _SET_DATE_ERROR 1. Check the date format of input
parameters, and retry it again.

-9 _ACCESS_NVRAM_FAILE 1. Try it again.
2. Call your distributor to solve this problem.

0 _NO_ERR OK

1 _COUNT_DOWN_TIMER_TIME_UP 1. The countdown timer started by users is
timeout.

101 _CAN_CHIP_SOFT_RESET_ERR
1. Call SJA1000HardwareReset(), and try it

again.
2. Call your distributor to solve this problem

102 _CAN_CHIP_CONFIG_ERR
1. Check the parameters of baud, BT0,

BT1, acceptance code, and acceptance
mask, and try it again.

103 _RX_SOFT_BUF_EMPTY 1. Wait for a while and call the function
again.

104 _SOFT_BUF_FULL

1. Use function ClearTxSoftBuffer() or
function ClearRxSoftBuffer() to clear the
status of buffer overflow.

2. Reduce the bus loading of CAN network.

105 _DPRAM_WRITE_ERR
1. Wait for a while and call the function

again.
2. Call your distributor to solve this problem

106 _DPRAM_READ_ERR
1. Wait for a while and call the function

again.
2. Call your distributor to solve this problem.

107 _DPRAM_OVER_RANGE 1. Check the address or space range of
written DPRAM, and try it again.

108 _NO_DPRAM_CMD 1. Wait for a while and call the function
again.

150

Return
Code Error ID Troubleshooting

109 _CYCLIC_CONFIG_ERR

1. Check if users already use 5 the cyclic
messages.

2. Set the parameters TimePeriod to more
than5.

110 _CYCLIC_HANDLE_ERR 1. Check the parameter Handle, and try it
again.

111 _EEPROM_OVER_RANGE 1. Check the address or space range of
written EEPROM, and try it again.

112 _EEPROM_ACCESS_ERROR
1. Wait for a while and call the function

again.
2. Call your distributor to solve this problem.

Table 5.6 Return Code Troubleshooting

Note: If users’ problem can’t be fixed after following the recommended

methods. Please contact your distributor or email to
service@icpdas.com to solve the problem.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

151

mailto:service@icpdas.com

6 Application Programming

In this chapter, the operation procedure of PISO-CM100-D/T is shown about
how to use default firmware and design user-defined firmware. Section 6.1
describes the procedures of programming an application and briefs some demo
programs. Section 6.2 introduces the CANUtility tool. It is a useful tools for
monitoring and accessing the CAN network. Furthermore, when users want to
update the default firmware or download user-defined firmware into
PISO-CM100-D/T. This tool must be used. Section 6.3 gives a profile about how
to design the user-defined firmware, and the corresponding application on
Windows platform. Some demo programs for user-defined firmware are also
shown. Section 6.4 provides two ways to debug the user-defined firmware. If
users just use the default firmware, the Section 6.3 and 6.4 can be ignored.

6.1 Windows Programming With Default Firmware

This section is only for default firmware. It is useless if users use the
user-defined firmware. Figure 6.1 presents the “Send CAN Message” procedure.
When users want to design their application by using the APIs of CM100.dll on
Windows platform, this flow chart may be a good reference. Figure 6.2 is a
standard procedure for receiving a CAN messages. This procedure let users
obtain the CAN messages from CAN bus easily. If users need to send some
specified CAN messages every period of time, the flow chart shown in figure 6.3
may give a good example. Owing to there three procedure, it may satisfy most
application of users’ Windows application with default firmware of
PISO-CM100-D/T. Following the operation principle of PISO-CM100-D/T can
help users with building their application easier and faster. When users want to
combine these three procedure for various application, the functions,
CM100_ActiveBoard(), CM100_Init(), and CM100_Config(), are only called once
when program starts. If the program needs to be terminated, call the functions
CM100_CloseBoard() once to release the resource of PISO-CM100-D/T back to
system.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 152

Figure 6.1 Flow Chart of Sending CAN Massages

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 153

Figure 6.2 Flow Chart of Receiving CAN Massages

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 154

Figure 6.3 Flow Chart of Cyclic Transmitting CAN Massages

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 155

Briefs of the demo programs:

All of demo programs described here need to assist with the default firmware
of PISO-CM100-D/T. Each demo can’t work normally if DLL driver would not be
installed correctly. During the installation process of DLL driver, the installation
program also copy the demo programs to the proper position which is based on
the path selected before. After installing the driver installation, the related demo
programs, development library and declaration header files for different
development environments are presented as following.

 PISO-CM100-D/T demo programs
 For default firmware
 For Borland C++ Builder 3
 Folder for library
 Demo for getting CAN messages
 Demo for sending CAN messages
 Demo for sending CAN messages cyclically
 for Visual C++ 6.0
 Folder for library
 Demo for getting CAN messages
 Demo for sending CAN messages
 Demo for sending CAN messages cyclically
 For Visual Basic 6.0
 Folder for library
 Demo for getting CAN messages
 Demo for sending CAN messages
 Demo for sending CAN messages cyclically

|--\Demos
|--\For_Default_Firmware
 |--\BCB
 |--\Library
 |--\ReceiveMsg

 |--\TransmitMsg
 |--\TransmitMsgCyclically
|--\VC++

 |--\Library
 |--\ReceiveMsg
 |--\TransmitMsg
 |--\TransmitMsgCyclically
|--\VB

 |--\Module
 |--\ReceiveMsg
 |--\TransmitMsg

|--\TransmitMsgCyclically
 |--\Default_Firmware Default firmware copy

PISO-CM100 User’s Manual (Ver :1.00 11/27/07) 156

ReceiveMsg:

ReceiveMsg demo is a sample example for demonstrating about how to
receive CAN messages from CAN network by using PISO-CM100-D/T APIs
with the default firmware. The dialog of this demo is shown as figure 6.4

Figure 6.4 Dialog of ReceiveMsg Demo Program

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

Select the CAN baud and board No. of the specified PISO-CM100-D/T.
Click “Active Board” button to start this demo. Afterwards, the title of dialog will
display the name of activated board. The SJA1000 status shown in the status
filed will be updated every 500ms. Click “Clear Status” button when the buffer
of SJA1000 is overflow. If there are any CAN messages received by
PISO-CM100-D/T, users need to click Receive button to get these CAN
messages from reception software buffer. Of cause, users can put this part of
demo codes into timer function or thread. Therefore, the action of receiving
messages will always be checked by program instead of manual operation.
If users need to clean the message list in the bottom of this dialog, click Clear
List button to do this.

157

TransmitMsg:

This demo is very useful if users want to send CAN message. The dialog
of TransmitMsg demo is shown as figure 6.5.

Figure 6.5 Dialog of TransmitMsg Demo Program

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

As the description above, Select the CAN baud and board No. of the
specified PISO-CM100-D/T firstly. Then, click “Active Board” button to start this
demo. The title of dialog will display the name of activated board. After filling
the all parameters of a CAN message, users can click “Send” button to send it
out.

158

TransmitMsgCyclically:

Figure 6.6 Dialog of TransmitMsgCyclically Demo Program

The dialog is shown as figure 6.6. Firstly, select board No., baud and click
“Active” button to activate the specified PISO-CM100-D/T. Secondly, configure
all parameters of the cyclic CAN message. Be careful that the parameter
Period is the unit of 0.1ms. The value of this parameter must be over 5. Then,
click “Add” button to add this message into the cyclic transmission engine. This
message will also be shown in the message list in the bottom of the dialog.
Afterwards, users can select a cyclic message listed in the message list, and
click “Enable” button to start the message transmission. If users want to stop it,
select it from message list, and click “Disable” button. The action of deleting
the cyclic message from cyclic transmission engine is similar with the action of
disable a cyclic transmission. Just select the cyclic message from message list,
and click “Delete” button.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

159

6.2 Introduction of CANUtility Tool

CANUtility is designed for PISO-CAN200D/T, PISO-CAN400-D/T or
PISO-CM100-D/T. It provides some useful functions when users want to debug
users’ CAN application, monitor some CAN devices and access a CAN
network. Users can find it in the folder of PISO-CM100-D/T where you installed
the driver before. The default path is “c:\ICPDAS\PISO-CM100\”. When you
execute the CANUtility.exe, the Configuration dialog is popped up below. All
PISO-CAN200-D/T, PISO-CAN400-D/T and PISO-CM100-D/T will be listed in
the Board No. filed. If users do not want to do configuration, click to skip
this procedure. Here, select PISO-CM100-D/T for demonstration.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)
160

Because PISO-CM100-D/T has only one CAN port, the Port2, Port3 and

Port4 are disable. Check the Port1 to enable it. Afterwards, you can modify the
parameters of acceptance code, acceptance mask and baud. Section 4.1.28
can give a good reference about how to set acceptance code and acceptance
mask.

If the proper baud can’t be found in the Baud list, select “User Define” to
define special baud by using BT0 and BT1 of SJA1000. In this case, users
need to study the datasheet of SJA1000 to know how to use BT0 and BT1
register to configure baud.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)
161

After finishing the configuration and clicking “OK” button, the main screen
of CANUtility is displayed. The title of CANUtility shows the activated board
name. The status of this board is shown on the status bar in the bottom of the
window.

Users can set the parameters of a transmitted CAN message, and click
Add button to put it into list. If users just need to send one CAN message,
please let the Timer filed to be 0 or empty.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)
162

If cyclic transmission messages are demanded, users can configure the
message parameters with timer filed.

After finishing the configuration, click Add button to add the cyclic
transmission message into list.

When CAN messages are added into list, the PISO-CM100-D/T will not

send them to CAN network until users click Send button. Therefore, select the
CAN messages which you want to send from the list, and click “Send” button to
send it.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)
163

Similarly, select the cyclic transmission messages from list, and click Send
button to send the cyclic transmission. Afterwards, the status of sent cyclic
transmission message is changed to “Running”, and the “Send” button is also
changed to “Pause” button. Therefore, if users want to stop the transmission,
select the sent cyclic transmission message from list, and click Pause button to
stop it.

If any CAN message is obtained by CANUtility, it will be put into the
reception list in the bottom of the window. Time Stamps filed shows the time
when a message is got. The time base is the initial time of PISO-CM100-D/T.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)
164

Users can click “Rx Pause” button to pause the reception of CAN
messages. Or click this button again to continue. Click “Clear” button to empty
the reception list. The “Goto Last” button is used to move the scroll bar of the
reception list to the last record of received CAN message. If the Scrolling
button is activated as the following figure, the reception list will be scrolled
automatically when any CAN message is received. If the Scrolling button is
inactivated, the auto-scrolling stops, but the received CAN messages are still
put into reception list still.

If users want to modify the parameters of the CAN message added before,
select the specified CAN message from list. Then the configuration fileds will
be filled with the parameters of the specified CAN message.

Users can modify the parameters in these configuration fields. Then, click
Modify button to modify it.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)
165

The CAN utility also provide special functions when reading CAN data.
For example, some CAN messages with specified message ID need to be
notified. Or, the some bytes of data of a CAN message need to transfer to
ASCII characters. Such kinds of demands, users can use the functions of
Configuration item of menu to achieve these purposes. Board Configuration
function let users modify the configuration of specified board. It is the same as
the dialog when CANUtility.exe is starting. Data Format function provides a
human interface to set the data format for each byte of data of a specified CAN
message. Software ID Mask function is similar with the functions of
acceptance code and acceptance mask of Configuration dialog popped up in
the start of CANUtility.exe. The former uses software method to filter the
useless CAN message, the latter users hardware method to do this. The
feature of Software ID Mask is that it allows users to filter any CAN messages
which you wouldn’t need to see. It is more flexible than setting acceptance
code and acceptance mask. But its performance is not good enough as the
hardware message filter.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

166

After clicking the item of Data Format, the Data Converter dialog is
popped up. Users can select the port No. to confirm the received messages
from the specified port need to convert.

When finishing the settings of data format for the specified message ID,
click Add button to save the configuration. Here, provide three kinds of data
format. There are Hex., Dec. and ASCII. The default setting for received CAN
messages is hexadecimal format.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)
167

If users want to cancel the configuration which is set before, select the
record from the list firstly, then click “Delete” button to remove it.

The “Software ID Mask” function is executed in “ID Masker” dialog. Select
port No. firstly. Then, fill the message ID of CAN messages which you want to
drop. Finally, click “Add” button to store the result.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)
168

If you want to remove the configuration which is set before, select the
record from list, and click Del button. The maximum number of mask ID is 20.

Besides the functions described above, CANUtility allows users to save
and load the configuration parameters by clicking “File” item of menu. And use
Load Configuration or Save Configuration to do this. Save Reception List
function help users to store the records of received CAN messages into .txt file.
The Update Firmware function let users update the default firmware or
download the user-defined firmware. This function is only for PISO-CM100
series cards, not for PISO-CAN200-D/T or PISO-CAN400-D/T.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)
169

When users apply the Update Firmware function, select the specified
board firstly. Only PISO-CM100-D/T, PISO-CPM100-D/T and
PISO-DNM100-D/T are listed in the Combo box. Then, click Update button to
select the proper firmware for the specified board.

Only .exe file can be downloaded into PISO-CM100 series.

When finishing the download procedure, the Download OK dialog is
popped up. Click OK button to continue.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)
170

If users want to check the version of CANUtility, click About item of menu
to get the information.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)
171

6.3 Debug Tools for User-defined Firmware Programming

If users just apply default firmware for their application, this section can be
ignored. This section introduces the debug methods when users deign their
firmware. Basically, when users develop the user-defined firmware, the debug
message can be put into the code section of user-defined firmware which may
have bugs inside. Then, compile user-defined firmware, and download it into
PISO-CM100-D/T. Owing to check the debug message, the bugs could be
found. There are two methods for checking the debug messages. One is that
use CM100_DEBUG_MONITOR.exe to check the debug information. Another
is that use 7188xw.exe assisted with debug cable. In the following description,
these two methods will be detailed sequentially.

CM100_DEBUG_MONITOR.exe:

If the functions DebugPrint() is applied in the user-defined firmware. Users
need to check the debug message by using CM100_Debug_Monitor.exe. It is
displayed as following figure. Users can find it in the Field Bus CD. The path is
CAN\PCI\PISO-CM100\.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

172

Because of the software architecture of PISO-CM100-D/T, the
CM100_Debug_Monitor.exe is useful when the PISO-CM100-D/T is activated.
Therefore, this debug program provides CM100_ActiveBoard() function and
CM100_CloseBoard() function. If users want to send some commands to
user-defined firmware or restart the user-defined firmware, they are also
provided by CM100_SendCmd() and CM100_HardwareReset() functions in
CM100_DEBUG_MONITOR.exe These functions are built in the tool bar as
below.

If any other program has activated the specified PISO-CM100-D/T, the

CM100_ActiveBoard() and CM100_CloseBoard() of
CM100_DEBUG_MONITOR.exe are not needed because one
PISO-CM100-D/T can be activated by only one program at the same time.
After clicking the CM100_ActiveBoard() function, the dialog is popped up as
below.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

CM100_HardwareReset()
Functions

CM100_ActiveBoard() and
CM100_CloseBoard()
Functions

Separating Function

CM100_SendCmd()
Function

Debugging or Pause
Functions

173

Users can select the proper board name and click “Active Board” button to

activate this board. When board is activated, users can use
CM100_SendCmd() function to send command to the user-defined firmware.
The dialog of sending command is shown below. Users can key the ASCII
string in the edit box and click Send Command to user-defined firmware. If
users need to clean the edit box, use Clean button to do this.

The debugging and pause function are used to decide if the

CM100_DEBUG_MONITOR.exe is receiving the debug messages or not. If
not, the debug messages will be dropped. The separating function is applied
when users want to separate the debug messages. After using this function,
the screen of CM100_DEBUG_MONITOR.exe is shown below. The end of
content of debug messages will be separated by some equal marks. When
newer debug messages are got by CM100_DEBUG_MONITOR.exe, they will
be put in the end of these equal marks.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)
174

7188xw.exe:

If users would like to use this method to debug, the firmware library
provides two functions for applying. The function GetKbhit() allows users to
received a inputted character from 7188xw.exe. Therefore, users can use this
feature to trigger some specified event for debugging. The function Print()
allows users to send debug messages to 7188xw.exe. Then, 7188xw.exe will
put these debug messages on the screen of 7188xw.exe. Before implementing
this method, users need to use the debug cable. Plug the debug cable to the
JP4 of PISO-CM100-D/T described in section 2.2. Connect an available PC
COM port with the D-Sub 9-pin connector of debug cable. The situation is
shown as following figure.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

175

Then, use Notepad.exe to configure the 7188xw.ini to set the number of
specified PC COM port which is connecting with debug cable, and execute
7188xw.exe. The configuration screen is displayed as following figure. Users
can find 7188xw.ini and 7188xw.exe in the Field Bus CD. The path is
CAN\PCI\PISO-CM100\.

Then, any keyboard input will be caught by user-defined firmware via

GetKbhit() function. The debug messages sent by Print() function will also be
displayed on the screen of 7188xw.exe.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

C4 means PC COM4. If users
use PC COM1, modify it to C1.

176

6.4 User-defined Firmware Programming

If users just apply default firmware for their application, this section can be
ignored. This section describes about how to build a user-defined firmware. A
CAN application can be implemented corresponding to the good cooperation
of Windows application and the user-defined firmware. Generally speaking, the
user-defined firmware processes the part of CAN communication protocol and
some algorithms of input and output. The Windows application gets the
processed data from user-defined firmware and shows them on user interface.
Or, give a command to user-defined firmware to do some specified process.
The relationship between Windows applications and the user-defined firmware
is shown as the following figure.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

Figure 6.7 Relationship Between Windows Application & User-defined Firmware

177

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

Figure 6.8 Development Procedure of User-defied Firmware

178

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

Figure 6.9 Procedure of Windows Application for User-defied Firmware

179

The Figure 6.8 and 6.9 shows the basic flowchart of developing the
user-defined firmware and Windows application for user-defined firmware. For
user-defined development, users can create a C/C++ project, and include
several .c file and 186COMM.lib. Put the 4 callback functions in one of these .c
file. Program the codes into these 4 callback functions. If necessary, build your
functions and global variables. Then, compile this project, and you can get
your user-defined firmware. Download it by using CANUtility.exe and test it.
Afterwards, according to the functions of user-defined firmware, design your
Windows application to match it. We provide some communication functions in
the firmware library, 186COMM.lib. By using these functions, users can
communicate windows application with user-defined firmware via DPRAM.
Besides, firmware library also supports most functions of hardware on
PISO-CM100-D/T, such as DPRAM accessing, EEPROM accessing, RTC
access, timer function… and so forth. In the Windows application, the
communication functions are also given by CM100.dll. Moreover, it also
provides some useful functions, such as cyclic transmission engine, hardware
reset function, SJA1000 configuration functions, DPRAM accessing… and etc.

When you want to design a Windows application, the BCB, VC++, or VB

development environment are needed. Users can refer to the textbook of BCB,
VC++ or VB for more information about how to use the APIS of .dll library in
these development environments. About the user-defined firmware, users can
use BC/BC++/TC/TC++ to build it. Here, it is considered that how to build an
execution file with 186COMM.lib by using TC++1.01 compiler. Before starting
the step-by-step procedure, users need to install TC++1.01 compiler and
PISO-CM100-D/T Windows driver. Users can free download the TC++1.01
compiler through the following website.

http://www.icpdas.com/download/download-list.htm

The PISO-CM100-D/T Windows driver can be found in Field Bus CD or

our website. Please refer to chapter 3 for more detailed information. The
following paragraph is a step-by-step description about how to build your
user-defined firmware. It may be a good model for development a user-defined
firmware.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

180

http://www.icpdas.com/download/download-list.htm

Step1: Create a folder named “MyFirm” in the C disk.

Step2: In the folder MyFirm, create a .c file and name it as “MyFirm.c”. Design

the MyFirm.c file as follows. The 4 callback functions must be used in
user-defined function.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

181

Step3: Copy 186COMM.lib file and 186COMM.h file into MyFirm folder. Users
can find them with version 1.00 in the path
CAN\PCI\PISO-CM100\Demos\For_User_Defined_Firmware\ver_100
in Field Bus CD.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)
182

Step4: Run the TC++1.01 development environment. Click the “Options\Full
menus” to expand the all functions list in the menus.

Step5: Click the “Project\Open project…” to create a new project. Input the
project name “MyFirm.PRJ”, and click OK button to continue.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)
183

Step6: Click “Add” function on the bottom of TC++1.01 screen. Search all .c file
by setting c:\MyFirm*.c in the Name field of popup window. Then, use
the “Add” button to add the MyFirm’ .c file in to MyFirm project. Then,
change the search command from “c:\MyFirm*.c” to “c:\MyFirm*.lib” in
the Name field. Add the library files 186COMM.lib into MyFirm project
by the same way.

Step7: After finishing the Step6, the TC++1.01 window will look like as follows.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)
184

Step8: Click the “Options/Compiler/Code generation…” to set the compiler
model to the large mode. Afterwards, click “More…” to set the “Floating
point” and “Instruction Set” parameters, the Emulation and 80186 item
will be used respectively. Then, click OK to save the configuration.

Step9: Click the “Option/Debugger...” to set the “Source Debugging” parameter.

Here, select “None” for this parameter setting.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)
185

Step10: Click the “Option/Directories...” to set the “Output Directory” parameter.
Here, set the “C:\MyFirm” for the “Output Directory” parameter.

Step11: After finishing the parameters setting, click the “Options/save” to save

this project.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)
186

Step12: After finishing the parameters setting, click the “Compile/build all” to
produce the execution file. Users can find the execution file in the
MyFirm folder. Its name is MyDemo.exe. The warning messages may
occur during the compiling procedure because the INTT parameters of
UserCANIrqFunc() and UserDPRAMIrqFunc() are not used. These
warning will not have any affection to user-defined firmware.

Step13: Execute CANUtility.exe, and select File\Update Firmware to download

the user-defined firmware.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)
187

Step14: Select the board name, click Update button, and find the MyFirm.exe
from dialog.

Step15: When finishing, the Download OK messages is shown.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)
188

Step16: Check the 7188xw.ini. Here, use PC COM4 to connect the debug
cable of PISO-CM100-D/T. Therefore, set the COM No. value to “C4”.
If users use COM1, set the value to “C1”. Users can find 7188xw.ini
and 7188xw.exe in the driver installation path. The default installation
path is “C:\ICPDAS\PISO-CM100\”.

Step17: Execute 7188xw.exe.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

189

Step18: Execute CM100_DEBUG_Monitor.exe. Users can also find it in the
driver installation path. Then, click Active Board icon, and active the
specified board.

Setp19: Click the Hardware Reset icon after activating the specified board.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)
190

Step20: Check the CM100_DEBUG_MONITOR.exe, user can find the debug
messages from user-defined firmware.

Step21: The 7188xw.exe also has the debug messages from user-defined

firmware.

PISO-CM100 User’s Manual (Ver :1.00 11/27/07)

191

	1 General Information
	1.1 Introduction
	1.2 Features
	1.3 Specifications
	1.4 Product Check List

	2 Hardware Configuration
	2.1 Board Layout
	2.2 Jumper Selection
	2.3 Connector Pin Assignment
	2.3.1 5-pin screw terminal connector
	2.3.2 9-pin D-sub male connectors
	2.3.3 Wire connection

	2.4 LED Indicator & PISO-CM100-D/T Mode
	2.5 Hardware Installation

	3 Driver Introduction
	3.1 Software Installation
	3.2 Software Architecture

	4 APIs for Windows Application
	4.1 Windows API Definitions and Descriptions
	4.1.1 CM100_GetDllVersion
	4.1.2 CM100_GetBoardInf
	4.1.3 CM100_TotalBoard
	4.1.4 CM100_TotalCM100Board
	4.1.5 CM100_TotalDNM100Board
	4.1.6 CM100_TotalCPM100Board
	4.1.7 CM100_GetCM100BoardSwitchNo
	4.1.8 CM100_GetDNM100BoardSwitchNo
	4.1.9 CM100_GetCPM100BoardSwitchNo
	4.1.10 CM100_GetCardPortNum
	4.1.11 CM100_ActiveBoard
	4.1.12 CM100_CloseBoard
	4.1.13 CM100_BoardIsActive
	4.1.14 CM100_ AdujstDateTime
	4.1.15 CM100_Reset
	4.1.16 CM100_Init
	4.1.17 CM100_HardwareReset
	4.1.18 CM100_Check186Mode
	4.1.19 CM100_Status
	4.1.20 CM100_AddCyclicTxMsg
	4.1.21 CM100_DeleteCyclicTxMsg
	4.1.22 CM100_EnableCyclicTxMsg
	4.1.23 CM100_DisableCyclicTxMsg
	4.1.24 CM100_OutputByte
	4.1.25 CM100_InputByte
	4.1.26 CM100_ClearSoftBuffer <For default firmware>
	4.1.27 CM100_ClearBufferStatus <For default firmware>
	4.1.28 CM100_ClearDataOverrun <For default firmware>
	4.1.29 CM100_Config <For default firmware>
	4.1.30 CM100_ConfigWithoutStruct <For default firmware>
	4.1.31 CM100_RxMsgCount <For default firmware>
	4.1.32 CM100_ReceiveMsg <For default firmware>
	4.1.33 CM100_ReceiveWithoutStruct <For default firmware>
	4.1.34 CM100_SendMsg <For default firmware>
	4.1.35 CM100_SendWithoutStruct <For default firmware>
	4.1.36 CM100_SJA1000Config <For user-defined firmware>
	4.1.37 CM100_DPRAMInttToCM100 <For user-defined firmware>
	4.1.38 CM100_DPRAMWriteByte <For user-defined firmware>
	4.1.39 CM100_DPRAMWriteWord <For user-defined firmware>
	4.1.40 CM100_DPRAMWriteDword <For user-defined firmware>
	4.1.41 CM100_DPRAMWriteMultiByte <For user-defined firmware>
	4.1.42 CM100_DPRAMReadByte <For user-defined firmware>
	4.1.43 CM100_DPRAMReadWord <For user-defined firmware>
	4.1.44 CM100_DPRAMReadDword <For user-defined firmware>
	4.1.45 CM100_DPRAMReadMultiByte <For user-defined firmware>
	4.1.46 CM100_DPRAMMemset <For user-defined firmware>
	4.1.47 CM100_ReceiveCmd <For user-defined firmware>
	4.1.48 CM100_SendCmd <For user-defined firmware>
	4.1.49 CM100_InstallUserISR <For user-defined firmware>
	4.1.50 CM100_RemoveUserISR <For user-defined firmware>

	4.2 Windows API Return Codes Troubleshooting

	5 Functions of Firmware Library
	5.1 Firmware Library Definitions and Descriptions
	5.1.1 L1Off
	5.1.2 L1On
	5.1.3 L2Off
	5.1.4 L2On
	5.1.5 DPRAMInttToHost
	5.1.6 UserDPRAMIrqFunc <must be called once >
	5.1.7 DPRAMWriteByte
	5.1.8 DPRAMWriteWord
	5.1.9 DPRAMWriteDword
	5.1.10 DPRAMWriteMultiByte
	5.1.11 DPRAMReadByte
	5.1.12 DPRAMReadWord
	5.1.13 DPRAMReadDword
	5.1.14 DPRAMReadMultiByte
	5.1.15 DPRAMMemset
	5.1.16 DPRAMReceiveCmd
	5.1.17 DPRAMSendCmd
	5.1.18 DebugPrint <assist with CM100_DEBUG_MONITOR.EXE>
	5.1.19 GetKbhit <assist with debug cable and 7188xw.exe>
	5.1.20 Print <assist with debug cable and 7188xw.exe>
	5.1.21 GetTime
	5.1.22 SetTime
	5.1.23 GetDate
	5.1.24 SetDate
	5.1.25 GetWeekDay
	5.1.26 ReadNVRAM
	5.1.27 WriteNVRAM
	5.1.28 GetTimeTicks100us
	5.1.29 GetTimeTicks
	5.1.30 DelayMs
	5.1.31 CM100_InstallUserTimer
	5.1.32 T_StopWatchXXX series functions
	5.1.33 T_CountDownTimerXXX series functions
	5.1.34 CM100_EEPROMReadByte
	5.1.35 CM100_EEPROMReadMultiByte
	5.1.36 CM100_EEPROMWriteByte
	5.1.37 CM100_EEPROMWriteMultiByte
	5.1.38 UserCANIrqFunc <must be called once>
	5.1.39 SJA1000HardwareReset
	5.1.40 SetCANBaud
	5.1.41 GetCANBaud
	5.1.42 SetCANMask
	5.1.43 GetCANMask
	5.1.44 CANConfig
	5.1.45 EnableSJA1000
	5.1.46 DisableSJA1000
	5.1.47 GetCANStatus
	5.1.48 ClearDataOverrunStatus
	5.1.49 SendCANMsg
	5.1.50 ClearTxSoftBuffer
	5.1.51 GetCANMsg
	5.1.52 ClearRxSoftBuffer
	5.1.53 RxMsgCount
	5.1.54 AddCyclicTxMsg
	5.1.55 DeleteCyclicTxMsg
	5.1.56 EnableCyclicTxMsg
	5.1.57 DisableCyclicTxMsg
	5.1.58 ResetCyclicTxBuf
	5.1.59 SystemHardwareReset
	5.1.60 SystemInit
	5.1.61 GetLibVer
	5.1.62 RefreshWDT
	5.1.63 UserInitFunc <must be called once>
	5.1.64 UserLoopFunc <must be called once>

	5.2 Firmware Library Return Codes Troubleshooting

	6 Application Programming
	6.1 Windows Programming With Default Firmware
	6.2 Introduction of CANUtility Tool
	6.3 Debug Tools for User-defined Firmware Programming
	6.4 User-defined Firmware Programming

