

Porting Linux to XSCALE SBC Platform

Porting Linux to XSCALE SBC Platform
PAGE 2

Contents

1. BUILDING DEVELOPMENT ENVIRONMENT5

1.1. GETTING START...6
1.2. DEVELOPMENT ENVIRONMENT..6
1.3. INSTALL TOOLS ..8
1.4. FILE LIST ON CDROM..9

2. BUILDING LINUX CODE ...10

2.1. BOOT LOADER ...10
2.2. KERNEL ..12
2.3. FILE SYSTEM ..14

3. BURN FILE ONTO FLASH ON THE TARGET16

3.1. SETTING CONSOLE..16
3.2. SETTING TFTP ..17
3.3. BOOT LOADER ..20

4. BOOT LINUX ..23

4.1. USING THE ETHERNET...26
4.2. USING THE AUDIO ...27
4.3. USING THE USB HOST ..27
4.4. USING THE DISPLAY..27
4.5. USING THE PCMCIA & CF CARD...28
4.6. SRAM ..28

5. CAN BUS AND PC104 BUS APPLICATION ...29

6. THE I8K MODULE SDK ...32

7. U-BOOT BOOT LOADER ...34

8. NFS-MOUNTING THE ROOT FILE SYSTEM ..41

8.1. VERIFY THE HOST HAS NFS SUPPORT ..42
8.2. SETUP THE EXPORTS FILE ...42
8.3. CREATE ROOT FILE SYSTEM AND RESTART THE NFS SERVER...........................43
8.4. CONFIGURE AND REBUILD THE KERNEL...43
8.5. LOAD THE KERNEL ON THE TARGET PLATFORM AND REBOOT44

Porting Linux to XSCALE SBC Platform
PAGE 3

9. HOW TO BUILD YOUR APPLICATION ..45

9.1. INSTALL CROSSCOMPILER ...45
9.2. EXAMPLE PROGRAM..45

APPENDIX A: CAN BUS API ...47

A.1 CAN MESSAGES ..47
A.2 OPEN() ...47
A.3 CLOSE() ...48
A.4 READ() ...48
A.6 IOCTL() ..48
A.7 SELECT() ..50

Porting Linux to XSCALE SBC Platform
PAGE 4

Figures and Tables

FIGURE 1. DEVELOPMENT ENVIRONMENT...7
FIGURE 2. BUILD U-BOOT... 11
FIGURE 3. U-BOOT.BIN... 11
FIGURE 4. CONFIGURING KERNEL UNDER CONSOLE ..12
FIGURE 5. CONFIGURATION MENU UNDER CONSOLE..13
FIGURE 6. MAKING KERNEL’S COMMAND..13
FIGURE 7. INSTALLING RPM...15
FIGURE 8. SETTING UP COM PORT PARAMETER ..16
FIGURE 9. SETTING UP MINICOM ...17
FIGURE 10. TFTPD - TFTP SEVER..18
FIGURE 11. SETTING UP TFTPD32..18
FIGURE 12. SETTING UP DHCP SERVER ..19
FIGURE 13. DOWNLOADING KERNEL...19
FIGURE 14. BURNING U-BOOT ONTO FLASH ..20
FIGURE 15. U-BOOT COMMAND MODE ..21
FIGURE 16. WRITING FILE TO FLASH ...21
FIGURE 17. ERASING FLASH..22
FIGURE 18. CAN WIRING CONNECTION..29
FIGURE 19. STRUCTURE OF LIBI8K.A...32
FIGURE 20. POWER ON SCREEN SHOT ..34
FIGURE 21. U-BOOT ‘S HELP..35
FIGURE 22. PRINTENV ...36

Porting Linux to XSCALE SBC Platform
PAGE 5

1. Building Development Environment

This document provides a step by step guide on how to put an
embedded computer NuWa 470 into operation. Although some
knowledge about LINUX and IP networking is advised, an introduction
into IP Networking is also provided in this document. This document
concentrates on the use of the software integrated into the NuWa 470
and less on the hardware.
Throughout this manual, the evaluation board NuWa 470 is used. The
NuWa 470 is a complete system on chip that enables the design
engineer to implement complex hard- and software designs in their
own products. It is designed as a microcontroller drop-in replacement
and contains the microprocessor core, the Ethernet controller, all
necessary memory components, the power management and the glue
logic. The NuWa 470 implements a full embedded computer system
with a preinstalled bootloader and a fully featured LINUX 2.4.20 on a
very small standard 3.5” (27 x 84mm) platform. It can be used in a
wide variety of applications that require remote control and
monitoring via the ethernet are most suitable for the NuWa 470 since
control and monitoring can be done through the use of a standard
Web browser such as Internet Explorer, Netscape Mozilla or
Konqueror.
The NuWa 470 provides all required basic hard- and software
environment, allow you developing individual applications for the
NuWa 470. The main features of the NuWa 470 Board are:

 3.5” Platform for NuWa 470
 32bit RISC Microcontroller with 400MHz
 64MB SDRAM, 32MB Flash and 1MB SRAM
 One CF Slot, One PCMCIA Slot and One SD/MMC Slot
 TFT or STN LCD and CRT Display interface
 Audio Interface (Line in, Line out and MIC in)
 4 ports USB 2.0 slot
 7 serial RS232 and one RS485 Port
 Dual 10/100Mbit ethernet interface
 High-speed CAN-Bus (up to 1Mbit/s)

Porting Linux to XSCALE SBC Platform
PAGE 6

 Support 87K-IO slot

Not only the hardware is supplied to you with features such as
ethernet, serial port and programmable I/O pins, the software to use
these interfaces is already implemented in the NUWa 470. The main
important features included in the Embedded Linux distribution are:

 Embedded Linux 2.4.20
 Bootloader uboot 1.1.1

A full TCP-IP stack with application interfaces for UDP and TCP
sockets.

 DHCP client.
 FTP server.
 SSH/Telnet server
 Driver support for CAN Bus, USB and etc
 Journaling flash file driver JFFS2 for the internal flash disk

drive

1.1. Getting Start

Before you start, please check the NuWa package to ensure all
components are present. The NuWa 470 contains:

 A NuWa 470 platform
 5V DC power supply
 CD-ROM containing original sources with synertronixx

modifications with PXA255 cross toolchain and documentation

1.2. Development Environment

First of all, you should have a development environment appears as in
the diagram below:

Porting Linux to XSCALE SBC Platform
PAGE 7

Figure 1. Development Environment

As show in figure 1, there are three component in the development
environment.

PC1 is for downloading file such as bootloader and kernel image to
target.
PC2 is for developing linux program

 Target board is NUWA

This manual is written on the assumption that you install "Red Hat
Linux 9.0" by workstation type on your host PC. If you install other
distributions on your PC, some problems related to library etc can be
happened. So if you want to prevent getting into trouble and spare
development time, install “Red Hat Linux 9.0” by workstation type on
your PC.

To develop embedded Linux kernel, device driver, application, etc.,
you have to construct cross-compile environment.
Cross-compile environment is development environment that is
embodied in host PC to develop linux for embedded system. To create
embedded program, we would have to compile the program directly in
target board or compile that in host PC for target board processor. But
because of restricted resources (lack of memory or storage),
compiling in target board is not easy.

Porting Linux to XSCALE SBC Platform
PAGE 8

So we construct cross-compile environment to compile embedded
program sources in host PC instead of target board.
To construct the environment, install tool chain for target board
processor. Tool chain is collection of various utilities and libraries
which are needed to compile embedded program sources.

Normally, Tool chain offered by GNU is used for developing Linux.

gcc compiler for GNU C, C++
GNU binary utilities (assembler, linker and various object file utilities)
GNU C library

1.3. Install tools

 Cross Compiler
If you are not using DevRocket for your application, you will need to
install Cross Compiler for NUWA first and to set up the compiler’s path.
cp /mnt/cdrom/cross_compiler.tar.gz ./
tar zxf cross_compiler.tar.gz
PATH=$PATH:/usr/local/xscale/bin

 JFlashMM

JFlashMM is a generic JTAG flash memory programmer that uses
configuration data files to describe the target development platform.
JFlashMM is a Windows* console application that uses various cables
to interface a parallel port to the JTAG TAP on a development system.
The supported cable types are as follows:

o Insight* IJC-1 connector and IJC-2 cable.
o Intel® JTAG cable

Click on the setup to install Jflash utility. Now you have to configure
your hardware to use the Jflash utility.

Installing the GIVEIO.SYS driver on Windows* NT and Windows*

Porting Linux to XSCALE SBC Platform
PAGE 9

2000
f) Copy the included GIVEIO.SYS file to your
C:\WINNT\system32\drivers directory.
g) Open the Control Panel and select Add/Remove Hardware Wizard.
h) Follow the directions for adding a new device.
i) Select “Select hardware from list” and then choose NEXT.
j) Select “Ports” from the hardware list and then choose NEXT.
k) Select “Have Disk” and browse to the giveio.inf file.0)
l) Confirm and finish the installation by choosing NEXT and then
FINISH.

With this Installation of Jflash is complete.

1.4. File list on CDROM

Now we explain each directory on CD ROM very simply.
 /app Application Software
 /compiler Cross compiler for target board
 /kernel Linux kernel for target board
 /rootfs Root file system for target board
 /rpm RPM for target board
 /u-boot Boot loader for target board
 /tools Tools software for PC
 /drivers/ts Touch screen driver for X Windows

Porting Linux to XSCALE SBC Platform
PAGE 10

2. Building Linux Code

2.1. Boot Loader

In embedded system, differently in general PC, general firmware like CMOS

does not exist. So to boot embedded system for the first time, we have to

make bootloader which adjusted well to target board.

Bootloader plays a very important part in embedded system. We explain the

roles of bootloader simply below.

 Copy kernel to RAM from flash memory, and execute kernel.

 Initialize hardware.

 Bootloader have the function that writing data to flash memory.

(Downloading kernel or Ram disk by serial port or other network

hardware, data is stored in RAM. But RAM lost all data downloaded if you

cut power supply, so to avoid this work you have to store to flash

memory.)

 It provides interface to send commands to target board or to inform

users state of target board.

First of all, extract tarball now that uboot files are compressed with tarball.

Uboot tarball source is located at /mnt/cdrom/uboot directory.

PATH=$PATH:/usr/local/xscale/bin
tar zxf uboot.tar.gz

Porting Linux to XSCALE SBC Platform
PAGE 11

Figure 2. Build U-Boot

cd u-boot
make

Figure 3. u-boot.bin

Porting Linux to XSCALE SBC Platform
PAGE 12

If compiling uboot progresses well, u-boot binary file is created under
/uboot directory.

2.2. Kernel

If you are using the command-line tools, to create and populate your project

directories, follow the steps included in the sections below.

kernel sources are compressed by the name of “linux-2.4.20.tar.gz” under

/mnt/cdrom/kernel directory. Extract this then move to “linux-2.4.20”

directory created by extraction

Figure 4. Configuring kernel under console

To set the set points, do “make menuconfig” command. The results are

reflected on zImage binary finally. In here, we will not set all values, instead

we will load default-configuration-file which includes the set points adjusted

to target board well. Under arch/arm/def-configs directory, there are

default-configuration-files for NuWa 470 target board.

tar zxf linux.tar.gz

cd linux

Porting Linux to XSCALE SBC Platform
PAGE 13

make menuconfig

Figure 5. Configuration menu under console

Setting for compiling kernel is over. Compile embedded kernel as following.

Figure 6. Making kernel’s command

Porting Linux to XSCALE SBC Platform
PAGE 14

make clean dep zImage modules modules_install

If above steps are done without problems, kernel image is created in
linux-2.4.20/arch/arm/boot directory by the name of zImage.
“make modules” command compiles the parts selected for Module in

kernel setting menu. Modules mean the part undertaking independent
function under big program and before linking to the big program,
modules can not do any work. According to, there is advantage that
we can reduce the size of kernel by modularity.
“make modules_install” command creates kernel, pcmcia directories

under
/lib/modules/linux-2.4.20 directory. build directory in there is not
related to module, it’s just symbolic linked to
/lib/modules/linux-2.4.20 directory for easy work.

Finally, we need to build ulinux format for u-boot

./fu

Object File:ulinux

2.3. File system

If you are using the command-line tools, to create and populate your
project
directories, follow the steps included in the sections below.
Root filesystem of NuWa is composed by JFFS2(Compressed ROM file
system). JFFS2 is designed small and simple. The size is restricted to
16MB, but it doesn’t act on a defect in embedded system.

Porting Linux to XSCALE SBC Platform
PAGE 15

Figure 7. Installing RPM

compress file system as jffs2 format

tar zxf rfs.tar.gz

#./mkfs.jffs2 -r /fs -o rootfs.jffs2 -e 0x40000 --pad=0x01000000

if you want to add RPM to your root file system, please type the

following command.

rpm --root

/root/montavista/devrocket/rootfs –Uvh –force –nodeps –ignorearch –no

scripts /mnt/cdrom/ nfs-utils-0.3.1-1.rpm

Object File: rootfs.jffs2

Porting Linux to XSCALE SBC Platform
PAGE 16

3. Burn file onto flash on the target

Now we will write uboot (bootloader), ulinux (kernel image), root_file
system rootfs.jffs2 to FLASH on target board by using JFlash32 utility.
This method can be used after booting target board so it’s used for
writing images on FLASH newly or writing images to new FLASH.
Transfer the images and the needed utilities to target board because
all works are progressed in target board. Copy image write utility to
image directory which the images are collected in. Then transfer all
things in image directory to target board by JFLASH32. Image write
utility is located under /tools directory on CDROM.

3.1. Setting Console

Connect a serial cable between your PC and the NuWa serial port.
Start a terminal emulator on the PC and set it to 115200 baud, 8 bit,
no parity and no flow control.

Figure 8. Setting up com port parameter

Porting Linux to XSCALE SBC Platform
PAGE 17

If you use Desktop Linux to download file to target, you have to know
minicom usage first. Desktop Linux has minicom program for serial
communication. It is used for command prompt of uboot or shell
prompt of embedded linux.

Set up the values before using minicom program.

Select “Serial port setup” item.

Push “A” key for setting “Serial Device”, then write serial port which is

connected to target board. (If using COM1, write /dev/ttyS0, if COM2,

write /dev/ttyS1.)

Figure 9. Setting up minicom

3.2. Setting TFTP

After having installed and started TFTPD32 click on the button labeled

Settings. This will open a new dialog window. Select the options shown in the

picture above. Your base directory may differ. Click on the browse button to

select the subdirectory e:/ftp of your Linux OS installation. Finally click OK

and restart TFTPD32.

Porting Linux to XSCALE SBC Platform
PAGE 18

Figure 10. Tftpd - TFTP Sever

If your network doesn’t support DHCP, you will need to setup DHCP server.

It is required to configure the DHCP server. Select the DHCP server tab.

If more than one network interface has been installed on your computer, you

can select the server interface your Ethernut board is connected to.

Figure 11. Setting up TFTPD32

The Ethernet boot loader will request an IP address from the DHCP pool.

Porting Linux to XSCALE SBC Platform
PAGE 19

Enter the IP pool starting address and the number of available addresses in

the pool. The sample above will offer IP addresses from 192.168.100.100 up

to and including 192.168.100.109.

Figure 12. Setting up DHCP Server

The boot file is the name of the raw binary image of the application you want

to upload to the Ethernut board. When using WinAVR (AVRGCC), you simply

enter make install on the command line. This will automatically compile and

link your code and copy the resulting hex file and binary file to the

subdirectory bin/atmega128. ICCAVR is not able to create raw binary

images. A tool named robi has been created, which will be explained later.

Figure 13. Downloading kernel

Porting Linux to XSCALE SBC Platform
PAGE 20

There's no need to specify a WINS/DNS server address or default router

unless your Ethernut application requires direct Internet access. In case it

does, you probably know what to enter.

Make sure that the network mask and the IP pool addresses fit your local

network configuration.

Finally press Save to let TFTPD32 store the values in the Windows registry

and select the Tftp Server tab to return to the initial window. Now press the

reset switch on your Ethernut board an watch the magic things happening.

3.3. boot loader

Burn 'u-boot.bin' onto flash starting at 0x0000_0000. You may use the

JFlash utility D:\jtag>xuboot

Figure 14. Burning u-boot onto Flash

Start your terminal emulator “TERA TERM”.

Reset the Target Platform

Porting Linux to XSCALE SBC Platform
PAGE 21

Figure 15. U-boot Command mode

At the prompt, type the following command to upload the kernel:

#tftp 0xa0008000 ulinux

After the kernel image transfer is complete, burn the uploaded file system

image onto flash.

Before burning, erase the orignal images on flash.

#protect off 1:1-4

#erase 1:1-4

Then burn the image in RAM to flash.

#cp.b a0008000 00040000 100000

#protect on 1:0-4

Figure 16. Writing file to Flash

Porting Linux to XSCALE SBC Platform
PAGE 22

Load the file system image 'lubbock_PXA262_QTE_16M.jffs2' to the target

platform's RAM:

#tftp 0xa0008000 lubbock_PXA260_QTE_16M.jffs2

Burn uploaded file system image onto flash. Before burning, erase the

original images on flash.

#protect off 1:5-82

#erase 1:5-82

#cp.b a0008000 140000 1000000

#protect on 1:5-82

Figure 17. Erasing Flash

Porting Linux to XSCALE SBC Platform
PAGE 23

4. Boot Linux

On every board RESET or power up, do not press any key on keyboard. You

should see the following message on your terminal emulator:

U-Boot 1.1.1 (Dec 8 2004 - 17:38:28) <------------------------

Boot Loader Start

U-Boot code: A3080000 -> A3099988 BSS: -> A309DF88

RAM Configuration:

Bank #0: a0000000 64 MB

Bank #1: a4000000 0 kB

Bank #2: a8000000 0 kB

Bank #3: ac000000 0 kB

Flash: 32 MB

*** Warning - bad CRC, using default environment

In: serial

Out: serial

Err: serial

Hit any key to stop autoboot: 0

Booting image at 00040000 ...

 Image Name: name <------------ move kernel to

SDRAM

 Image Type: ARM Linux Kernel Image (gzip compressed)

 Data Size: 640849 Bytes = 625.8 kB

 Load Address: a0008000

 Entry Point: a0008000

 Verifying Checksum ... OK

 Uncompressing Kernel Image ... OK

Starting kernel ... <--------------- Kernel Running

Linux version 2.4.20 (root@localhost.localdomain) (gcc version 3.3.1

(MontaVista

Porting Linux to XSCALE SBC Platform
PAGE 24

 3.3.1-3.0.10.0300532 2003-12-24)) #366 Wed Jan 19 16:20:07 CST

2005

CPU: XScale-PXA255 [69052d06] revision 6 (ARMv5TE)

CPU: D undefined 5 cache

CPU: I cache: 32768 bytes, associativity 32, 32 byte lines, 32 sets

CPU: D cache: 32768 bytes, associativity 32, 32 byte lines, 32 sets

Machine: ICPDAS SBC Platform

Ignoring unrecognised tag 0x00000000

Memory clock: 99.53MHz (*27)

Run Mode clock: 398.13MHz (*4)

Turbo Mode clock: 398.13MHz (*1.0, inactive)

On node 0 totalpages: 16384

zone(0): 16384 pages.

zone(1): 0 pages.

zone(2): 0 pages.

Kernel command line: root=/dev/mtdblock2 console=ttyS0,115200

Calibrating delay loop... 397.31 BogoMIPS

Memory: 64MB = 64MB total

Memory: 63312KB available (1200K code, 232K data, 44K init)

XScale Cache/TLB Locking Copyright(c) 2001 MontaVista Software, Inc.

Dentry cache hash table entries: 8192 (order: 4, 65536 bytes)

Inode cache hash table entries: 4096 (order: 3, 32768 bytes)

Mount-cache hash table entries: 1024 (order: 1, 8192 bytes)

Buffer-cache hash table entries: 4096 (order: 2, 16384 bytes)

Page-cache hash table entries: 16384 (order: 4, 65536 bytes)

POSIX conformance testing by UNIFIX

Linux NET4.0 for Linux 2.4

Based upon Swansea University Computer Society NET3.039

Initializing RT netlink socket

 Version ID = 0

LSP Revision 1

Starting kswapd

Disabling the Out Of Memory Killer

JFFS2 version 2.1. (C) 2001, 2002 Red Hat, Inc., designed by Axis

Communications

 AB.

Serial driver version 5.05c (2001-07-08) with MANY_PORTS enabled

Porting Linux to XSCALE SBC Platform
PAGE 25

ttyS00 at 0xf8100000 (irq = 15) is a XSCALE UART

ttyS01 at 0xf8200000 (irq = 14) is a XSCALE UART

ttyS02 at 0xf8700000 (irq = 13) is a XSCALE UART

ttyS03 at 0xf4200000 (irq = 112) is a 16450

ttyS04 at 0xf4300000 (irq = 113) is a 16450

ttyS05 at 0xf4400000 (irq = 114) is a 16450

ttyS06 at 0xf4500000 (irq = 115) is a 16450

ttyS07 at 0xf4600000 (irq = 116) is a 16450

ttyS08 at 0xf4700000 (irq = 117) is a 16450

ttyS09 at 0xf4800000 (irq = 118) is a 16450

ttyS10 at 0xf4900000 (irq = 119) is a 16450

SA1100 Real Time Clock driver v1.02

SA1100/PXA Watchdog Timer: timer margin 60 sec

eth0: DM9000 9000-a46 at 0xf1000300, 00:e0:60:00:00:a8, IRQ 108.

eth1: DM9000 9000-a46 at 0xf1100300, 00:e0:60:00:00:58, IRQ 109.

SCSI subsystem driver Revision: 1.00

ac97_codec: AC97 Audio codec, id: NSC72(National Semiconductor

LM4548A)

Probing ICPDAS SYSTEM Flash at physical address 0x00000000 (32-bit

buswidth)

cfi_cmdset_0001: Erase suspend on write enabled

Using buffer write method

RedBoot partition parsing not available

cmdlinepart partition parsing not available

Probing ICPDAS DATA Flash at physical address 0x04000000 (16-bit

buswidth)

cfi_cmdset_0001: Erase suspend on write enabled

Using buffer write method

Probing ICPDAS DATA SRAM at physical address 0x08000000 (32-bit

buswidth)

Using static partitions on ICPDAS SYSTEM Flash

Creating 3 MTD partitions on "ICPDAS SYSTEM Flash":

0x00000000-0x00040000 : "U-BOOT"

0x00040000-0x00140000 : "KERNEL"

0x00140000-0x02000000 : "JIFF2 RFS"

Registering ICPDAS DATA Flash as whole device

Registering ICPDAS DATA SRAM as whole device

Porting Linux to XSCALE SBC Platform
PAGE 26

usb.c: registered new driver usbdevfs

usb.c: registered new driver hub

hc_isp116x.c: USB starting

hc_isp116x.c: USB ISP116x at f4100000/0 IRQ 104 Rev. 10 ChipID:

6122

usb.c: new USB bus registered, assigned bus number 1

USB HC dev alloc 384 bytes

Product: USB ISP116x Root Hub

SerialNumber: 0

hub.c: USB hub found

hub.c: 2 ports detected

usbdcore: usbdcore 0.1 034 2002-06-12 20:00 (dbg="")

NET4: Linux TCP/IP 1.0 for NET4.0

IP Protocols: ICMP, UDP, TCP, IGMP

IP: routing cache hash table of 512 buckets, 4Kbytes

TCP: Hash tables configured (established 4096 bind 8192)

NET4: Unix domain sockets 1.0/SMP for Linux NET4.0.

NetWinder Floating Point Emulator V0.95 (c) 1998-1999 Rebel.com

VFS: Mounted root (jffs2 filesystem) readonly. <---------- Mount

Root file system

Freeing init memory: 44K

INIT: version 2.78 booting

INIT: Entering runlevel: 3

PXA Linux Preview Kit

Kernel 2.4.20 on an armv5tel

Linux login: root <------------ type ‘root’

login[51]: root login on `ttyS0'

[root@Linux root]# <------------- Bash Running

4.1. Using the Ethernet

As you are rebooting, watch the console for error messages. Use the ping

Porting Linux to XSCALE SBC Platform
PAGE 27

command to test your connectivity. Try to ping the gateway machine IP

address first. This will test local connectivity on the LAN. If you cannot ping

the gateway, you are not going to be able to connect to the Internet. If you

can ping the gateway, try pinging a known host on the Internet. For example,

ping www.yahoo.com will test both the ability to do a DNS lookup from your

name server as well as your ability to connect to the Internet

4.2. Using the Audio

Change to folder /home/sound

Then you can play an mp3 file by specifying its name:

#./mp3player moon.mp3

4.3. Using the USB Host

In the bash shell, you should be able to plug a USB mouse into the USB slot

on the taget board and receive input. To verify that the device is working,

you can examine the input through the event interface device. First create

the following character device (if it does not already exist):

mknod /dev/input/event0 c 13 64

A program, evtest, is provided to read from this device file. Run it with the

following command:

evtest /dev/input/event0

As you use move the mouse (for instance), it should produce the following

type of output:

Event: time 946695141.507730, type 2 (Relative), code 0 (X), value –1

Event: time 946695141.507734, type 2 (Relative), code 1 (Y), value –1

...

4.4. Using the Display

Change to folder /home/fbv

Then you can display a picture file by specifying its name:

#./fbv 6.jpg

Porting Linux to XSCALE SBC Platform
PAGE 28

4.5. Using the PCMCIA & CF Card

You should be able to insert a CF IDE Card (FAT32 format) into the Compact

Flash slot on the taget board . Then you should type those command below

cardmgr

#mount –t vfat /dev/hda1 /mnt

Finally, you can see the files in the folder “/mnt”.

4.6. SRAM

We use the mke2fs command to create a standard EXT2 Linux filesystem

and to read and write access on the SRAM device .

#mke2fs /dev/mtdblock5

 mke2fs 1.19, 13-Jul-2000 for EXT2 FS 0.5b, 95/08/09

 Filesystem label=

 OS type: Linux

 Block size=1024 (log=0)

 Fragment size=1024 (log=0)

 128 inodes, 1024 blocks

 0 blocks (0.00%) reserved for the super user

 First data block=1

 1 block group

 8192 blocks per group, 8192 fragments per group

 128 inodes per group

 Writing inode tables: done

 Writing superblocks and filesystem accounting information: done

To add files and folders, first mount the file system as ext2.

#mount –t ext2 /dev/mtdblock5 /mnt

Porting Linux to XSCALE SBC Platform
PAGE 29

5. CAN Bus and PC104 Bus Application

The Nuwa Family support CAN (Controller Area Network) and PC104
Bus. There is a sample environment appears as in the diagram below:

CAN-H

CAN-L

PISO-CAN200

Nuwa Series

Figure 18. Can wiring connection

First create the following character device (if it does not already
exist):
mknod /dev/can c 120 0
To verify that the device is working, you can check the status of the
can bus with cat /proc/can.
The can driver provide 2 sample file operations. Cansend is the example is

designed to send out the CAN message and canmon is designed to receive

the CAN message.

Porting Linux to XSCALE SBC Platform
PAGE 30

Figure 19. Cansend

Figure 20. Canmon

The NuWa-430 support pc104 bus. These sample can be to apply to
the 8 bit ISA card, the 16 bit ISA card, the 8 bit PC-104 card, and the
16 bit PC-104 card.

To reference the driver, you must have loadable module support
enabled in your kernel. If you have kernel running, and do a "make
install" as above, kernel should load the module on demand for you.
To load the module manually, without kernel, type "insmod kito.o".
(On most systems, "insmod kito" alone will do after you have done a
"make install". Use the complete path if "insmod kito" alone comes up

Porting Linux to XSCALE SBC Platform
PAGE 31

with a "file not found" error.) To unload the module manually, type
"rmmod kito".
Here are a few things you may need to edit in "kito.h" for your specific
installation:

• "#define KITO_IRQ". Make sure this matches the IRQ Number
on your card. Make sure it doesn't conflict with other cards.

• "#define KITO_IOADDR" Make sure this matches the value set
via dip-switches on your card. Make sure it doesn't conflict with
other cards.

• "#define KITO_MEMADDR" Use this to define where in memory
you want the card to map in. 0x0000 is the most common
default. The driver will softset the card to the value specified
here when the driver is inserted via insmod or by kernel. Make
sure this value doesn't conflict with a memory block used by
another device.

After you have compiled the driver and inserted it into the kernel as a
module, you are ready to run the utility applications in this package
and talk to your pc104.c from Linux. The library just is a sample
application to show the number on 7-Seg LED, but you'll have to write
the applications yourself.

Porting Linux to XSCALE SBC Platform
PAGE 32

6. The I8K Module SDK

In this section, we will focus on examples for the description of and

application of the functions found in the Libi8k.a. The Libi8k.a functions can

be clarified into 3 groups which are listed in Fig. 19.

Figure 21. structure of Libi8k.a

Functions (1) and (2) in the Libi8k.a are the same as with the DCON.DLL
Driver (including Uart.dll and I7000.dll) as used in the DCON modules
(I-7000/I-8000/I-87000 in serial communication). You can refer to the
DCON.DLL Driver manual which includes the functions on how to use DCON
modules. The DCON.DLL Driver has already been wrapped into the Libi8k.a.
Functions (3) of the Libi8k.a consist of the most important functions as they are
specially designed for I-8000 modules in the LinCon-8000 slots. They are
different from functions (1) and (2) because the communication of I-8000

Porting Linux to XSCALE SBC Platform
PAGE 33

modules in the LinCon-8000 slots are parallel and not serial. Therefore
ICPDAS rewrote I8000.c to Slot.c especially for I-8000 modules in the
LinCon-8000 slots. Here we will introduce all the funcitions for slot.c and they
can be divided into eight parts for ease of use.
1. System Information Functions;
1. System Information Functions
2. Digital Input/Output Functions
3. Watch Dog Timer Functions
4. EEPROM Read/Write Functions
5. Analog Input Functions
6. Analog Output Functions
7. 3-axis Encoder Functions
8. 2-axis Stepper/Servo Functions

The functions in the Libi8k.a are specially designed for LinCon-8000. Users
can easily find the functions they need for their applications from the
descriptions in Lincon manualand in the demo programs developed by
ICPDAS.

Porting Linux to XSCALE SBC Platform
PAGE 34

7. U-BOOT Boot Loader

The user interface to U-Boot consists of a command line interrupter,
much like a Linux shell prompt. When connected via a serial line you
can interactively enter commands and see the results. After power on
the initial u-boot prompt looks like this:

Figure 22. Power on screen shot

You can receive more information about what command u-boot
support. In the following the commands typed ‘?’. You will see the
command list.

Porting Linux to XSCALE SBC Platform
PAGE 35

Figure 23. U-boot ‘s help

Much like a traditional Linux shell the U-Boot shell uses environment

variables to tailor its operation. The U-Boot commands to manipulate

environment variables have the same names as the BASH shell. For instance

printenv and setenv behave the same as their BASH shell counterparts.

In the following example you will dump the current environment variables

using the "printenv" command and change the IP address of the TFTP server

using the "setenv" command.

u-boot # printenv

Porting Linux to XSCALE SBC Platform
PAGE 36

Figure 24. Printenv

 bootargs: Support kernel’s command line

 Bootcmd: Boot kernel from address 0x40000

 bootdelay: Delay time at power on

 baudrate: the baudrate of serial port console

 ethaddr: Ethernet hw address

 ipaddr: Ethernet IP address

 sererip: TFTP Server’s ip address

 netmask: Subnet mask addres

 stdin: console input

 stdout: console output

You can create short shell scripts by storing a sequence of U-Boot

commands, separated by semicolons, in an environment variable. To

execute the script use the "run" command followed by the variable name.

This can be handy to automate repetitive tasks during development.

Network Commands

Having a network connection on your boot loader is very convenient during

Porting Linux to XSCALE SBC Platform
PAGE 37

development. If your project requires several networked boards they can

all download and boot the same kernel image from a centralized server.

When you update the kernel you only need to update the single copy on

the server and not each board individually.

U-Boot supports TFTP (Trivial FTP), a stripped down FTP that does not

require user authentication, for downloading images into the board's RAM.

The "tftp" command needs two pieces of information, the name of the file

to download and where in memory to store the file as shown in the

following example:

u-boot # tftp 8000 u-boot.bin

From server 10.0.0.1; our IP address is 10.0.0.11

Filename 'u-boot.bin'.

Load address: 0x8000

Loading: ###################

done

Bytes transferred = 95032 (17338 hex)

The size and location of the downloaded image are stored in the fileaddr

and filesize environment variables for possible latter use by other shell

commands and scripts.

Flash Commands

Some embedded projects only have access to a network while being

programmed "in the factory". When deployed in the field the boards boot

a kernel stored in the flash memory. The board can be updated in the field

by reprogramming the flash memory with a new kernel. U-Boot offers

several commands for programming, erasing and protecting the flash

memory.

To see what type of flash memory your board has enter the flinfo

command:

u-boot # flinfo

Bank # 1: AMD Am29LV160DB 16KB,2x8KB,32KB,31x64KB

 Size: 2048 KB in 35 Sectors

Porting Linux to XSCALE SBC Platform
PAGE 38

 Sector Start Addresses:

 S00 @ 0x01000000 ! S01 @ 0x01004000 !

 S02 @ 0x01006000 ! S03 @ 0x01008000 !

 S04 @ 0x01010000 ! S05 @ 0x01020000 !

 S06 @ 0x01030000 S07 @ 0x01040000

 ...

 S32 @ 0x011D0000 S33 @ 0x011E0000

 S34 @ 0x011F0000

The output carries quite a lot of information. Immediately you see the flash

manufacturer, part number and sector layout. This particular part begins

with a 16KB sector at address 0x01000000, followed by two 8KB sectors,

a 32KB sector and 31 64KB sectors for a total of 2 megabytes in 35

sectors.

The exclamation points following sectors 0 through 5 indicate that those

sectors are "protected". In this example sectors 0 through 4 contain the

code for U-Boot itself, and sector 5 is used to store the environment

variables. Any attempt to program these sectors without first unlocking

them will fail. This offers some level of protection from "rm -rf /" type

mistakes when programming the flash.

Continuing the TFTP example, let's assume the file you uploaded is a new

version of U-Boot. You need to first unlock flash sectors 0 through 4 before

programming the flash. Type "protect off 1:0-4", which instructs U-Boot to

allow write access to flash bank 1, sectors 0 through 4.

u-boot # protect off 1:0-4

Un-Protect Flash Sectors 0-4 in Bank # 1

Next you must prepare the flash sectors for programming by erasing them.

Enter "erase 1:0-4", which tells U-Boot to erase sectors 0 through 4 of

flash bank 1.

u-boot # erase off 1:0-4

Erase Flash Sectors 0-4 in Bank # 1

 Erasing Sector 0 @ 0x01000000 ... done

Porting Linux to XSCALE SBC Platform
PAGE 39

 Erasing Sector 1 @ 0x01004000 ... done

 Erasing Sector 2 @ 0x01006000 ... done

 Erasing Sector 3 @ 0x01008000 ... done

 Erasing Sector 4 @ 0x01010000 ... done

[end courier]

To program the flash memory you need to copy the image from RAM to the

address of flash sector 0, 0x01000000, using the cp command. You will

use the byte version of the command to copy the specified number of

bytes. In this case you can use the fileaddr and filesize environment

variables, which contains the RAM address and number of bytes loaded by

the last TFTP command. Type cp.b ${fileaddr} 1000000 ${filesize} at the

u-boot prompt.

u-boot # cp.b ${fileaddr} 1000000 ${filesize}

Copy to Flash... done

Finally restore the write protection on flash sectors 0 through 4 by typing

protect on 1:0-4 at the U-Boot prompt.

u-boot # protect on 1:0-4

Protect Flash Sectors 0-5 in Bank # 1

You have just updated the U-Boot code for you board. The next reboot will

run the newly uploaded U-Boot code. Well done!

The final flash related command is the saveenv command, which like the

name implies saves your current environment variables to a reserved flash

sector. This allows your environment variables to persist across power

cycles and reboots. You might want do this after updating the server IP

address or when adding a new script. Type saveenv to save your

environment.

u-boot # saveenv

Saving Environment to Flash...

Un-Protected 1 sectors

Erasing Flash...

Porting Linux to XSCALE SBC Platform
PAGE 40

 Erasing Sector 5 @ 0x01020000 ... done

Erased 1 sectors

Writing to Flash... done

Protected 1 sectors

As you can see the saveenv command bundles together the un-protect,

erase, copy and protect steps you covered in the previous example

Porting Linux to XSCALE SBC Platform
PAGE 41

8. NFS-mounting the Root File System

Fundamental to Linux is the concept of a file system, i.e. an area
where files are stored. Even when used in an embedded system, you
will still need a file system. A file system can be stored on various
media, for example a floppy or hard disk, RAM, Flash or ROM, and can
also be accessed remotely across a network connection.

Linux supports several different file system organisations. These have
different characteristics, which make them suitable for different
applications. For example one may be faster than another, but be less
efficient in how it uses the available storage space.

A file system is made available by mounting it. This makes the new file
system visible as a directory in an existing file system. For most
purposes crossing from one file system to another is invisible to user.
File systems can be freely mixed, so for example an ext2 file system
on a hard disk could be mounted into a JFFS2 file system in Flash.

However, the first file system is special. This is called the root file
system, and is where the root directory (/) resides. This is mounted by
the kernel as it boots, so the first program which the system executes
(init) must be read from the root file system.

For development purposes, we find having the root file system as a
remote file system, accessed across the network, the most
convenient option. In this way we can make a directory, and all the
files and directories contained in it, appear as the root file system on
the target.

To do this we use a protocol called NFS (Network File System), and we
need to set up a server on the PC to allow the target access to these
files.

Porting Linux to XSCALE SBC Platform
PAGE 42

8.1. Verify the host has NFS support

To do this, query the portmapper with the command rpcinfo -p to find out

what services it is providing. You should get something like this:

This says that we have NFS versions 2 and 3, rpc.statd version 1,
network lock manager (the service name for rpc.lockd) versions 1, 3,
and 4. There are also different service listings depending on whether
NFS is travelling over TCP or UDP. Linux systems use UDP by default
unless TCP is explicitly requested; however other OSes such as Solaris
default to TCP.

If you do not at least see a line that says portmapper, a line that says
nfs, and a line that says mountd then you will need to backtrack and
try again to start up the daemons

8.2. Setup the exports file

Edit the file /etc/exports. If this file already has conent, then NFS
mount points have already been setup and may be in use. Leave
them in place.
Append the content of the reference /etc/exports file and then save.

You can also manage/verify the mount point by running
redhat-config-nfs in RedHat 9

Porting Linux to XSCALE SBC Platform
PAGE 43

8.3. Create root file system and restart the nfs server

The root file system

You will also need to restart NFS, the portmap daemon and resync the
exported filesystems. NOTE: if you change the link to the file system
you may will need to resync. The easy rule is to restart the NFS
service each time you change the link to a new filesystem. If you
have added a new entry to the dhcpd.conf file then you need to restart
DHCP too.

8.4. Configure and rebuild the kernel

To change the configuration of the kernel you can use the make

menuconfig command and follow the menus. Or, you can edit the config

file directly. Whichever way you choose, the following configuration

options must be set.

You can use Make menuconfig to set the config options. Use this method

Porting Linux to XSCALE SBC Platform
PAGE 44

if you are unsure of editing the .config file directly

Use the menus to set the configureation items:

 - General Setup

 - Default kernel command string, set to

 "console=ttyS0,115200 root=/dev/nfs ip=dhcp

nfsroot=192.168.100.25:/tftpboot/source" (CONFIG_CMDLINE)

 - Networking Options

 - IP:kernel level autoconfiguration, set to Y (CONFIG_IP_PNP)

 - IP:DHCP Support, set to Y (CONFIG_IP_PNP_DHCP)

 - IP:BOOTP Support, set to Y (CONFIG_IP_PNP_BOOTP)

- File Systems

 - Network File Systems

 - NFS file system support, set to Y (CONFIG_NFS_FS)

 - Root file system on NFS, set to Y (CONFIG_ROOT_NFS)

Then make the kernel

8.5. Load the kernel on the target platform and Reboot

The kernel zImage can be loaded on the target platform either by burning

in to flash (see the 3.3) and then reboot the Nuwa.

Porting Linux to XSCALE SBC Platform
PAGE 45

9. How to Build your application

In this chapter, we will introduce how to install crosscompiler for Nuwa platform
to your host PC and how to compile the sample application.

9.1. Install Crosscompiler

Firstly extract tarball that cross_compiler.tar.gz files are compressed
with tarball. cross_compiler.tar.gz tarball source is located at
/mnt/cdrom/gcc directory and place cross_compliler in the directory
/usr/local/xscale.

Add the /usr/local/xscale/bin/ directory to the PATH environment
variable in your linux.
PATH=$PATH: /usr/local/xscale/bin/

9.2. Example program

For this example, use the simple “hello world” program saved as hello.c.

#include <stdio.h>

int main(int argc, char **argv)

{

 Printf(“ hello world\n”);

}

Using the cross compiler tools build the executable. Use the following

command:

 xscale_le-gcc –o hello hello.c

Copy the executable to an NFS-mounted location on the target. For

example:

 cp hello /tftpboot/source/home

Porting Linux to XSCALE SBC Platform
PAGE 46

on the target, change to the directory where your program is located. For

example:

 cd home

Run your program on the target. For example:

 ./hello

 Hello world

Porting Linux to XSCALE SBC Platform
PAGE 47

Appendix A: CAN BUS API

A.1 CAN messages

CAN messages are defined as a struct with the following content:

typedef struct {

CanId id; // identifier (11 or 29 bits)

int type; // standard (0) or extended frame (1).

// Use the predefined values ’STANDARD’and ’EXTENDED’.

int rtr; // remote transmission request (1 when true)

int len; // data length 0..8

unsigned char d[8]; // data bytes

struct timeval timestamp; // timestamp

in the format // timestamp. tv_sec (seconds)

// timestamp.

tv_usec (microseconds) // since Epoch (January 1. 1970).

} canmsg;

A.2 open()

Open the device. The driver supports both blocking and non-blocking modes.

For Blocking mode use:

Ex:

int can;

can = open(”/dev/can”, O_RDWR);

The non-blocking mode must be specified in the open file operation with the flag O_NONBLOCK in

the last parameter:

Ex: can = open(”/dev/can”, O_RDWR | O_NONBLOCK);

After open() the SJA1000 is set to 1Mbit/s with single filter mode. The acceptance mask is set to

0xffffffff, which means that all messages will be accepted.

WARNING: only one application is allowed to use the driver at a time. If the open operation is called

by a second application an -EBUSY error code is returned.

Porting Linux to XSCALE SBC Platform
PAGE 48

A.3 close()

Close the device.

Ex: close(can);

A.4 read()

Read a message. Return 32 (size of the canmsg struct) when a message is available and -EAGAIN

when there is no message.

Ex: read(can, &msg, sizeof(msg));

A.5 write()

Write a message. Return 32 (size of the canmsg struct) when the message is successfully

stored in the driver’s transmit buffer and -EAGAIN when the buffer is full.

Ex: write(can, &msg, sizeof(msg));

A.6 ioctl()

This command provides the following operations:

CAN_IOCSBAUD: set baud rate. Use the following constants to set it: B1000 (1Mbit/s), B500

(500kbit/s), B250 (250kbit/s), B125 (125kbit/s), B20 (20kbit/s). The standard bit timing register values

are:

{BTR0, BTR1}: baud rate

{0x00, 0x14}: 1 Mbit/s

{0x00, 0x1c}: 500 kbit/s

{0x01, 0x1c}: 250 kbit/s

{0x03, 0x1c}: 125 kbit/s

{0x18, 0x1c}: 20 kbit/s

Ex:

unsigned long baud_rate = B1000;

ioctl(can, CAN_IOCSBAUD, &baud_rate);

CAN_IOCSAMASK: set acceptance mask. Use a 32-bit value to set it.

Ex:

long long amask=0xfffffffd;

ioctl(can, CAN_IOCSAMASK, &amask);

Porting Linux to XSCALE SBC Platform
PAGE 49

CAN_IOCSACODE: set acceptance code. Use a 32-bit value to set it.

Ex:

long long acode=0xfffffffe;

ioctl(can, CAN_IOCSACODE, &acode);

CAN_IOCCRBUF: clear read buffer.

CAN_IOCCWBUF: clear write buffer.

CAN_IOCRREG: read a SJA1000 register. It can be any of the available registers. The most useful

ones for applications are:

� ERROR_CODE_CAPTURE

� RX_ERROR_COUNTER

� TX_ERROR_COUNTER

Ex:

int outcome;

unsigned long reg;

reg = RX_ERROR_COUNTER;

outcome = ioctl(can, CAN_IOCRREG, ®);

printf("RX_ERROR_COUNTER = %dd\n", outcome);

CAN_IOCRTTS: read the timestamp of the last transmitted message. The timestamp is returned in a

timeval structure.

CAN_IOCSACTIVE: set active mode

CAN_IOCSPASSIVE: set passive mode

CAN_IOCRAPS: get current active/passive status

CAN_IOCSBTR: set bit timing registers directly. The parameters are passed through the following

structure:

typedef struct {

unsigned char bt0;

unsigned char bt1;

} canconfig;

Ex:

canconfig bconfig;

bconfig.bt0 = 0x0;

bconfig.bt1 = 0x1c;

ioctl(can, CAN_IOCSBTR, &bconfig);

Porting Linux to XSCALE SBC Platform
PAGE 50

A.7 select()

Example for checking for received messages:

ret = select(can+1, &readfds, NULL, NULL, &timeout);

