
 1

EzProg-I Tools
 (Version 4.6)

 2

Warranty
All products manufactured by ICPDAS Inc. are warranted against

defective materials for a period of one year from the date of delivery to the
original purchaser.

Warning
ICPDAS Inc. assumes no liability for damages consequent to the use of

this product. ICPDAS Inc. reserves the right to change this manual at any
time without notice. The information furnished by ICPDAS Inc. is believed
to be accurate and reliable. However, no responsibility is assumed by
ICPDAS Inc. for its use, or for any infringements of patents or other rights
of third parties resulting from its use.

Copyright
Copyright 1997-2009 by ICPDAS Inc., LTD. All rights reserved

worldwide.

Trademark
The names used for identification only maybe registered trademarks of

their respective companies.

License
The user can use, modify and backup this software on a single

machine. The user may not reproduce, transfer or distribute this software,
or any copy, in whole or in part.

Technical Support
If you have problems about using the product, please
contact ICP DAS Product Support.

Email: Service@icpdas.com

 3

Table of Contents
EzProg-I Utilities

1 Introduction... 5

1.1 EzProg-I Software Development Resources... 9
2 EzProg-I framework.. 13

2.1 Application framework ... 13
2.1.1 EzProg-I Register.. 14

3 EzTemplate ... 17
3.1 EzTemplate Setting... 17

3.1.1 Pages ... 17
3.1.2 Programming interfaces .. 19

3.2 Priority Levels... 23
4 EzHMI... 26

4.1 EzHMI ActiveX overview .. 26
4.2 Settings.. 32

4.2.1 Visual Studio 2008 IDE.. 32
4.2.2 Refresh Time... 35
4.2.3 Language Switching.. 36
4.2.4 Register linking... 38

4.3 EzHMI ActiveX Controls ... 39
4.3.1 LED Control.. 39
4.3.2 Switch ... 43
4.3.3 EzHMI Lable .. 49
4.3.4 EzHMI ColorEdit.. 54
4.3.5 EzHMI ButtonST.. 58
4.3.6 EzHMI Image Control .. 63
4.3.7 EzHMI ColorCheck .. 73
4.3.8 EzHMI ColorRadio... 78
4.3.9 EzHMI EzKnob .. 83
4.3.10 EzHMI EzSlider.. 87
4.3.11 EzHMI EzList ... 91
4.3.12 EzHMI Position .. 94

5 EzConfig Utility.. 95
5.1 Introduction... 95
5.2 Main properties ... 96
5.3 Slot scan and IO register mapping .. 98
5.4 Module and channel configuration ... 100

5.4.1 Digital input configuration.. 100
5.4.2 Digital output configuration.. 102
5.4.3 Digital IO configuration.. 104
5.4.4 FRnet configuration .. 106
5.4.5 Analog input configuration ... 109
5.4.6 Analog output configuration ... 111

5.5 Default startup settings ... 115

 4

5.6 Registry Key Editor .. 117
6 EzGo ... 120

6.1 Introduction... 120
6.2 Using EzGo... 120

6.2.1 Selection window.. 121
6.2.2 Initialization and configuration window... 122
6.2.3 Basic Operation: Independent axis motion ... 132
6.2.4 Advance motion features: Multi-axis interpolation 137

7 EzMake ... 143
7.1 Introduction... 143

7.1.1 Main user interface ... 143
7.2 Initial Table... 144

7.2.1 Create a new initialization table.. 145
7.2.2 Modifying a initialization table... 146
7.2.3 Open an initialization table file... 148
7.2.4 Remove an initialization table from the tree view.................................. 149
7.2.5 Downloading of an initialization file .. 149

7.3 Macro Program Files (MP Files) .. 150
7.3.1 Create a new macro file .. 150
7.3.2 Adding a macro form to a macro file.. 151
7.3.3 Open a macro file.. 153
7.3.4 Writing macros (motion commands) .. 154
7.3.5 Downloading and executing a macro file ... 157

7.4 Interrupt Service Routine (ISR) macro ... 159
7.5 Project Files .. 160

7.5.1 Create a new project file ... 160
7.5.2 Downloading a project file.. 163

7.6 Macro motion commands ... 164
7.6.1 Basic Setting Functions... 165
7.6.2 Status Functions .. 166
7.6.3 FRnet DIO Functions.. 166
7.6.4 Auto Home Functions ... 166
7.6.5 Axis Move Functions.. 167
7.6.6 Interpolation Functions ... 167
7.6.7 Synchronous Action Functions ... 169
7.6.8 Continuous Interpolation Functions.. 169
7.6.9 Interrupt Control Functions... 170
7.6.10 Other Functions... 170
7.6.11 Macro Program Functions... 171

 5

1 Introduction

Advanced PAC solution for machine automation

EzProg-I development suit is a software package for the windows CE 5.0 /6.0
platform consisting of numerous utilities and libraries which assist the system
developer in developing a control system on the PAC in a short period of time. The
development suit has got the following advantages for the user:

1. Simple and visually appealing I/O monitoring HMI can be created by dragging
and dropping of ActiveX objects, without the need of any programming.

2. Plc like programming by providing a predefined multitasking structure.
3. Extensive motion control libraries and utilities for writing motion control macros

which make it easy to write application programs for ICPDAS's multi-axis motion
control cards.

The EzProg-I development suite comprises:
• Human machine interface (HMI) objects (ActiveX)
• Configuration tools and utilities
• IO libraries
• Motion control tools and libraries
• Libraries for serial and network communications

 6

Powerful and Easy to Use
 EzProg-I is a total solution for system configuration, logic programming and HMI design
for manufacturers or control system designers. Engineers who are familiar with
programming PLC systems can easily migrate to EzProg-I and become acquainted with
the software solution. EzProg-I makes it much easier for customers to integrate PLC and
IT technologies.
The EzProg-I package contains many kinds of development tools and libraries such as
EzConfig, EzGo, EzMake, EzHMI, EzLIB and EzCore. Based on these development
resources, customers can directly configure and test the PAC's I/O channels and motion
control modules without any additional programming effort. Moreover, EzProg-I
simplifies the I/O instructions and provides I/O mapping table equivalent to the PLC
system. It assists the system developer to design, construct and test its control system.

EzProg-I Applications
I/O monitoring and logic control:
Building automation, SCADA, factory automation

Motion control:
Carving machine, Cutter, Laser carving, Laser cutting, Graphic plotter, Tapping machine,
Dispensing machine, Welding machine, Drilling machine , Punch machine, X-Y-Z table
control, coil wiring machine, automatic machine control
EzProg-I total solution:

• WinCE 5.0/6.0 real time OS

• Embedded low power

consumption controller

• EzProg-I development tools:

EzConfig, EzHMI, EzGo,

EzMake and EzLIB.

• Microsoft VC++ IDE develop
environment (Visual Studio

2008).

• Software protection and

license management

 7

Integration of software and hardware:
The EzProg-I was integrated on the hardware PAC (Programmable Automation
Controller), The PAC offer a lot of IO modules, communication interfaces, computer
interfaces, data storage device and so on. That can satisfy the need of industrial automatic
applications.

Real time framework:
EzProg-I priority level

• Standard USB, VGA interface
• Touch screen support
• Data storage (1GB CF or Micro

SD)
• Great number of IO modules

available
• Multi-axis motion control modules
• Easy to use API command
• Various communication

interfaces: Ethernet, RS-232 and
RS-485.

The EzProg-I is a real time
development framework. The
framework supports hardware
interrupt, eight software interrupt
service routine RTSR and eight
user threads. That can design
multi-thread control procedures on
the WinCE RTSO. The user can
design control function easily.
Base on this framework, those
multi-thread control procedures
will be executed by priority one by
one.

EzProg-I priority levels:

1. Interrupt
2. System task
3. RTSR task
4. User thread
5. HMI

 8

Easy use to design GUI (HMI):
EzHMI provides a number of ActiveX controls which allows the programmer to create a
graphic interface on a WinCE system which an operator can use to control and monitor
machines and plants. A user interface can therefore be designed within a short period of
time especially when it comes to displaying digital and analog I/O data of the ICPDAS
8000 series.

EzHMI ActiveX properties:
 Direct display of IO status
 Direct display of register values
 Multilanguage support
 Support flashing (alarm)
 Picture movement
 Font setting
 Color setting
 Enable/disable objects

 9

1.1 EzProg-I Software Development Resources

Requirements such as high performance, easy integration, extensibility, fast software
development and short time to market are an increasing demand of the industry. ICPDAS
offers the hardware and software solution to meet the demands. The EzCore engine
provided by ICPDAS is a development kit to simplify and reduce the software
development expenditure.

EzProg-I is a developing toolkit consisting of libraries, utilities and HMI controls for the
Windows CE 6.0 platform.

The basic structure of EzProg-I:

 The lowest level consists of the real time WinCE operation system and the
hardware driver

 IO APIs and the MFC APIs are part of the next layer
 One layer up is the main application layer comprising the EzCore, EzLib and

EzMotion libraries.
 The top layer is made up of the control program compiled by VS2008, the human

machine interface (EzHMI) and configuration and testing utilities

 10

The normal development procedure is shown on the following figure.

Libraries and utilities
EzCore
EzCore is the engine driving EzProg-I and it is responsible for the communication
between the hardware (I/O), HMI controls and the registers. All libraries are compatible
with Visual Studio 2008.
EzCore has a real time scanning engine which supports hardware interrupt and direct
access of IO registers and other system related registers. EzCore offers eight real time
interrupt service routine RTSR (similar to a task in a multitasking programmable logic
controller) and eight user threads.

 11

EzCore system variables:

EzCore main function:
EzCore has a real time scanning engine which supports hardware interrupt and direct
access of IO registers and other system related registers. EzCore offers eight real time
interrupt service routine RTSR (similar to a task in a multitasking programmable logic
controller) and eight user threads.

 12

EzHMI ActiveX
EzHMI ActiveX controls allows the programmer to design a user interface on a WinCE
system for monitoring and controlling purposes. The ActiveX controls can be directly
linked to IO registers for displaying or manipulating of IO data. In addition the ActiveX
controls support Multilanguage. EzHMI objects use the EzCore platform to update data at
system run time.

EzLIB

EzLib is a collection of reusable software components and assists software developers to
write application programs for the Window CE platform.

Motion Control development resources

EzProg-I supports the following 2 axis and four axis motion modules:
i8092F, i8094, i8094F, i8094A, i8094H.
EzGo and EzMake are utilities for configuring, programming and testing the motion
modules. For more information refer to the manuals for motion control.

APIs for:
• Data format transformation
• Date and time
• Read/Write file
• Context drawing
• FTP communication
• TCP/IP communication
• Trend line graph

 13

2 EzProg-I framework

2.1 Application framework

The EzProg-I main framework has the following layout:

Figure 1: EzProg-I structure

System consists of three parts:

1. Top layer:
EzHMI provides a number of ActiveX controls which allows the programmer to
design a user interface on a WinCE system for monitoring and controlling
purposes. The ActiveX controls can be directly linked to IO registers for
displaying or manipulating of IO data. In addition the ActiveX controls support
Multilanguage.

2. Middle layer
EzProg-I has a section of memory called register where bit, integer, floating point
and string values can be stored and accessed. These registers can be accessed by
the upper and bottom layer. EzHMI controls can be linked directly to a register
type and register number to access data.

3. Bottom layer
a. User thread: Programmer has to add code to the function. The code will be

executed only once

IInntteerrrruuppttRRTTSSRRUUSSEERR

RReeggiisstteerr
SS,,MM,,TT,,CC,,DD

BB,,WW,,DDWW,,FF,,DDBB

DDiiggiittaall II//OO
IINN__XXaa((XXnnoo))

OOUUTT__YY((YYnnoo,,oonn//ooffff))

AAnnaalloogg II//OO
IINN__AAII((AAIInnoo))

OOUUTT__AAOO((AAOOnnoo,,VVoouutt))

GUI EzMHI

MMoottiioonn
AAPPII

OOtthheerr
UUsseerr
AAPPII

 14

b. RTSR: Similar to plc coding. This API will be called at fixed time
intervals.

c. Hardware interrupt: The Interrupt has got the highest priority and
immediately interrupts the execution of other tasks. After the interrupt
handler has completed it execution code a function with a lower priority
will be executed.

2.1.1 EzProg-I Register
EzProg-I has a section of memory called register where bit, integer, floating point and
string values are stored and accessed. The register table is divided in two main parts: one
part stores IO data from the slot modules (like the X,Y, AO, AI registers) and the other
part holds non IO related values (e.g. M, D,F, MSG). The IO registers are updated every
milliseconds, that means the EzProg-I engine scans every millisecond all D/A input
modules in the slots to update the X, AI registers and writes D/A data from the Y, AO
registers to the output modules. Use the EzConfig utility assist the system designer to
map IO channels to register. EzHMI controls can directly access data from a register by
linking the control to a register type and number. EzHMI uses data from the register to
change the attributes of the on-screen controls.

Figure 2: Registers in the EzProg-I framework

 15

The registers supported by EzProg-I are listed in the following table:

Table 1: Register types

The next table lists the APIs for accessing the registers:

 16

Table 2: APIs for accessing registers

 17

3 EzTemplate

The EzTemplate is a template for Visual Studio 2008 to enable a user which is neither
familiar with MFC nor Visual Studio 2008 to easily create a Window CE 6.0 application.
The EzTemplate provides all the necessary tools to start writing a real time logic
controller with a human machine interfaces. Direct DIO control via the user interface, for
example for displaying or setting a digital channel status, can be done without any
programming.
All the necessary libraries and header files are included in the project for the system
designer to make full use of the power of the EzHMI controls. Initialization and IO
scanning engine are activated by default. Easy to use programming interfaces are at
user’s disposal to unburden the programmer from understanding MFC and graphic
programming. Several user threads and real time service routine (multitasking) are
available to run the control program in a multitasking and deterministic environment.
Task cycle time and task priority can be set with ease. The EzTemplate includes 50
dialog pages (design windows). Dialog pages for the following screen resolutions are
provided:

 640x480
 800x600
 1024x760

3.1 EzTemplate Setting

3.1.1 Pages
The EzTemplate provides up to 50 user windows (pages). The program developer has to
decide how many pages he needs in order to provide the operator with all the necessary
information and input capabilities to operate the control system.

The following steps describe procedure of setting of the number of windows:

STEP 1: Open the Solution Explorer: View Solution Explorer.

 18

STEP 2: Double click Ez_TemplateDlg.cpp in the Solution Explorer.

STEP 3: The value of the PageCount definition represents the number of
independent dialog windows to be used for the program. The default
number of dialog is ten.

///
///////////////
#define PageCount 10 // 0~50 : maximum 51 pages

STEP 4:

Each dialog window is linked to an M register number. If the register of a
corresponding window is set to true, the window will be visible on the
screen. The main page “IDD_EZTEMPLATE_DIALOG” is linked by
default to M register 6000. For each page following the main page the
corresponding M register number is incremented by one.

#define M_Page 6000

The user can change the default M register setting. By using
#define M_Page 5000
The main page “IDD_EZTEMPLATE_DIALOG” is linked to M register
5000. The register numbers following the main window are automatically
are automatically assigned to the remaining windows.

 19

3.1.2 Programming interfaces

To make the programming easier all the necessary programming interfaces are
provided in the A_Template.cpp file. These interfaces are a great help especially for
plc and c programmers who are not familiar with MFC and graphic programming.
They significantly reduce the programming time by relieving the user from the
burden of studying Windows CE APIs. All the code for initialization and controlling
has to be implemented in this file. Programming code can be added to the following
functions:

 USER_INITIAL
 USER_THREAD 0 to 7
 Real Time Service Routine (RTSR 0 to 7)

To open the A_Template.cpp file in VS2008 go ahead as follows:

STEP 1: Open the Solution Explorer: View Solution Explorer

STEP 2: Double click A_Template.cpp in the Solution Explorer

3.1.2.1 Initialization
The main purpose of the USER_INITIAL() function is to initialize registers and
variables at program start. The following example illustrates this.

void USER_INITIAL()
{
 SET_M(2,true); //Set M register number 2 to true
 SET_D(333, 10000); //Set D register number 333 to 1000
 SET_MSG(44, L"Hello"); //enter a string to MSG register
 //number 44
}

 20

3.1.2.2 User Thread

The user thread API allows the programmer to write low priority code like updating the
user interface or other none time critical operations. The eight user threads each execute
their code in a separate thread. The thread priority of the user threads are fixed and can
not be changed in the program. The priority level decreases with increasing thread
number. USER_THREAD_0 has the highest and USER_THREAD_7 the lowest priority.
The user thread can be called anywhere in the program by calling the
START_USER_THREAD API.

The following steps describe how to call the user thread at program start.

STEP 1: Open the EzTemplateDlg.cpp file

STEP 2: Go to the CEzTemplateDlg::OnInitDialog()in the EzTemplateDlg.cpp
file and remove the forward slashes // from the user thread you want to call
at program start. In the following USER_THREAD_3 is activated:

//===== Start USER_THREAD ============================
//ret= START_USER_THREAD(0, USER_THREAD_0); //Run background
//ret= START_USER_THREAD(1, USER_THREAD_1); //Run background
//ret= START_USER_THREAD(2, USER_THREAD_2); //Run background
ret= START_USER_THREAD(3, USER_THREAD_3); //Run background
//ret= START_USER_THREAD(4, USER_THREAD_4); //Run background
//ret= START_USER_THREAD(5, USER_THREAD_5); //Run background
//ret= START_USER_THREAD(6, USER_THREAD_6); //Run background
ret= START_USER_THREAD(7, Tree_Page); //Run background

STEP 3: Open the A_Template.cpp file and add your code to the USER_THREAD_3

function

//===== Run UserThread3=================
unsigned long USER_THREAD_3(void *)
{
 //Add your code here

 //==============================
 END_USER_THREAD(3);
 return _NO_ERROR;
}

 21

3.1.2.3 Real Time Service Routine (RTSR)
This RTSR function is very similar to the tasks of a multitasking PLC. Every RTSR
function is being called at a set time interval. The priority settings of the eight RTSRs are
fixed. The priority level is decreasing from RTSR 0 to 7. RTSR_0 has the highest priority
followed by RTSR_1 and RTSR_7 has the lowest priority level.

Figure 3: Real time service routines (RTSR) with different priorities

3.1.2.3.1 RTSR Activation

The following steps demonstrate the activation of a RTSR in the EzTemplate. In this
example the activation of the RTSR_4 function will be shown.

STEP 1: Open the EzTemplateDlg.cpp file.
STEP 2: The RTSR_4 calling interval time is defined in the #define section at the

beginning of the file. The default interval time for the RTSR_Interval_4
constant is 100 milliseconds. The user can change this value to suit his
requierements. The smallest interval value supported is 2 milliseconds. In this
example we assign RTSR_Interval_4 150 milliseconds.

//////////////// For RTSR //////////////////////////////////
#define RTSR_Interval_0 5 // 5 ms RTSR Interval
#define RTSR_Interval_1 10 // 10 ms RTSR Interval
#define RTSR_Interval_2 20 // 20 ms RTSR Interval
#define RTSR_Interval_3 50 // 50 ms RTSR Interval
#define RTSR_Interval_4 150 // 100 ms RTSR Interval
#define RTSR_Interval_5 200 // 200 ms RTSR Interval

 22

#define RTSR_Interval_6 500 // 500 ms RTSR Interval
#define RTSR_Interval_7 1000 // 1000 ms RTSR Interval
//

STEP 3: Go to the CEzTemplateDlg::OnInitDialog()in the EzTemplateDlg.cpp

file and remove the forward slashes // from the //ret= START_RTSR(4);
comment line

//===== Start RTSR ============================
//ret= START_RTSR(0); //if you want use RTSR 0 remove this "//" comment
//ret= START_RTSR(1); //if you want use RTSR 1 remove this "//" comment
//ret= START_RTSR(2); //if you want use RTSR 2 remove this "//" comment
//ret= START_RTSR(3); //if you want use RTSR 3 remove this "//" comment
ret= START_RTSR(4); //if you want use RTSR 4 remove this "//" comment
//ret= START_RTSR(5); //if you want use RTSR 5 remove this "//" comment
//ret= START_RTSR(6); //if you want use RTSR 6 remove this "//" comment
//ret= START_RTSR(7); //if you want use RTSR 7 remove this "//" comment

STEP 4: Add your control code to the RTSR_4()function

void RTSR_1()
{
 // Add your code here
}

For each RTSR the scan time can be set. To ensure deterministic behavior of the RTSR it
is important to make sure that the code in the RTSR is executed within the set time scan
interval. Therefore it is suggested not to call the Sleep API or use an endless loop inside a
RTSR.
If the interval is set to three milliseconds and a Sleep API is being called in the RTSR to
suspend the execution of the RTSR thread for more than three seconds the behavior of
the RTSR becomes nondeterministic. The same applies to an endless while loop, which
causes the execution of one RTSR cycle to run indefinitely. Also care should be taken
when loops are used which requires a lot of CPU resources. The execution time of a
RTSR can be Within the The interval time can be guaranteed execution time of a RTSR
can be reduced by avoiding Sleep, large “for” loops and by implementing small execution
code or by setting the time interval to a larger value.

void RTSR_1()
{
 for (int i=1, i<= 100; i++)
 {
 Sleep(10); AVOID using Sleep inside a RTSR

 // Execute some code
 //.....

 }
}

void RTSR_1()
{
 while(true) Do NOT use a infinite loop inside a RTSR
 {

 23

 // Execute some code
 //.....

 }
}

An infinite loop is a sequence of instructions in a computer program which loops
endlessly, either due to the loop having no terminating condition, having one that can
never be met, or one that causes the loop to start over. An infinite loop in a RTSR with a
high priority causes the entire system to become unresponsive as the loop consumes all
available processor time. The only way to end the loop is to power off the console.

EzCore provides the function GET_RTSR_TIME(BYTE RTSRno) to check whether the
execution time of the previous RTSR call exceeded the interval time. The following
example shows how to implement this function: compare the execution time with the
interval time, if the execution time exceeds the interval time generate an error message is
generated and abort execution of the remaining RTSR code.

void RTSR_4()
{

 //Read the execution time of the previous RTSR_4 call
 if(GET_RTSR_TIME(4)> RTSR_Interval_4)
 {
 SET_MSG(1, L"RTSR_4 interval time exceeded!");
 return;
 }

 // Add your code here
}

3.2 Priority Levels
The EzCore has got the following priority levels:

 Interrupt
 System task
 RTSR task
 User thread
 HMI

All priorities are fixed and can not be change by the programmer.

 24

Figure 4: Priority levels of EzCore

Interrupt by hardware
A hardware interrupt causes the processor to save its state of execution and begin
execution of an interrupt handler. Hardware interrupts is a way to avoid wasting the
processor time in polling loops, waiting for external events. The Interrupt has got the
highest priority and immediately interrupts the execution of other tasks. After the
interrupt handler has completed it execution code a function with a lower priority will be
executed. Two API are provided for the interrupt:

 SET_INT(): assigning the interrupt a interrupt handler
 START_INT(): setting the interrupt mode: falling or rising edge

The hardware interrupt is supported by the following modules

 DI module: 8094H in slot 1
 Motion module: 8094A, 8094F, 8092F (in slot 1 to 3)

Example:

#define INTP_MODE_Rising 1
#define INTP_MODE_Falling 2

RET = SET_INT(0, &(ptTSRFunc)INTP_RUN0);
RET = START_INT(0, INTP_MODE_Rising);

// Interrupt handler:
void INTP_RUN0()
{
 SET_D(1,GET_D(1)+1);
 OUT_Y(0,GET_Yb(0));
}

 25

System task
The system task scans every millisecond the I/O modules in slot 1 to 7 and update the
corresponding register.

RTSR task
The RTSR task is being called at fixed time intervals. The time interval can be set for
every RTSR task. Eight RTSR tasks with predefined priority levels are provided. The
priority level decreases from 0 to 7. The minimum interval time is 2 milliseconds.

 RTSR_0() highest priority
 RTSR_1()
 RTSR_2()
 RTSR_3()
 RTSR_4()
 RTSR_5()
 RTSR_6()
 RTSR_7() lowest priority

User thread task
The task priority is decreasing with increasing user thread number.

 USER_THREAD_0() highest priority
 USER_THREAD_1()
 USER_THREAD_2()
 USER_THREAD_3()
 USER_THREAD_4()
 USER_THREAD_5()
 USER_THREAD_6()
 USER_THREAD_7() lowest priority

HMI
The updating the user interface has the lowest priority.

 26

4 EzHMI

EzHMI is a package of ActiveX controls for the Windows Embeddede CE 6.0
environment containing different kind of buttons, switches, knobs, sliders, gauges which
can be used in many industry applications and simulation environments. It is designed to
visualize and integrate the real-time process and production data. EzHMI releases the
developer from designing graphic components and thereby speeds up the project
developments involving SCADA systems, HMI and simulations. It allows the developer
to fully focus on programming the logic control. The user interface can be fully customer
configurable which supports customer-provided picture. Developers can design a graphic
interface on a WinCE system to their dialog boxes, using a variety of shapes, surfaces,
textures, bitmaps and icons, colors and fonts.

4.1 EzHMI ActiveX overview

Symbol Name Picture

 LED

The LED is used to visualize boolean discrete status:

 ON/OFF

 True/False

 Active/Inactive

 Open/Closed

A text label can be added to the control.

 SWITCH

The switch is used to input and visualize two statuses at runtime:

 27

 ON/OFF

 True/False

 Active/Inactive

 Pressed/ not pressed.

The switch can be labeled with a text.

 Label

You can enter one or several lines of text in a LABLE box and define

the font width and color. You can add a background color or pattern to a

text box.

A LABLE control can be set to display at runtime

 Name or caption

 Value

 Text message

 ColorEdit

A ColorEdit box have the following runtime functions:

 Input/output of values

 Input/output of text

You can define the limits for the input values.

User input can be disabled at runtime.

 ButtonST

 28

The ButtonSt triggers an event, notification or acknowledgement when it

is being clicked or released. The implementation of the button event has

to be done in c or c++ programming language. The operator can use a

button to control a process. Images can be added to the button without

any programming effort.

 Image

The Image control displays graphic objects on the screen which has

been created by a graphic software. Only graphic images saved as

"*.bmp" can be shown. In addition more than one image can be attached

to a control. During runtime the image itself can be replaced by another

image and the position of the image can be changed. Functions are

provided to move the image across the screen.

 ColorRadio

A ColorRadio control allows the operator to choose only one of a

predefined set of options. When the operator selects an option, any

previously selected option in the same group becomes deselected.

 29

 ColorCheck

The ColorCheck allows the selection of several items.

 EzKnob

The EzKnob visualizes data like pressure, temperature, volt, etc. in form

off a multi-needle gauge. The EzKnob object also allows the user to

manually input values by dragging the needle (via mouse or touch

screen) to the desired position on the scale. This ActiveX can be

directly linked to analog I/O channel.

 EzSlider

 30

The EzSlider represents a process value in the form of a scaled bar.

The slider bar allows you to visualize or enter dynamic values

(temperature, filling levels, pressure, etc.). New values are entered by

sliding the indicator to required value.

 EzList

The EzList outputs messages during runtime. Each message can be

provided with a date and time stamp. New messages are automatically

added to top of the list.

 Position

 31

The Position control is used for motion control applications. It can be

set to display one of the following motion parameters:

 Logic Position

 Encoder Position

 Velocity

 Acceleration

Table 3: EzHMI controls

 32

4.2 Settings

4.2.1 Visual Studio 2008 IDE

4.2.1.1 Adding EzHMI ActiveX controls

In order to use the EzHMI controls for the EzTemplate project the EzHMI ActiveX have
to be added to the VS2008 toolbox. The following steps describe the procedure:

STEP 1: Click View Resource View

STEP 2: Double click the “IDD_EZTEMPLATE_DIALOG” resource. The dialog
sheet will appear.

STEP 3: Click View Toolbox to display the toolbox

 33

STEP 4: Right click the toolbox and select “Add Tab” from the popup window. Enter
“EzHMI” as a tab name and press enter.

STEP 5: Click on the EzHMI tab

STEP 6: Click Tools Choose Toolbox Items …

It will take some time before the “Choose Toolbox Items” dialog window pops up.

STEP 7: Click the “COM Components” tab.

STEP 8: Select from the “COM Components” list the 12 EzHMI ActiveX controls
and click “OK”.

 34

Figure 5: Load EzHMI controls to the toolbox of VS2008

 All the selected controls will be displayed beneath the EzHMI tab.

Figure 6: EzHMI controls in the toolbox

 35

4.2.1.2 Adding ActiveX controls to dialog resource
To add a control to the design surface and set their properties follow the next
steps:

STEP 1: Select from the toolbox the required control by clicking once on it.

STEP 2: Indicate with a click on the design surface the upper left position of the
control.

STEP 3: Right click the control and select from the pop-up menu “Properties”.
STEP 4: On the “Properties” window click the “Properties Pages” icon.

STEP 5: Now you can do the necessary configuration on the “Properties Pages”.
Note: Do NOT set the EzHMI control properties directly in the
“Properties” window. Always do the setting on the “Properties Pages”.

4.2.2 Refresh Time

In order to increase the performance of the system it is important to define refresh time
carefully. Here are some guidelines for configuring the refresh time:

− Select the refresh time in such a way that it reflects the rate at which the process
variables change. Each EzHMI control can be set to a different refresh time. For
example, displaying the ambient temperature the scan rate can be set to more than
1 minute as the temperature changes slowly and is not likely to change suddenly.
On the other hand, a digital point that is monitoring the on/off state of a valve
would need a shorter scan rate to accurately reflect the current valve status.

− As a good engineering practice, select the slowest possible scan rate that is
acceptable for your application. This will help prevent the system from being
overloaded by needlessly scanning processes.

− If the user interface has a large amount of EzHMI controls select a lower scanning
speed otherwise the graphic interface will not be updated within the refresh time.

− Always remember that the priority for updating the EzHMI controls is lower than
the priority for the controlling process (RTSR or ISR). Therefore if your

 36

controlling process is very CPU intensive less CPU resource will be available for
handling the graphic refreshing. In this case it is more reasonable to use a low
scan rate.

4.2.3 Language Switching

EzHMI allows you to configure a multilingual project. Up to eight languages can be
loaded simultaneously onto the HMI device. You can switch between the individual
languages at runtime. Language switching can be used on almost any EzHMI control. By
default language switching is not activated. To enable language switching on a control,
first add a EzHMI control to the design surface and in the property panel check the
“Display Status Text” checkbox. Make sure that the update rate (“Flash Timer 0,1,2 …”)
is set to a value greater than zero.

The following EzHMI controls support Multilanguage:

 LED
 SWITCH
 Label
 ButtonST
 ColorCheck

At design time you have to determine how many languages your program needs to
support and assign each language an index from 0 to 7. It is suggested to create a table
which lists the different languages with their assigned indexes. Every EzHMI controls
which supports Multilanguage input provides edit boxes with labels from 0 to 7. Make
always sure that the text is edited in the correct edit box by comparing the language index
and text field index. Both indexes have to be identical. Throughout the project it is
required to stick to one language numbering otherwise there will be a mismatch of
languages.

Language
Index Language Edit Box Index

0 English 0.

1 Traditional Chinese 1.

2 Simplified Chinese 2.

3 Japanese 3.

4 German 4.

5 Spanish 5.

 37

6 French 6.

7 Portuguese 7.

Table 4: Language mapping

Enter the text to be displayed on the control in different languages to the textboxes (0 to 7)
of the “Properties Pages”. Each language textbox (0 to 7) represent a different language.
The default text is set by selecting a language from drop-down list. In the figure above
language “Language 0.” is selected as the default language.

During runtime one of the eight languages (0 to 7) can be selected by

1. using EzHMI color radio control (see tutorial)
2. calling the SET_D() API in c code (see tutorial).

SET_D(WORD Dno, long Val);

with
Dno = 8000
Val = textbox number 0 to 7

 38

4.2.4 Register linking
EzHMI parameters and some properties have to be linked to registers during design time.
Register linking can be one way or bi-directional, that is to say that some parameters and
properties can only read data and others can both read and write data to the assigned
registry. The table below gives an overview of the register types the different EzHMI
controls can be linked to.

Figure 7: Registers accessed by EzHMI objects

 39

4.3 EzHMI ActiveX Controls

At present ICPDAS provides the following EzHMI controls:

4.3.1 LED Control

4.3.1.1 Description

The LED control can be used for indicating the following statuses

 on/off status,
 digital I/O status,
 over / under limit status,
 alarm, emergency,
 event,
 flag,

Setting:
In the following the configuration interface of the LED control will be discussed in more
details:

 40

4.3.1.2 LED Appearances

The LED control supports three types of shapes
− Rectangle
− Diamond
− Round

 And the following border styles:

− None
− Raised
− Lowered

The color of the LED for displaying the ON and OFF status can be selected by
clicking the color box next to the “ON Color” and “OFF Color”. In addition the
background color of the LED is selectable.

4.3.1.3 Caption

Each LED can be labeled with a caption text in 8 different languages. During runtime
the caption text can be changed to a different language. To display a caption on the
LED

− Check the “Display Caption” check box

 41

− Type in one or more text boxes (0 to 7) the caption text in different
languages

− Set the caption text font and size by clicking the “Font…” button
− Set the text color for the ON and OFF status by clicking the color button

next to “Status Text On Color” and “Status Text Off Color” and selecting
the desired color.

− Selected from the language combo box the default language.

4.3.1.4 Flash Timer

The task of the flash timer is to update the status of the LED display at fixed time
intervals. The unit of the flash timer is 50 milliseconds. A flash timer value of two
will update the LED status every 100 milliseconds.

If the flash timer setting is zero, the LED control will not be updated during the
program execution time and the system language setting can not be changed during
runtime. The control will not read any register it has been assigned to and therefore
will not react to any register status change. To ensure that the LED control is updated
in regular intervals an integer number greater than 0 has to be entered. The default
value is 100 milliseconds.

 42

4.3.1.5 Register assignment

A LED control can only read a status register (X/Y/M/S/T/C). The following steps
describe the linking of a LED control to a register:

STEP 1: The first step is to select a proper register type for the LED control. Select

from the combo box “Select X/Y/M/S/T/C” the required register type.
STEP 2: Then enter in the “X/Y/M/S/T/Cno LED(on/off)” a register number

according to the register table.

X and Y register stores data of digital IO modules plugged in slot 1 to 7. The mapping of
the register number with the digital IO modules is done by the EzConfig utility. To
choose a correct X or Y register number please consult the IO_Table generated by the
EzConfig utility. No additional coding is required when a LED control is directly linked
to a IO module register (X, Y).

Choosing register types T, C, M and S for the LED control requires the user to write c
code in the UserThread, RTSR or ISR to set the register to true or false. This is being
done by calling the following APIs:

 SET_T (WORD Tno, bool Flag, DWORD Tval)
 SET_C (WORD Cno, bool Flag,DWORD COUNT);
 SET_M (WORD Mno, bool Flag)
 SET_S (WORD Sno);

If the LED control is not mapped to a valid register number it can not update its status as
it has no valid source.

Notice that the XY register start from zero.
Make sure that a register number greater than zero is assigned for Register M, Register S,
Register T or Register C otherwise the LED control is not mapped correctly and can not
update its status.

 43

4.3.2 Switch

4.3.2.1 Description

The EzHMI SWITCH control displays two statuses: “ON” (true) or “OFF” (false).

A SWITCH control reads, sets and displays the current status of a Y, M register. The
mapped register can be set either to true or false. Clicking the EzHMI SWITCH causes
the switch to write the opposite status to the register. If for example the current status of a
register is true and the switch is activated, it will change the register to false.

A switch mapped to a digital output Y register can read and change the output state of a
device (e.g. a motor, valve, etc.) connected to the mapped output channel. Clicking the
SWITCH on the HMI automatically changes the state of the connected device.

Layout

The following types of switches are supported:
− LED
− Lever
− Rectangle
− Round
− Toggle

Setting:
In the following the configuration interface of the SWITCH control will be discussed in
more details:

 44

4.3.2.2 SWITCH Appearances

The SWITCH control supports the following shapes:
− LED
− Lever
− Rectangle
− Round
− Toggle

 45

The color for displaying the ON and OFF status can be selected by clicking the color
box next to the “ON Color” and “OFF Color”. In addition the background color of
the SWITCH is selectable.

4.3.2.3 Caption

Each Switch can be assigned with a caption enabling the user to clearly identify the
LED on the HMI. During runtime the caption text can be changed to a different
language.

Different Switch styles with caption:

Approach to display a caption on a SWITCH object:

− Check the “Display Caption” check box.
− Type in one or more text boxes (0. to 7.) the caption text in different

languages.
− Set the font and size of the caption text by clicking the “Font…” button
− Set the text color for the ON and OFF status by clicking the color button

next to “Status Text On Color” and “Status Text Off Color” and selecting
the desired color.

− Selected from the language combo box the default language.

 46

4.3.2.4 Flash Timer

The SWITCH control flash timer has basically two tasks:
1. Switch state has been changed: Update the corresponding register to the new

switch status.
2. Register state has been changed: Redraw the SWITCH to display the new

register state.

The flash timer reads from and writes to the status register at the set time interval.
The unit of the flash timer is 50 milliseconds. A flash timer value of two will update
the SWITCH display and register status every 100 milliseconds.

If the flash timer setting is zero:
− the SWITCH control will not be updated during the program execution time,
− the language setting can not be changed during runtime,
− the control will neither read from nor write to the register it has been assigned to.

 47

To ensure that the SWITCH control and the register are updated in regular intervals
an integer number greater than 0 has to be entered.

4.3.2.5 Register assignment

A SWITCH control can read from and write to a Y/M status register. The following
steps describe the linking of a SWITCH control to a status register:

STEP 1: Select a proper register type for the SWITCH control. Select from the combo

box “Select Y/M” the required register type.
STEP 2: Then enter in the “Y/Mno LED(on/off)” a register number according to the

register table.

X and Y register stores data of the physical DIO modules in slot 1 to 7. The mapping of
the register number with the DIO modules is done by the EzConfig utility. To choose a
correct X or Y register number please consult the IO_Table generated by the EzConfig
utility. No additional coding is required when a LED control is directly assigned to a DIO
module register (X, Y).

Choosing register types T, C, M and S for the LED control requires the user to write c
code in the UserThread, RTSR or ISR to set the register to true or false. This is being
done by calling the following APIs:

 SET_T (WORD Tno, bool Flag, DWORD Tval)
 SET_C (WORD Cno, bool Flag,DWORD COUNT);

 48

 SET_M (WORD Mno, bool Flag);
 SET_S (WORD Sno);

If the LED control is not mapped to a valid register number it can not update its status as
it has no valid source.

 49

4.3.3 EzHMI Lable

4.3.3.1 Description

A LABLE control can be set to display at runtime

− the current value of an assigned register (AI, AO, D, F)
− or a text message of an assigned register (MSG)
− or a fixed name or caption.

The LABLE control can have one of the following two states:

− Flashing:
The LABLE object starts to flash at a set time interval when a set
condition has been met.

− Static:
A new value or text message will be displayed in the set color.

Setting:
In the following the configuration interface of the LABLE control will be discussed in
more details:

 50

4.3.3.2 LABEL Appearances

The LABEL control supports the following border styles:
− None
− Client edge
− Static edge
− Modal frame

 51

4.3.3.3 Caption

Each LABLE support caption text in 8 different languages. During runtime the
caption text can be changed to different languages. To display a caption on the
LABLE

− Uncheck the “MSG/AI/AO/D/F Enable” check box.
− Type in one or more text boxes (0 to 7) the caption text in different

languages.
− Set the caption text font and size by clicking the “Fonts” tab
− Set the text and background color by clicking the color button next to

“Back Color” and “Font Color” and selecting the desired color.
− Selected from the language combo box the default language text (0 to 7) to

be displayed.
− Align the text by selecting DT_RIGHT, DT_CENTER or DT_LEFT from

the combo box
− Set the “Alarm Timer 0, 1, 2…” to zero for a static caption. A blinking or

flashing text to indicate an alarm is achieved by entering a number greater
than zero for the “Alarm Timer 0, 1, 2…”. The time unit is 50
milliseconds. For example: a value of 4 causes the LABLE to flash every
200 milliseconds.

 52

4.3.3.4 Register assignment

A LABEL control can read values or text messages from the assigned register (AI,
AO, D, F, MSG). The following steps describe the mapping of a LABEL control to a
register:

STEP 1: Check the “MSG/AI/AO/D/F Enable” check box
STEP 2: Select a proper register type for the LABEL control. Select from the

combo box “Select MSG/AI/AO/D/F” the required register type.

STEP 3: Enter in the “MSG/AI/AO/D/Fno Label” edit box a register number
according to the register table.

STEP 4: Set the LABEL control update rate in the “Flash Timer 0,1,2…” edit box.
The Flash timer reads values or text messages from the mapped register at
the set time interval. The unit of the flash timer is 50 milliseconds. A flash
timer value of two will update the LABEL display every 100 milliseconds.
If the flash timer setting is zero, the control will not be updated during the
program execution time. The language setting can also not be changed
during run time.

STEP 5: In case a float or long integer register type (“AI/AO/D/F”) has been

selected:
 Set the number of decimal places to display

STEP 6: If you want the control to flash or blink to indicate an alarm the following

additional settings have to be made:
 Enter a blinking frequency value for the “Alarm Timer 0, 1, 2…”

(Unit: 50 milliseconds). If this timer is set to zero the blinking
property is disabled.

 In case a float or long integer register type (“AI/AO/D/F”) has
been selected:

 53

− Enter a safe range by assigning a value for the upper
and lower limit. Once the value in the mapped register
exceeds the range the control starts to flash.

 In case a message register type (“MSG”) has been selected:
− Only messages in the MSG register which starts with a

“#” character will flash in the LABEL control. A text is
written to the MSG register by calling the following
EzCore API:

SET_MSG(WORD MSGno, TCHAR UMSG[30]);

MSGno – MSG register number

 UMSG[30] – Unicode message string

 Example:

SET_MSG(100, L"# Overvoltage");

This function call writes the text message “# Overvoltage”
to the MSG register at index 100. As the message starts
with the “#” character the LABEL mapped to the MSG
register 100 will blink at the interval set at “Alarm Timer 0,
1, 2…”

 54

4.3.4 EzHMI ColorEdit

4.3.4.1 Description

The main task of the ColorEdit control is to enable the user to write values or strings to
mapped register. When used as data entry, the data can be validated on entry to check for
minimum and maximum values. The entered value is then only accepted if the value lies
within the set limits.

At runtime a ColorEdit box

− writes values (float, integer) to and reads values from the assigned register (AO,
D, F),

− writes a text strings of maximum 30 unicode characters to the assigned register
(MSG) and reads strings from the register,

− displays a virtual keyboard for keying characters or values via touch screen.

Setting:
In the following the configuration interface of the ColorEdit control will be discussed in
more details:

 55

4.3.4.2 Flash Timer

The ColorEdit control flash timer has basically two tasks:
1. ColorEdit input has been changed: Update the corresponding register to

the new input.
2. Register has been changed: Display the new register content.

The flash timer writes to and reads from the assigned ColorEdit register at the set
time interval. The unit of the flash timer is 50 milliseconds. A flash timer value of
two will update the ColorEdit display and register status every 100 milliseconds.

If the flash timer setting is zero, the ColorEdit control will not be updated during the
program execution time. To ensure that the ColorEdit control and the register are
updated in regular intervals an integer number greater than 0 has to be entered.

4.3.4.3 Register assignment

A ColorEdit control writes to and reads from a register (MSG, AO, D, F). The
following steps describe the mapping procedure:

STEP 1: Select a proper register type for the control. Select from the combo box

“Select MSG, AO, D, F” the required register type.
STEP 2: Then enter in the “ColorEdit MSG, AO, D, Fno” a register number

according to the register table.
STEP 3: For the register types AO, D and F limit values can be set. If an entered

value exceeds the configured limit value the value is rejected.

 56

The control can be disabled by assigning “Mno(on) Disable ActiveX” a register number
and setting this register to true either by using a EzHMI SWITCH control or by calling
the EzCore API:

 SET_M (WORD Mno, bool Flag);

This prevents the user from entering any value or character to the ColorEdit box.

4.3.4.4 Virtual Keyboard
The virtual keyboard is an on-screen keyboard and can usually be operated with multiple
input devices, such as the actual keyboard, a computer mouse and a touch screen. Two
types of virtual keyboards are provided: a number keyboard and a character keyboard.

To enable the virtual keyboards the M8000 Register has to be set to true by either calling
the EzCore API

 SET_M (8000, true);

or by using the EzHMI SWITCH control.

If the MSG has been selected as register type for the ColorEdit control the character
keyboard pops up when the control receives the focus. A selection of AO, D or F register
type causes the number keyboard to appear as soon as the control is activated by the user.

Number keyboard

 57

Character keyboard

 58

4.3.5 EzHMI ButtonST

4.3.5.1 Description

The ButtonST control sets the flag of its assigned M register to true. It only writes data to
the M register. An event is triggered when you click the button. C code has to be
implemented to process the event.

The button sets the flag to true

− after it has been clicked or
− after it has been released or
− while it is being pressed (useful for jogging)

The ButtonST control supports the following layouts:

− Button with multilingual caption: The caption should describe the type of event
being triggered by the button click.

− Button with graphic: The button can be provided with two bitmaps, one for
indicating an enabled and the other for displaying a disabled button. The graphic
shown on the button gives information regarding the status of the button.

Setting:
In the following the configuration interface of the ButtonST control will be discussed in
more details:

 59

4.3.5.2 ButtonST Appearances

A ButtonST can have an image, caption and boundary on its surface.

The following display styles are being supported by the ButtonST control:

− FULL: The button surface area is filled with the attached image.
− HALF: Half of the button surface is filled with the image. The
 position of the image on the surface can be set:

 LEFT
 TOP

− QUADRATE: The image will be displayed in a square. The
 position of the square on the button surface have to selected:

 LEFT
 TOP

− BMP Offset: provides a button boundary. Boundary width is
measures in pixels.

 60

4.3.5.3 Caption

Each ButtonST support caption text in 8 different languages. During runtime the
caption text can be changed to a different language. To display a caption on the
ButtonST

− Type for each text box (0. to 7.) the caption text in a different language.
Each text box represents a different language.

− Set the caption text font and size by clicking the “Fonts” tab
− Set the text and background color by clicking the color button next to

“Back Color” and “Font Color”.
− Selected from the language combo box (Language 0., Langauge 1., etc)

the default language text (0 to 7) to be displayed.

4.3.5.4 Bitmap Attachment

Each ButtonST control can be enabled and disabled during runtime. For each status a
different bitmap can be attached to the button.

Procedure to load a bitmap into a ButtonST:

 61

STEP 1: Create a bitmap picture with a graphic program and save it as a .bmp file.
STEP 2: Load the bitmap file to the ButtonST by clicking the “Set BMP ” button

and selecting the desired image. Make sure that the data format of the
bitmap is .bmp.

STEP 3: Copy the bitmap file to the following directory on the WinCon or MPac:

− for WinCon: “\CompactFlash\EzProg-I\EzHMI\BMP”
− for MPac: “\System_Disk\EzProg-I\EzHMI\BMP”

4.3.5.5 Register assignment

Each button control can be linked to three different M register numbers.

1. “Button(Down) Mno(on)”: Clicking the button sets the assigned register to

true.
2. “Button(Up) Mno(on)”: Releasing the button sets the linked register to true.
3. “Button(DownUp) Mno(on/off)”: Clicking and keeping the button down

sets the linked register to true. As soon as the button is being released the
register will be set to false.

 62

For “Button(Down) Mno(on)” and “Button(Up) Mno(on)” register the flag can only
be set to true by the control. The register has to be reset either by using the EzHMI
SWITCH control or true by either calling the SET_M() API.
The following code, which can be implemented in the UserThread, RTSR or ISR, shows
how the change of a register status (here button down action is attached to M register 41)
can trigger an event and how to reset the status:

if(GET_Ma(41))
 {
 //implement here your event code
 //...

 //Reset the the status of register M41
 SET_M(41,false);
 }

Each ButtonST supports two states during runtime: enabled and disabled. An enabled
button can be activated (clicked) while a disable button allows no user input. Assign the
button a M register number by entering a value for “Mno(on) Disable ActiveX”. This
register number determines the status of the button. A true enables and a false disables
the button. The status of the register has to be set either by using a EzHMI control (e.g.
SWITCH) or by calling the SET_M() API.

 63

4.3.6 EzHMI Image Control

4.3.6.1 Description

The Image control allows the insertion of a bitmap image to the user interface. The image
can be a background image representing a plant or control system. Other controls like
LED and switches can be placed on top of the image. The Image control can also be
configured in such a way that it move across the user interface to a target position during
runtime. Furthermore the Image control can handle click events. C code has to be
implemented to process the event.

The Image control supports the following properties:

− Adding a bitmap Image to the user interface
− Replacing images during runtime
− Moving the images during runtime
− Clicking events

Setting:
In the following the configuration interface of the Image control will be discussed in
more details:

 64

4.3.6.2 Bitmap Attachment

4.3.6.2.1 Adding Default Image

A default bitmap image is an image shown on the user interface directly after program
start.

The following procedure describes the loading of a default bitmap:

STEP 1: Create a bitmap picture with a graphic program and save it as a .bmp file.
(Notice: WinCon supports only a color depth of 16 bits)

 65

STEP 2: Load the bitmap file to the Image control by clicking the “File… ” button
and selecting the desired image. Make sure that the data format of the
bitmap is .bmp.
If you do not want to display at program start, just leave the “BMP
Directory: ” empty.

STEP 3: Upload the bitmap file to the following directory on the WinCon or MPac:
− for WinCon: “\CompactFlash\EzProg-I\EzHMI\BMP”
− for MPac: “\System_Disk\EzProg-I\EzHMI\BMP”

Notice:
If you want to add a control (e.g. SWITCH, EzKnob, LED, etc) on top of the image make
sure that the tab order number of the added control is lower than the Image control. To
view and alter the tab order number in VS2008, click Format Tab Order. The tab
number for each control is displayed in a blue box. Change a number of a control by
clicking on it. Click the Image control representing the background after all the other
controls have been clicked. The Image control will show the highest tab number.

The following figure shows four controls with their respective tab numbers. Three
EzHMI Label controls with the numbers 1, 2, and 3 and an Image control with the tab
number 4. Image control displays a tank, combustion chamber and inlet and outlet valves.
The Image control forms the background and therefore is set to the highest tab number 4.

 66

4.3.6.2.2 Changing Image at Runtime

A default bitmap image can be replaced during runtime by another image.

The following steps demonstrate the procedure:

STEP 1: Create one or more bitmap pictures and save them as .bmp files by using
the following filename convention: PICxxx.bmp
The filename should always start with PIC
Enter for xxx any number in the range from 1 to 2147483647
Examples:

− PIC1.bmp
− PIC10.bmp
− PIC1356.bmp

 (Notice: WinCon supports only a color depth of 16 bits)

STEP 2: Download the bitmap files to the following directory on the WinCon or
MPac:

for WinCon: “\CompactFlash\EzProg-I\EzHMI\BMP”
for MPac: “\System_Disk\EzProg-I\EzHMI\BMP”

STEP 3: Assign “Dno Change BMP(PICxxx.bmp)” a D register number. This
register determines which picture is going to be displayed on the Image
control.

 67

The number indicated by xxx in STEP 1: have to be written to the D
register number. The register value can be changed either
programmatically (UserThread, RTSR, ISR) or by using an EzHMI
control (e.g. ColorEdit control).

Examples:
In this example it is assumed register number 3000 has been mapped to
“Dno Change BMP(PICxxx.bmp) ”. The register value is changed by
calling the API SET_D():

− PIC1.bmp SET_D(3000, 1);
− PIC10.bmp SET_D(3000, 10);
− PIC1356.bmp SET_D(3000, 1356);

STEP 4: Assign “Mno(On) Active Change” a M register number. If this register

changes its value from false to true the control displays the image assigned
to the D register number in STEP 3:. The Image control sets the M flag
automatically back to false after updating the image.

STEP 5: Implement the code for changing the image.
In the following example the “Dno Change BMP(PICxxx.bmp)” has
been mapped to D register number 3000 and “Mno(on) Active Change”
to M register number 1.

Alternative 1:
Add the following code to the UserThread, RTSR or ISR:

//Assign image PIC1356 to D register 3000:
 SET_D(3000, 1356);

//Inform the Image control to display PIC1356
// by setting the M register 1 to true
 SET_M(1, true);

Alternative 2:
Add a SWITCH and a ColorEdit control to the dialog.

− Set the SWITCH control properties as shown in the following
figure:

 68

− Set the ColorEdit control properties as follows:

At runtime the user can enter a valid picture number in the ColorEdit box.
After setting the SWITCH to true the Image control will be updated with
the selected image.

4.3.6.2.3 Changing the Image position at runtime

During runtime the position of the Image control can be changed. In this case the control
can represent a moving object (e.g. assembly line) on the screen.
The following steps are required:

STEP 1: Add an image to the control as described in the previous two section

STEP 2: Select two D register for storing the image x and y position. Only the
register number for the x position has to be entered. The number following
x register number is automatically assigned to the y position. Therefore
you have to make sure that this number is not being reserved for a
different purpose.

 69

STEP 3: Assign “Mno(on) Active Change” a M register number. If this register
changes its value from false to true the control reads the target position
and moves to the new position. The Image control sets the M flag
automatically back to false after the reading operation has finished.

STEP 4: Implement the code for changing the image position. In the following
example “InputX(Dno),Y(Dno+1) Move to(X,Y)” has been mapped to D
register number 4 and “Mno(on) Active Change” to M register number
1.

The control uses a coordinate system similar to the Cartesian's but the
origin is located on the top left corner of the dialog box. Using this
coordinate system, any point can be located by its distance (unit = pixel)
from the top left corner of the dialog box.

 70

Alternative 1:
Add the following code to the UserThread, RTSR or ISR:

//New image position:
// x-axis:
 SET_D(4, 15); // x = 15
// y-axis:
 SET_D(5, 20); // y = 20

//Inform the Image control that the position has been
// changed:
SET_M(1, true);

Alternative 2:
Add a SWITCH and two ColorEdit control to the dialog.

− Set the SWITCH control properties as shown in the following
figure:

− Set the ColorEdit control properties for the X- axis as follows:

− Set the ColorEdit control properties for the Y- axis as follows:

 71

At runtime the user can change the position of the image by entering
values for the x- and y-axis in the ColorEdit boxes. Set the SWITCH to
true in order to move the Image control to the new position.

4.3.6.3 Events

The Image control generates three types of events. To make use of an event assign it to an
M register numbers.

1. “Click Down Mno(On)”: Clicking the image sets the assigned register to
true.

2. “Click Up Mno(On)”: Releasing the button after clicking the image sets the
linked register to true.

3. “Click Down/Up Mno(On/Off)”: Clicking the image and keeping the button
down sets the linked register to true. The register will be set to false as soon as
the button is being released.

 72

The flag for the “Click Down Mno(On)” and the “Click Up Mno(On)” registers set
to true by the control itself. The register has to be reset to false either by using an EzHMI
SWITCH control or by calling the SET_M() API.

Example:
The following code, which can be implemented in the UserThread, RTSR or ISR, shows
how to use a flag generated by a click event. It is important to reset the flag to false in
order to catch the next click event.

if(GET_Ma(50))
 {
 //implement here your event code
 //...

 //Reset the the status of register M41
 SET_M(50,false);
 }

 73

4.3.7 EzHMI ColorCheck

4.3.7.1 Description

The ColorCheck control is associated to a group of 8 check boxes. The checkbox group
appears on a separate window form when the ColorCheck control is being clicked. None,
one or more checkboxes may be checked by the user according to the information they
wish to send with the form. A checkbox indicates whether a particular item is selected or
not. A checkbox can also be used as a switch to present a on/off , open /closed or
true/false status to the user.

The ColorCheck control supports the following properties:

− Multi-Language selection
− Selection of one or more options from a set of alternatives
− Selection change notification

Setting:
In the following the configuration interface of the ColorCheck control will be discussed
in more details:

 74

4.3.7.2 Caption

4.3.7.2.1 ColorCheck Caption

The purpose of the caption is to act as a header for the item list to enable the user to
identify the list more easily. As with most EzHMI ActiveX the ColorCheck supports
caption text in 8 different languages. In the control property sheet each text box (0. to
7.) represents a different language. During runtime the caption text can be changed to
a different language. To display a caption on the ColorCheck:

− Replace the default caption text (Caption0, Caption1, …). Each textbox
represents a different language.

− Set the caption text font and size by clicking the “Fonts” tab
− Set the text and background color by clicking the color button next to

“Back Color” and “Font Color”.
− Selected from the language combo box (Language 0., Language 1., etc.)

the default language (0 to 7).

 75

4.3.7.2.2 Checkbox Caption

The ColorCheck dialog window displays 8 checkboxes. Each checkbox has to be
provided with a caption. A checkbox with no caption will automatically be disabled
and the user can not enable or check it during runtime. Multilanguage support for
checkbox caption is provided. Each column in the “List Items” group represents the
caption text of the checkboxes in a different language. A column consists of eight
textboxes each storing the text for the eight checkbox caption. It is not possible to
change the color, font or size of the checkbox caption text.

In the following figure only the first six of the eight checkboxes are assigned a
caption text. Therefore on the checkbox group window the checkboxes provided with
a name are enabled and can receive use input the others are disabled.

4.3.7.3 Register assignment

 76

The checkboxes within the group are sequentially numbered starting from zero. The
statuses of the eight checkboxes are written to the linked BYTE register. The least
significant bit represents the status of the first checkbox in the group, bit 1 represents the
second checkbox and so forth. Enabling/disabling one or more checkboxes writes the
new status to the mapped B register.

The checkbox status is linked to a register by entering for “Check Select Bno” a B
register number.

Furthermore it is possible to indicate with a notification flag that changes were made to
the ColorCheck by the user. Assign “Check Change Mno(On)” to a M register
number. Every time the user changes a checkbox status this register will be set to true
after the checkbox group window has been closed.

The following code snippet, which can be implemented in the UserThread, RTSR or ISR,
shows how to read the ColorCheck status. The notification flag “Check Change
Mno(On)” is mapped to M register 111 and the ColorCheck status “Check Select
Bno” to B register 1.

 77

 bool bCheckBox[8];

 // STEP 1: Check whether the ColorCheck control status has changed
 if (GET_Ma(111)== true)
 {
 // STEP 2: Read the status of each checkbox
 for(int i=0; i< 8; i++)
 {
 bCheckBox[i] = GET_B(1) & (1<< i);

}

 // STEP 3: Reset the notification flag to false
 SET_M(111, false);

 // STEP 4:
 //Implement code to handle the new setting

 //If checkbox 0 is checked
 if(bCheckBox[0]== true)
 {
 // add your code
 }

 //If checkbox 1 is checked
 if(bCheckBox[1]== true)
 {
 // add your code
 }

 …...
}

The status of the ColorCheck can not only be changed via the graphic interface but also
by directly changing the value of the assigned B register number in the program. Use the
following function:

SET_B(WORD Bno,BYTE Val);

The only way to set the checkbox group to a default selection at program start is by
calling the SET_B() function in the MFC OnInitDialog() function.

Example:
The ColorCheck status “Check Select Bno” is linked to B register 1.
The following function call unchecks all the checkboxes.

SET_B(1,0);

 78

4.3.8 EzHMI ColorRadio

4.3.8.1 Description

The ColorRadio control represents a group of 10 radio buttons which appears on a
separate window form when the ColorRadio control has been clicked. Radio buttons
work just like checkboxes except that they are mutually exclusive to one another. When
the operator selects an option, any previously selected option in the same group becomes
deselected. A ColorRadio control therefore allows only one single item out of the group
to be selected.
By default one option is selected, even if the user has not made any input.

Figure 8: ColorRadio window

The ColorCheck control supports the following properties:

− Multi-Language selection
− Selection of one options from a set of alternatives
− Selection change notification

Setting:
In the following the configuration interface of the ColorRadio control will be discussed in
more details:

4.3.8.2 Caption

Each radio button on the radio window needs to be provided with a caption name. A
radio button without a name will be shown as a disabled button and is not available for
user input. The name of the selected option button will be shown automatically on
ColorRadio control.

 79

The Radio button names have to be entered in the items list. Each column in the “List
Items” group represents the caption name of the radio button in a different language.
A column consists of ten edit boxes each storing the name of the respective radio
button.

It is possible to set the color, font and text size of the ColorRadio button but this
setting can not be done for the buttons on the ColorRadio window.

Altering the appearance of the ColorRadio button:

− Set the caption text font and size by clicking the “Fonts” tab
− Set the text and background color by clicking the “Back Color” and “Font

Color” buttons.
− Selected from the language combo box (Language 0., Language 1., etc.)

the default language text (0 to 7).

The following figure shows how to disable a radio button by simply not entering a
name for the respective radio button. The first three radio buttons have a caption text.

 80

Therefore the ColorRadio window shows only three enabled radio button with names
and the others are disabled. The unused buttons can not be removed from the window.

4.3.8.3 Register assignment

The ColorRadio window has to be mapped to a D register. This is done by entering for
“Radio Select Dno” a valid D register number. The radio buttons on the ColorRadio
window are numbered from zero to nine. After selecting a radio button the number of this
button will be written to the assigned register. For example, when button 3 is selected the
register will store the number 3.

The default value of a radio button has to be set in the USER_INITIAL()function in the
A_Template.ccp file of the EzTemplate.

Example: The “Radio Select Dno” is linked to D Register 2. The radio button no. 7 is
chosen to be the default selected button; therefore it is required to write the value 7 to the
register.

void USER_INITIAL()

 81

{

 // Add your initialisation code:
 SET_D(2, 7);

}

Furthermore it is possible to indicate with a notification flag that changes were made to
the ColorRadio window by the user. Assign “Radio Change Mno(On)” to a M
register number. Every time the user selects a different radio button, this register will be
set to true. The register have to be reset to false by calling SET_M(RegisterNo, false).

A ColorRadio is disabled by assigning “Mno(On) Disable ActiveX” a M register
number and set this register to false by using the EzHMI SWITCH control or by calling
the SET_M() API in the program. A disabled ColorRadio does not process any user input.

The following code, which can be implemented in the UserThread, RTSR or ISR, shows
how to read the ColorRadio status. The notification flag “Check Change Mno(On)” is
mapped to M register 222 and the radio button selection “Check Select Dno” to B
register 2.

 // STEP 1: Check whether a new radio button has beeen selected
 if (GET_Ma(222)== true)
 {
 // STEP 2: Reset the notification flag to false
 SET_M(222, false);

 // STEP 3:
 //Implement code to handle the new setting

 switch (GET_D(2))

{
 case 0: //option button no 0 is selected
 // add your code
 break;

 case 1: //option button no 1 is selected
 // add your code
 break;

 case 2: //option button no 2 is selected
 // add your code
 break;
 .
 .

 82

 .
 case 9: //option button no 9 is selected
 // add your code
 break;
}

}

 83

4.3.9 EzHMI EzKnob

4.3.9.1 Description

The EzKnob visualizes data like pressure, temperature, volt, etc. in form off Multi-
Needle Gauge. The EzKnob object has two features:

 it displays the value of the source register in an intuitive way,
 manual input by dragging the needle (via mouse or touch screen) to the required

position automatically updates the destination register with the value of the
EzKnob.

The EzKnob is available in different graphic looks with a range of configurable
parameters in order to be customized according designer's needs. Text regions on the dial
face can show tick value, units and scale multiplier. The color of each part of the dial is
configurable. If the EzKnob source register is connected to an AIO channel, the dial will
automatically move its needle to match the value of the channel with no need for any
application code.

Setting:
In the following the configuration interface of the EzKnob control will be discussed in
more details:

4.3.9.2 Appearances

1. Styles:
 Knob 1
 Knob 2
 Knob 3

2. Frame:

Select between EzKnob with or without a frame

 84

3. Tick configuration:

The configuration allows two different sized ticks (major and minor ticks) to
be placed at regular intervals along the Scale. The control allows the
following ticks settings:
 Number of ticks
 Tick color
 Tick minimum and maximum value

4. EzKnob color:

Each component of the dial may have a different color:
 Indicator or needle
 Track
 Scale text
 dial background
 Tick label
 Tick unit label
 Scale factor label

5. Label text font and position:

The text font and position of the following labels can be set:
 Tick label
 Tick unit label
 Scale factor label

4.3.9.3 Register assignment

The EzKnob object can be set to one of the following mode at a time:
 Only read and display register data.
 Write data to a register by letting the user change the needle or indicator

position and reading data from the register.

4.3.9.3.1 Display register data
The EzKnob control is able to display data from an AI, AO, D or F register type.

STEP 1: Select “Output” as the control type to put the control into read mode.

STEP 2: Select a register type from the “Select Input AI/AO/D/Fno” combo box

 85

Link the control to the selected register type by entering a number for
“AI/AO/D/Fno Knob Value”.

STEP 3: Enter a refresh time interval value for the “Flash Timer 0, 1, 2,..”. This
enables the EzKnob to read the assigned register and update the display to
the current reading at the set time interval.

STEP 4: Flashing alarm: Alarm occurs when the range limits of the control has been

exceeded. In an event of an alarm the background of the control starts to
flash. The following settings are required:

i. Specify the upper and lower limit
ii. Define the flashing frequency (“Alarm Timer 0,1,2…”). The

value must be greater than zero otherwise the alarm is disabled.

 86

4.3.9.3.2 Enter and display register data
The EzKnob control is able to write data to and read data from an AO, D or F register
type. By changing the position of the gauge needle the user can write data to the register.
In addition new register data are displayed by the gauge.

STEP 1: Select “Input” as the control type to put the control into read/write mode.

STEP 2: Select a register type from the “Select Input AO/D/Fno” combo box
Link the control to the selected register type by entering a number for “Knob
Value AO/D/Fno”.

STEP 3: Enter a refresh time interval value for the “Flash Timer 0, 1, 2,..”. This
enables the EzKnob to read/write the assigned register and update the
display to the current reading at the set time interval.

STEP 4: Flashing alarm: To enable flashing when a range has been exceeded the

following settings are required:
i. Specify the upper and lower limit

ii. Define the flashing frequency (“Alarm Timer 0,1,2…”). The value
must be greater than zero otherwise the alarm is disabled.

STEP 5: The EzKnob can be disabled for user input during runtime. Enter a M

register number for “Mno(On) Disable Indicator”. Setting this flag to true
during runtime will disable the control for user input.

 87

4.3.10 EzHMI EzSlider

4.3.10.1 Description

The EzSlider object offers two modes:

 Displays register values. The slider element will move up or down the scale to
show the value.

 Manual input capability by slider dragging (via mouse or touch screen). Each
change of the slider position immediately updates the destination register with the
slider value.

The EzSlider is available in different graphic looks with a range of configurable
parameters in order to be customized according designer's needs. Orientation can be
horizontal or vertical, with slider value increasing from bottom to top or from left to right.
This multi-purpose control has three different style options: Slider, linear gauge and
thermometer.

Setting:

 88

In the following the configuration interface of the EzSlider control will be discussed in
more details:

4.3.10.2 Appearances

1. Styles:
 Slider
 Linear Gauge
 Thermometer

2. Frame:

Select between a control with or without a frame.

3. Orientation
 VERTICAL
 HORIZONTAL

4. Tick configuration:

Two different tick types (major and minor ticks) are provided to be placed at
regular intervals along the Scale. The control allows the following ticks
settings:
 Number of ticks
 Tick color
 Tick minimum and maximum value

5. EzSlider color:

Each component of the control can be assigned a color:
 Indicator or pointer
 Scale track
 Slider background
 Tick label

6. Label text font:

The text font of the tick label labels can be set.

4.3.10.3 Register assignment

The slider supports two modes:
 If configured to read a source register, the slider will move up or down the scale

to the position representing the value.
 If a destination register is selected, that register will be updated with the value of

the slider. If the register value has been changed by another control or program
code the slider position will be updated to the new value.

 89

4.3.10.3.1 Display source register data
The EzSlider control is able to display data from an AI, AO, D or F register type.

STEP 1: Select “Output” as the control type to put the control into read mode.

STEP 2: Select a register type from the “Output AI/AO/D/Fno” combo box
Link the control to the selected register type by entering a number for
“AI/AO/D/Fno Slider Value”.

STEP 3: Enter a control refresh time interval value for “Flash Timer 0, 1, 2,..”. This
enables the EzSlider to read the assigned register and update the display to
the current reading.

4.3.10.3.2 Change and display destination register data
If the EzSlider control is set to a read/write mode data can be written to or read from AO,
D or F register types. By changing with the mouse the slider position the associated
register will immediately be updated to the new value. If the register data is being
changed by the program or a different control the EzSlider object is automatically
updated with the new data.

STEP 1: Select “Intput” as the control type to put the control into read/write mode.

 90

STEP 2: Select a register type from the “Select Input AO/D/Fno” combo box
Link the control to the selected register type by entering a number for
“Slider Value AO/D/Fno”.

STEP 3: Enter a refresh time interval value for the “Flash Timer 0, 1, 2,..”. This
enables the EzSlider to read the assigned register and update the display to
the current reading.

STEP 4: The slide bar can be disabled for user input during runtime. Enter a M

register number for “Mno(On) Disable Pointer”. Setting this flag to true
during runtime disables the control for user input.

 91

4.3.11 EzHMI EzList

4.3.11.1 Description

The EzList records messages and informs the user during operation. For example
information, warning, error and alarm messages are displayed by the list. The list consists
of three columns displaying the message together with the date and time of arrival. A list
can store up to 256 messages. The newest message is always added on top of the existing
list. Older messages will be overwritten when the number of messages exceeds the
available list rows. Each list is provided with a vertical scroll bars to scroll through the
messages.

The EzList has the following runtime functions:

− Output of messages (maximum 30 Unicode characters)
− Output of the date and time
− Delete EzList contents

The EzList is a passive control which only reads messages from the MSG register and
does not allow the user to do any direct editing. The MSG register itself however can be
changed for example through the ColorEdit or by using the SET_MSG() function.

Setting:
In the following the configuration interface of the EzList control will be discussed in
more details:

4.3.11.2 Appearances

1. Styles:

 92

 Row with/without lines
 Row color
 Text color and size
 Background color
 Number of rows

2. Frame:

Select between a control with or without a frame

3. Time label:
 List with/without date label
 List with/without time label

4.3.11.3 Register assignment

STEP 1: Assign a source MSG register number for “MSGno EzList”. This register
contains the message to be displayed on the list

STEP 2: A flag is required to trigger an update of the list. Assign “Mno Update” a
M register number. As soon as this register changes its status from false to
true the text in the MSG register will be added to the top of the list. After the
list has been updated the EzList automatically resets the M register status to
false.

STEP 3: Assign “Mno Clear All” an M register number. Setting this register to true
will remove all text messages from the list. The EzList automatically resets
the M register status back to false.

STEP 4: Set the display refresh time (Flash Timer 0,1,2…).

Example:
In the following code the message “Hello World” is written to the list. “Mno Update” is
assigned to M register 1 and “MSGno EzList” to MSG register 1.

//Step 1: Assign the MSG register number 1 the string “Hello World”:
 SET_MSG(1, L”Hello World”);

 93

//Step 2: Add the string to the top of the list:
 SET_M(1, true);

 94

4.3.12 EzHMI Position

4.3.12.1 Description
The Position control is used for motion control applications. It can be set to display one
of the following motion parameters:

− Logic Position (LP)
− Encoder Position (EP)
− Velocity (CV)
− Acceleration (CA)

4.3.12.2 Configuration

STEP 1: Select the slot number of the motion control card.
STEP 2: Select an axis.
STEP 3: Determine which parameter to read:

i. Logic Position (LP)
ii. Encoder Position (EP)

iii. Velocity (CV)
iv. Acceleration (CA)

STEP 4: Enter the update rate.

 95

5 EzConfig Utility

5.1 Introduction
EzConfig is a utility to read, set and test the system configuration. The main task of the
utility is to detect the IO modules in the PAC slots and map each input/output channel to
a register number of the corresponding register type. The programmer can access the IO
channels by directly reading or writing to their mapped registers. Four different IO
register types (X, Y, AO, AI) are provided: two for storing digital IO values and two for
storing analog IO values.

Table 5: IO register types

The EzCore provides c functions for accessing IO registers:

Table 6: APIs for accessing IO registers

Note: It is very important to map all IO channels to IO registers with the EzConfig utility
before any other EzProg-I program (or any other program using the EzCore library) can
be started. Changing the PAC module setup (e.g. adding new modules to the PAC,
plugging existing modules into different slots) requires a new IO mapping by means of
the utility.

 96

5.2 Main properties
The utility has got the following main tasks:

− Slot configuration
− Module configuration
− Register mapping
− Reading input values and writing output values

Figure 9: PAC before scanning its slots

Button Property

Scans every slot of the PAC for IO modules. Once a module has been
detected and identified its image will be shown on the corresponding slot
on the screen and its channels will be automatically mapped to a register
number of the respective IO register.

Reads the previously saved PAC slot setting, module configurations and
IO register mapping. The slot settings are displayed by showing the image
of the PAC device itself with all the plug-in modules at the correct
position.

All the .NOT and .INI binary files in the EzConfig directory are read.

Saves the PAC slot settings (module names and their slot position),
module configurations and IO register mappings to the .NOT and .INI
binary files :

 97

− Device.ini − noteDO.not

− noteAI.not − noteDW.not

− noteAO.not − noteF.not

− noteB.not − noteM.not

− noteC.not − noteT.not

− noteD.not − noteW.not

− noteDI.not

The EzCore engine uses these settings to update the IO registers with the
correct input and output values.

Reads the value (“Val”) column and description (“NOTE”) column of the
IO_Table.XML file. The initial value of each register and the description of
the register are loaded.

Opens the user interface for entering the default or initial value and
description for each register.

Save the initial value settings and descriptions of all the registers to the
IO_Table.XML file.

Note: The EzCore engine is responsible for initializing and updating the
registers. The EzCore only accesses the configuration set in the .NOT
and .INI binary files and does NOT read the IO_Table.XML file. Therefore
it is necessary to save the initialization to the .NOT and .INI binary files by
clicking the button.

Exit the EzConfig utility.

Table 7: EzConfig button description

 98

5.3 Slot scan and IO register mapping

STEP 1: Start the the EzConfig utility on the Windows CE platform:
Start Program ICPDAS EzProg-I EzConfig

Figure 10: Start EzConfig utility

STEP 2: Click the “Scan Slot 1~7” button and confirm your decision by clicking “Yes” in

the message box.

Figure 11: Start scan process

Every slot of the PAC will be scanned. Once a module has been detected and
identified it is displayed in the corresponding slot on the EzConfig drawing. At
the same time all the IO channels of the modules are mapped to IO register
numbers.

 99

Figure 12: Modules detected during the scan process

STEP 3: The IO register mapping can be determined by clicking on a module. In addition
each module can be configured individually. For example the physical unit of the
analog input data (e.g. ampere, volt, and temperature) and the data range (e.g. -50
to 50mV, 4 to 20mA) of an analog input module have to be configured.

 Figure 13: Configuration interface of the i-8017H analog input module

STEP 4: Press “Save” to save the IO register mapping.

STEP 5: Press “Exit” to close the program.

Note: It is necessary to close the EzConfig utility in order for other EzProg-I
programs to run smoothly.

 100

5.4 Module and channel configuration

The configuration page has the following purpose:

i. Channel configuration
ii. Channel description

iii. Direct channel access: writing output, reading input

Only Modules which are plugged into the slots can be configured.

i. Use the Scan button to detect and display all plug-in modules.
After the slots have been scanned it is not allowed to change the slot
setting. That means it is not permitted to remove modules from a slot, add
new modules or change the modules slot position. This will cause an error.
Every change of the slot setting requires a new slot scan.

ii. Click on the image of a module to open its configuration interface. Make
the necessary configuration and confirm the configuration setting by
clicking the “OK” button. Now click on the image of the next module
which needs to be configured.

iii. After all the modules have been set save the configuration by clicking the
 button.

5.4.1 Digital input configuration

The configuration page of a digital input module displays for each input channel the
current status (ON/OFF), the assigned register type and register number. Digital input
channels can not and do not need to be configured, but it is possible to add a 30 character
comment next to each channel to describe its function in the control system.

Channel status:

− green color represent OFF
− red color represent ON

Example:
Click on the image of the DI module i-8040 in the first slot (see Figure 12). The i-8040
module has got 32 DI channels. The current status of each channel is displayed together
with the mapped register type (X) and register number.

Note: The register numbering for the X register type is based on the octal numeral system
(base-8 number system).

Octal: 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20 21

 101

Decimal: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

In this example some DI channels LED are provided with a comment to specify their
purpose in the control system.

Figure 14: Configuration interface of the i-8040 digital input module

 102

5.4.2 Digital output configuration
The configuration page of a digital output module displays for each output channel the
current status (ON/OFF), the assigned register type (Y) and register number. Each
channel is represented by a switch which indicates the channel state. The state of a
channel can be directly changed by clicking the respective switch. A 30 character long
comment can be added to the text box next to each channel to describe its task in the
control system.

Channel status:

− green color represent OFF
− red color represent ON

Example:
Click on the image of the DO module i-8041 in the second slot (see Figure 12). The i-
8041 module has got 32 DO channels. The current state of each channel is displayed
together with the mapped register type (Y) and register number.

Note: The register numbering for the Y register is based on the octal numeral system
(base-8 number system).

Octal: 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20 21

Decimal: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

In the following picture some DO channels have a comment to describe their task in the
control system.

 103

Figure 15: Configuration interface of the i-8041 digital output module

 104

5.4.3 Digital IO configuration
This user interface is a combination of the digital in- and output configuration page. The
current status (ON/OFF), the assigned register type (X/Y) and register number of each
channel are displayed. Input channels are represented by an oval-shape icon and output
channels by a rectangular switch. The state of an output channel can be directly changed
by clicking the respective switch. A 30 character long comment can be edited to the text
box next to each channel to describe its role in the control system.

Channel status:

− green color represent OFF
− red color represent ON

Example:
Click on the image of the DIO module i-8042 in the third slot (see Figure 12). The i-8042
module has got 16 DI and 16 DO channels. The current state of each channel together
with the mapped register type (X or Y) and register number are displayed.

Note: The register numbering for the X and Y registers are based on the octal numeral
system (base-8 number system).

Octal: 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20 21

Decimal: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 105

Figure 16: Configuration interface of the i-8042 digital IO module

 106

5.4.4 FRnet configuration

The FRnet master module i-8172 has two ports (port 1 and port 2) and is preconfigured
by ICPDAS as follows:
The master can control via one port up to 128 digital output and 128 digital input
channels. For each master port the first 8 slave addresses (00 to 07) are reserved for
digital output modules and the remaining 8 addresses (08 to 15) are reserved for digital
input modules. ICPDAS provides two types of FRnet slaves: digital input devices with 16
channels and digital output devices with 16 channels. Therefore up to16 ICPDAS FRnet
modules can be connected to each master port: a maximum of 8 DI and 8 DO FRnet
slaves.

The user interface for the FRnet master module displays the FRnet slaves with their
FRnet addresses and their master port. For each FRnet slave a separate user interface can
be opened in which the current status (ON/OFF), the assigned register type (X/Y) and
register number of each channel are displayed. Input channels are represented by an oval-
shape icon and output channels by a rectangular switch. The state of an output channel
can be changed by clicking the respective switch. A 30 character long comment can be
edited to the text box next to each channel to describe its role in the control system.

Note: The register numbering for the X and Y registers are based on the octal numeral
system (base-8 number system). FRnet X and Y register numbers start from 1000 (octal
number).

Octal: 1000 1001 1002 1003 1004 1005 1006 1007 1010 1011 1012

Decimal: 512 513 514 515 516 517 518 519 520 521 522

Channel status:

− green color represent OFF
− red color represent ON

Example:
Click on the image of the FRnet module i-8172 in the fourth slot (see Figure 12). The
first eight rows represent the FRnet addresses (00 to 07) for the digital output slaves for
the FRnet master port 0 and 1. The remaining addresses (08 to 15) are reserved for digital
input FRnet modules.
In this example one digital output module (FR-2057T) with the address 00 and one digital
input module (FR-2053T) with the address 08 are connected to port 0 of the i-8172 FRnet
master module and one digital output module (FR-2057T) with the address 00 to port 1.

STEP 1: Enable the “Port 0: DO(00) Group” check box to integrate the digital
output module (FR-2057T) with the address 00 into the system.

 107

STEP 2: Enable the “Port 0: DI(08) Group” check box to integrate the digital
input module (FR-2053T) with the address 08 into the system.

STEP 3: Enable the “Port 1: DO(00) Group” check box to integrate the digital

output module (FR-2057T) with the address 00 into the system.

STEP 4: Click the “FRnet Config” button to add all three modules to the masters
polling list. The FRnet master will now access these modules.

Figure 17: Configuration interface of the i-8172 FRnet master module

STEP 5: To open the digital IO user interface for a slave FRnet module click the

red button next to the slave.

 108

Figure 18: FRnet master configuration interface

STEP 6: Click the “0:00” button to open the user interface of the digital output

slave (address 00) of port 0. The state and the Y register number of each
channel are displayed.

Figure 19: FRnet slave interface

Note:
The register number mapping may change if new FRnet slaves are added to the control
system.

 109

5.4.5 Analog input configuration

For each channel the analog input type (engineering unit and range), offset and gain can
be set. The configuration page displays the mapped register type (AI) and register
numbers. The polling of the input channels starts as soon as the scanning process has
been activated (“Input Scan”). A 30 character long comment can be edited to the text box
next to each channel to describe its purpose.

5.4.5.1 Offset and Gain
Offset and gain commands are used for calibration. By setting offset and gain, you make
sure that values read from a field device are more accurate.

Offset
Offset is the difference between the minimum analog input value read and the actual
minimum analog value.

Actual Value = Reading + Offset

Example:
The module is set to measure a range 4–20 mA values. If the actual input signal is 4 mA and the module
reads a value of 4.006 mA then the offset is 0.006 mA. The offset represents the difference between the two
minimum values.

Gain
Gain is the ratio of the full-scale reading to the maximum input.

Actual Value = Measured Value * Gain
Offset must be calculated first; then gain is calculated.

Each analog input channel is automatically mapped to a register number of the
register type AI. The number can not be changed by the user.

Select an engineering unit (ampere, voltage) and range for the input value.

Analog input offset.

Analog input gain.

Annotation field

Actual input value = (measured value + Offset) x Multiple

 110

Example:
The module is set to measure a range 4–20 mA values.
If maximum input = 20.00 mA
and measured value = 20.40 mA
then gain = actual value/ measured value = 20/20.40 = 0.980392

The formula which takes the offset and gain into account:

 Actual Value = (Reading + Offset) * Gain

Example:
Click on the image of the analog input module i-8017 in the fifth slot (see Figure 12). The
i-8017 module has got eight analog input channels. The configuration page shows the
mapped register type and register numbers (AI 0 to AI 7).

STEP 1: Select the required gain mode (engineering unit and range) of the input
signal.

STEP 2: Calibrate all channels by entering the correct offset and gain (multiple)

values.

STEP 3: Save the calibration values by clicking the “AI Config” button.

 111

STEP 4: Click “Input Scan” to poll the channels.

Figure 20: Configuration interface of the i-8017H analog input module

5.4.6 Analog output configuration

For each analog output channel the output type (physical unit and range), offset and gain
can be set. The register type (AO) and register numbers of each channel are displayed on
the configuration interface. Further more the user can directly output analog values by
using the configuration interface. A 30 character long description can be added to every
channel to specify its purpose in the control system.

1. Each analog output channel is automatically mapped to a register number of the
register type AO. The register number allocation is done by the EzConfig utility
and can not be changed by the user.

 112

2. Select a physical unit (ampere, voltage) and range for the output value.

3. Offset value for analog output signal

4. Gain value for analog output signal

5. Default analog output value.

6. Annotation field.

 113

5.4.6.1 Offset and Gain for analog output
Offset and gain commands are used for calibration. By setting offset and gain, you make
sure that values sent to a field device are more accurate.

Offset
Offset is the difference between the minimum analog output value sent by the controlling
software and the actual analog value.

Actual Value = Sending + Offset

Example:
The module is set to a 0–20 mA range. If the controlling program sends 0 mA and the channel actual output
value is 0.003 mA then the offset is 0.003 mA. The offset represents the difference between the two
minimum values.

Gain
Gain is the ratio of the actual output and the maximum value of the range sent.

Actual Value = Value Sent * Gain
Offset must be calculated first; then gain is calculated.

Example:
The module is set to a output range of 4–20 mA.
If maximum output sent = 20.00 mA
and actual value = 20.70 mA
then gain = actual value / value sent = 1.035

The formula which takes the offset and gain into account:

 Actual Value = Value sent * Gain + Offset

 114

Example:
Click on the image of the analog output module i-8024 in the sixth slot (see Figure 12).
The i-8024 module has got four analog input channels. The configuration page shows the
mapped register type and register numbers (AO 0 to AO 3).

STEP 1: Select a suitable gain mode (engineering unit and range) for the analog
output channels.

STEP 2: Calibrate all channels by entering the correct offset and gain (multiple)

values.

STEP 3: Save the calibration values by clicking the “AO Config” button.

STEP 4: Test the configuration: Enter output values in the output filed and click
the “Output” button to directly send theses values to the corresponding
output channels of the i-8024 module.

Figure 21: Configuration interface of the i-8024 analog input module

 115

5.5 Default startup settings
Non-IO related registers, such as the M, D, F, W, C, T, B, DW and MSG register, can be
set to a default value at program start. Furthermore a 30 character long comment can be
added to each register to clarify its purpose in the controlling program.

STEP 1: Click the “Edit” button to open the non-IO related register configuration
page.

Figure 22: Non-IO register settings

STEP 2: Select a register type which register numbers you would like to initialize

or comment.

In the following the procedure of assigning a default value is demonstrated by
using an M register type. The same procedure applies to the other register types.

STEP 3: Click the “M NOTE” button to open the M register list. The “M” symbol

at the bottom of the dialog window indicates that the list on the left hand
sight represents the M register list.

STEP 4: Enter a M register number which has to be initialized with a default

value at program startup. Enter a comment in the NOTE field (for
example: “My first annotation”).

 116

STEP 5: Add the register to the M list by clicking the “ADD NEW SYMBOL”
button.

Figure 23: Add a register to the register list

STEP 6: Double click the value field in the VAL column to set the initial value.

Figure 24: Enter a default value and comment to a register

STEP 7: Add additional registers to the list by repeating STEP 4 to 6. To remove
a row from the list, click the “Delete” button.

 117

Figure 25: M register default value list

STEP 8: Close the register editor by clicking the “OK” button. Click “Save” to

save all settings.

5.6 Registry Key Editor

The registry key editor allows the creation, deletion and updating of device registry
settings. This tool is useful for protecting 3rd party applications running on the EzCore
engine.

To generate a registration key for the end user the program developer has to specify a
random 16 character product key. The encryption engine generates a registration key by
using the hardware serial number of the PAC and the product key. The product key is
only known to the system developer and should not be disclosed.

Product Key
(only known to the system developer)

PAC hardware
serial number

AES encryption
machine

Registration Code Key
(for the end customer)

 118

The CHECK_KEY API requires the programmer to enter a product key and then it
generates from the registration code key entered by user and the hardware serial number a
product key and compares it to the real product key. The API returns a true when they
match.

STEP 1: Click the “Edit” button to open the non-IO related register configuration
page.

Figure 26: Non-IO related register configuration interface

STEP 2: Click the “Encrypt” button.

STEP 3: Enter your product key. This key must be 16 characters long. You can

choose any character sequence.

STEP 4: Click the “Get SN” button. The PAC hardware serial number will be
displayed in the “Serial Number” text box.

STEP 5: Generate the registration code key by clicking “OK”. This key will be

displayed in the “Registry-code Generator”.

 119

 Figure 27: Encryption dialog

STEP 6: Exit the Encryption editor by clicking the “Exit” button. Click “Save” to

save all settings.

 120

6 EzGo

6.1 Introduction

The EzGo is a test utility program written for the Windows CE platform which allows the
user to test the basic operation of the motion control card and detect any malfunction in
the motion control system. EzGo assists the system developer in identifying any wiring
problem in the motion control system and helps the user to configure the system before
starting to write the actual control program. Parameter settings can be saved to a
configuration file.

At the present the EzGo utility supports the following motion control modules:

− i8092
− i8092F
− i8094
− i8094F

The i8094A and i8094AH modules can only be tested but the configuration can not be
saved to a file.

6.2 Using EzGo

The EzGo utility consists of four main windows:

1. Main page or selection page
The main page appears after launching EzGo. It allows the user either to open the
“Configuration”, “Basic_Operation” or “Advance_Features” window. At program
start the user is restricted to open only the “Configuration” window to first do the
necessary parameter settings.

2. Configuration page
This page enables the user to do the necessary hardware setting of the motion
control card in order for the card to be able to communicate with the servo motor.
The settings can be saved to a configuration file or previously saved configuration
can be loaded.

3. Basic operation page

 121

This page is for executing independent axis motion commands. A motor
representing an axis can be selected to execute a sequence of motion commands
regardless of other axes.

4. Advanced features page
This window assists you in testing different interpolation modes like 2/3 axes
linear interpolation and any 2 axes circular interpolation.

6.2.1 Selection window

Figure 28: Selection window

The selection window appears directly after program start. During program launch
all the slots of the PAC are scanned for any motion cards. In order for the scan
process to be successful make sure that no other program is running on the PAC
which accesses modules in the slots. The window provides the user with three
options:

− Configuration: hardware configuration of the motion control card
− Basic Operation: Single axis testing and point to point motion
− Advanced Features: Multi-axis interpolation testing, 2/3 axes linear

interpolation and any 2 axes circular interpolation.

From the selection page the user has to choose the required type of operation. Right
after program start only the configuration page can be selected. The motion control
card first needs to be initialized and configured before the other operation are
supported. Once the motion control card has been successfully initialized you can
advance to select the windows for single axis or multi axis motion.

 122

6.2.2 Initialization and configuration window

The configuration page is for setting the hardware signal configuration. It is mainly for
setting the

− Pulse output type
− Pulse input type
− Hardware limit signals
− In-position input signal, alarm input signal
− Logical level of the input signal

Figure 29: Configuration window

6.2.2.1 Parameter settings

The tree view lists every motion card detected in the slots with its respective name,
slot number and number of axis. The utility provides two methods to configure a
motion card:

− Configuring all the axis of a motion module at once. In the tree view click the
name of the module. All the settings done will now apply to all axis of the
selected motion module.

− Configuring each axis separately. To set the axis of a motion module card
individually just double click the name of the module to extend the tree view

 123

and select from the sub items an axis to open its configuration page. The
current configuration page always belongs to the axis which name is marked
by a blue background color in the tree view.
Therefore, if the module name is selected and highlighted by a blue
background color the setting done in the configuration page applies to all axis
of the module. If the name of an axis is highlighted the settings is only valid
for this axis.

Figure 30: Detected motion cards

The setting of the parameters displayed in Figure 31 is essential.

Figure 31: Required configuration

Select from the combo boxes the necessary options. The remaining settings of the
configuration page are optional.
You can also load a previous configuration from the configuration file.

 124

6.2.2.1.1 Pulse output / input type selection

 Description

Pulse output mode setting:

This function sets the pulse output mode as either
CW/CCW or PULSE/DIR for the assigned axes and their
direction definition.

The related function is
SET_PULSE_MODE(BYTE cardNo, WORD axis, BYTE nMode);

Encoder related parameters

This function sets the encoder input related parameters.

A/B quadrature pulse input mode

When A/B quadrature is selected, the position counter will
count up if phase A leads Phase B; the position counter
will count down if phase B leads phase A:

− 1/1 AB phase:

 Only the rising edge of A phase is counted.

− 1/2 AB phase:

 The rising and falling edges of A phase are counted.

− 1/4 AB phase:

 Both the rising and falling edges of A phase and B
phase

 are counted.

Up/down pulse input mode

− Up/ down input

The counter counts at the rising edge of the positive pulse.
The A phase represents the count up input and B phase
the count down input.

The related function is
SET_ENCODER(BYTE cardNo, WORD axis, BYTE nMode, BYTE
nDivision, BYTE nZEdge);

 125

6.2.2.1.2 Hardware signal setting

 Description

Setting the Servo Driver (ON/OFF)

This function outputs a DO signal (ENABLE) to enable the
motor driver.

Active level of the hardware limit switches

This function sets the active logic level of the inputs of the
hardware limit switches.

− Low:

 set the active level for the forward and reverse limit

 switch to low.

− High:

 set the trigger signal for the forward and reverse limit

 switch to high level.

The related function is
SET_HLMT(BYTE cardNo, WORD axis, BYTE nFLEdge, BYTE
nRLEdge);

Trigger level of the NHOME sensor

This function sets the trigger level of the near home sensor
(NHOME).

Active level setting for the near home sensor:

− Low = low active (0);

− High = high active (1);

The related function is
SET_NHOME(BYTE cardNo, WORD axis, BYTE nNHEdge);

Motion stop method

This function sets the motion stop mode of the axes when
the corresponding limit switches are detected.

− Stop suddenly: Axis stops immediately when any limit
switch on the axis is triggered;

− Stop after deceleration: The axis decelerates to

 126

standstill when any limit switch on the axis is
triggered.

The related function is
LIMITSTOP_MODE (BYTE cardNo, WORD axis, BYTE nMode);

Trigger level of the home sensor

This function sets the trigger level of the home sensor
(HOME).

Active level setting for the home sensor:

− Low = low active (0);

− High = high active (1);

Z phase trigger level

Sets the trigger level for the Z phase

− Low = low active (0);

− High = high active (1);

The related function is
SET_ENCODER(BYTE cardNo, WORD axis, BYTE nMode, BYTE
nDivision, BYTE nZEdge);

 127

6.2.2.1.3 Input signal settings

 Description

In-position signals

This function sets the active level of the in-position input
signals (INPOS input signal).

− Enable INPOS input signal

 0 = disable INPOS input;

 1 = enable INPOS input

− Set the trigger level

Low = low active (0);

High = high active (1);

The related function is
SET_INPOS(BYTE cardNo, WORD axis, BYTE nMode, BYTE
nIEdge);

Servo alarm

This function sets the parameters of the ALARM input
signal.

− Enable INP/RDY

 0 = disable ALARM function;

 1 = enable ALARM function

− Sets the trigger level:

Low = low active (0);

High = high active (1);

The related function is
SET_ALARM(BYTE cardNo, WORD axis, BYTE nMode, BYTE
nAEdge);

 128

6.2.2.1.4 Input signal filter

These checkboxes enables you to select the input signals and set the delay time of the
filter.

Select input signal:

 FEn
Code

Input
signals

Description

EMG Emergency

LMT Hardware limit switch

− positiv direction limit signal
(nLMTP)

− negative direction limit signal
(nLMTM)

ORG Home signal (nIN1)

 1

SD Slow Down signal

Near Home signal

(nIN0)

2 INDEX index of Encoder input (Z phase)

(nIN2)

INP servo in-position input signal
(nINPOS)

4

ALM Alarm input signal (nALARM)

8 EXP+/- External pulse (nEXPP, nEXPM,

EXPLSN)

 16 IN3 nIN3

The sum of the FEn code numbers (0~31) are used to set the time constant for filtering
the input signals.

Example:

 129

Selected options are:
Input signals FEn Code

EMG, LMT, ORG, SD 1

INDEX 2

INP, ALM 4

Σ FEn = 7

SET_FILTER(BYTE cardNo, WORD axis, 7, WORD FLn)

Select delay time:

Input signal delay time

This function sets the time constant for digital filters of
the input signals:

Input signal delay time FLn code

2μ SEC 0

256μ SEC 1

512μ SEC 2

1.024mSEC 3

2.048mSEC 4

4.096mSEC 5

8.192mSEC 6

16.384mSEC 7

The related function is
SET_FILTER(BYTE cardNo, WORD axis, WORD FEn, WORD
FLn)

 130

6.2.2.1.5 Other Settings

 Description

Position Counter Variable Ring

This function sets the maximum number of pulses needed
in order to rotate one full cycle. This function is for
circular motion and not for linear motion and is useful for
managing the rotation position.

The related functions are
VRING_ENABLE(BYTE cardNo, WORD axis, DWORD nVRing)

VRING_DISABLE(BYTE cardNo, WORD axis)

Example:

The ring counter is set to 9999.

The encoder range will be from 0 to 9999. The counter will
reset to 0 when its current value is 9999 and it is
incremented by one pulse. A pulse count down by one will
result in a counter value of 9999 when the counter value is
currently 0.

The count operation will be as follows:

Increment in the + direction: …
9998 9999 0 1 ….

Increment in the - direction: …
1 0 9999 9998 ….

 Triangle prevention of fixed pulse driving

This function prevents a triangle form in linear

 131

acceleration (T-curve) fixed pulse driving even if the
number of output pulses is low.

The related functions are
AVTRI_ENABLE (BYTE cardNo, WORD axis);

AVTRI_DISABLE (BYTE cardNo, WORD axis);

Setting the Maximum Speed

This function sets the maximum rate for the output pulses
(speed). A larger value will cause a rougher resolution.

For example,

 when the maximum speed is set to 8000 PPS, one
speed unit is equal to 1 PPS;

 when the maximum speed is set to 16000 PPS, one
speed unit is equal to 2 PPS;

 when the maximum speed is set to 80000 PPS, one
speed unit is equal to 10 PPS, etc.

The maximum value is 4,000,000 PPS, which means the
resolution of speed will be 500 PPS.

This function changes the resolution of speed to reach the
desired maximum speed. Since the scale in hardware is
changed, other parameters will be influenced too, such as
the starting speed, the acceleration, and the jerk. It is
recommended to set the maximum speed value as an
integral multiplier of 8000.

The related function is
SET_MAX_V(BYTE cardNo, WORD axis, DWORD data);

 132

6.2.3 Basic Operation: Independent axis motion

Figure 32: Single axis testing window

Each axis of a motion card executes motion commands independent from the other axis
of the same module. Each axis move exactly as it has been programmed either from point
to point or in a continuous motion. Each axis will execute its motion commands
regardless of other axes.

 133

6.2.3.1 Configuration procedure

Step 1: First select an axis of a specific motion card. A selected axis is indicated
by a blue background.

Step 2: Select the acceleration mode. T-curve and S-curve refers to the shape of
the velocity profile.

 T-curve (Trapezoidal-curve)
In a T-curve profile the motor tries to go from 0 to the specified
acceleration instantaneously. When the motor is decelerating, it once
again goes from 0 acceleration to a negative acceleration as fast as it
can until it reaches 0 velocity and then abruptly stops. These abrupt
starts and stops reduce the life of mechanical components.

 S-curve
The s-curve is used to slowly reach a certain acceleration or
deceleration value. Acceleration and deceleration changes occur
smoothly and thereby reduce the stress in the mechanical components.

Step 3: Select the driving mode
 Point to point motion
 Continuous motion (Conti. Output)

Continuous pulse driving output:
The motion card will continuously output pulses at a specified speed
until is interrupted by a stop command or an external stop signal.

 Manual pulsar
Output pulses are generated from a hand wheel.

 Home

 134

If home has been selected enter the required home setting mode and
homing speed.

Step 4: Decide between a symmetrical and asymmetrical velocity profile.
 Symmetrical profile:

For the symmetrical profile the absolute acceleration and deceleration
values are equal.

 Asymmetrical profile:
The asymmetrical velocity profile allows the individual setting of the
acceleration and deceleration values.

 135

Step 5: Enter values for the motion parameters:

Step 6: Set the logic and encoder position to zero by clicking the “Clear LP/EP”
button.

Step 7: Enable the motor driver by clicking the “Servo ON” button.

Step 8: Now you can send the motion controller the motion command for the

selected operating mode.
The servo motor can either be moved in the positive or negative direction:

 Positive direction: click

 Negative direction: click

 To stop the servo motor click . This button will cause the
motor to stop immediately.

If the driving mode is set to “Manual Pulsar” the motor follows the
outputting pulses of a manual pulse generator.

The command window on the bottom left list all the commands send to the control cards
with their specified parameter values.

 136

6.2.3.2 Status Indicators
The status indicators reflect the current state of the hardware limit, near home and home
switches. In addition the current state of the servo motor is displayed that means whether
it is in driving mode or has successfully completed the motion command. Alarm or
emergency stop events are also indicated.

Input signals Description

LMT- Negativ hardware limit switch

SLMT- Negative software limit

HOME Home hardware signal

NHOME Near home signal

SLMT+ Positive software limit

LMT+ Positive hardware limit switch

DRV Servo motor is busy driving

RDY Ready signal

ALM Alarm input signal

EMG Emergency

 137

6.2.4 Advance motion features: Multi-axis interpolation

Figure 33: Multi-axis interpolation window

This window assists you in testing different interpolation modes. The 4-axis motion
control cards offered by ICPDAS perform any 2/3 axes linear interpolation and any 2
axes circular interpolation. Any 2 or 3 axes can be selected to perform linear interpolation.

 138

6.2.4.1 Configuration procedure

6.2.4.1.1 Linear interpolation
The following steps describe the procedure of executing a 2/3 axes linear interpolation:

Step 1: Select a motion module from the tree view on the left top screen by
clicking on one of the listed modules.

Step 2: Select the interpolation mode:
 Two axes linear interpolation
 Three axis linear interpolation

Step 3: Select an acceleration mode.
 Const – no acceleration
 T-curve
 S-curve

Step 4: Decide between a symmetrical and asymmetrical velocity profile.

 Symmetrical profile
 Asymmetrical profile

Step 5: Select the interpolation axes. Any 2 or 3 axis of a motion module can be

selected to perform linear interpolation. The axis ports on the daughter
board are labeled as X-Axis, Y-Axis, Z-Axis and U-Axis. Axis Port: This
is the port number on the axis board which the motor is connected to.

 139

Step 6: Enter values for the motion parameters:

Step 7: Enter for each axis the number of pulse to move from the current position.
Set the coordinates for the new position relative to the current position.

Step 8: Set the logic and encoder position to zero by clicking the “Clear LP/EP”
button.

Step 9: Enable the motor driver by clicking the “Servo ON” button.

Step 10: Output the specified number of pulses to the servo motor. You can either

move in the positive or negative direction.

 Positive direction: click

 Negative direction: click

 To stop the servo motor click

 140

6.2.4.1.2 Circular interpolation
The following steps describe the procedure of executing a circular interpolation:

Step 1: Select a motion module from the tree view on the left top screen by
clicking on one of the listed modules.

Step 2: Select the interpolation mode:
 Circular interpolation

Step 3: Select the direction of the circular interpolation.

 Clockwise (CW)
 Counterclockwise (CCW)

Step 4: Decide between a symmetrical and asymmetrical velocity profile.

 Symmetrical profile
 Asymmetrical profile

Circular interpolation only supports the T-curve acceleration mode.

Step 5: Select the axis for the interpolation. Any 2 of the 4 axis can be selected for
circular interpolation. The axis ports on the daughter board are labeled as
X-Axis, Y-Axis, Z-Axis and U-Axis.

Step 6: Enter values for the motion parameters:

 141

Step 7: Enter the center point and for each axis the number of pulse to move from
the current position.
The circular interpolation starts from the current position. Therefore it is
assumed that the current position (start point) is (0,0). After setting the
center point, finish point and the direction (CW or CCW), the user can
start the circular interpolation.
Note: The coordinates are relative to the start point.

Step 8: Set the logic and encoder position to zero by clicking the “Clear LP/EP”

button.

Step 9: Enable the motor driver by clicking the “Servo ON” button.

 142

Step 10: Output the specified number of pulses to the servo motor. You can either
move in the positive or negative direction.

 Clockwise direction: click

 Counterclockwise direction: click

 To stop the servo motor click

 143

7 EzMake

7.1 Introduction
EzMake is a utility which assist the user in programming, debugging and testing simple
motion control macros. It can only be used together with the i-8094H motion control
module. The macros have to be called by the motion control program written by the user
in C. The advantage macros is that for minor changes instead of modifying and
recompiling the main program only the macros have to be changed and downloaded to
the motion module. The controller can therefore be adapted very quickly to the new
requirements.

The EzMake utility provides the operator with a list of valid commands and prevents the
input of invalid commands or parameters. With EzMake you can create three different
types of macros:
− Initialization macro: Responsible for the basic configuration of the motion card.
− Motion control macro: This macro contains the actual motion control command

sequence.
− Interrupt service routine macros: Is being called when an interrupt of the motion card

occurs.
These macro files have to be downloaded to the i-8094H module. Macros are stored in a
nonvolatile memory.

7.1.1 Main user interface
The tree view on the left lists the project files and the three macro file types created by
the user: Initial table, Macro program and Interrupt Service Routine. The middle section
of the main window forms part of the macro editing interface. Here the user has to edit or
modify motion commands and their parameter for the different macro programs. The
section on the right lists all the motion and macro commands supported by the i-8094H
module. The commands can be selected from the command list by a double click. For
some files types certain commands can not be used and are therefore disabled. Disabled
commands show their icons in gray color tone. The window at the bottom informs the
user about programming restrictions and different axis and motion statuses for online
debugging.

 144

Figure 34: EzMake user interface

7.2 Initial Table

Figure 35: Initialization commands

The initial table lists all the commands necessary to initialize the i-8094H module. The
sequence of the commands is fixed and commands can not be removed from the list. In a
newly created initial table all commands have default parameter values. Double click a
command to change its default value(s).

 145

7.2.1 Create a new initialization table
Step 1: Open the “i8094H Resource” tree in the tree view on the left hand sight to

display the following five folders:

Step 2: Click on the “Initial Table” folder.

Step 3: Click File Create to create a new initial table. You can also directly click
the “Create” button in the toolbar.

Step 4: In the dialog box enter a name for the initial table and click “OK”.

Step 5: The new table will be added to the “Initial Table” folder.
Note:

i. The new table is visible in the “Initial Table” folder but the file in
fact has not been created yet. It will only be created once you save
the table.

ii. You can add at most 5 tables to the Initial Table folder.

Step 6: Click on the newly created table. The command sequence for initializing
the motion control module appears in the middle section of the main
window. The commands and command sequence can not be change but
the parameters of the commands have to be modified to meet your motion

 146

control requirements.

Step 7: Save the initialization table: Click on the table folder and then the “Save”
button of the toolbar. The table filename extension is .it.
The file is saved to the following directory:
 “\System_Disk\EzProg-I\EzMake”

7.2.2 Modifying a initialization table

Step 1: Click on one of the initialization table in the “Initial Table” folder to
display its initialization commands. Initialization tables in the tree view
are identified by names ending with .it . Remember that it is neither
possible to remove a command nor change the command sequence in the
table.

Step 2: Double click a command to open the window for editing the function
parameter.

 147

Step 3: Click on one of the parameter to enter or select the parameter value(s)
according your system requirement. Confirm the new setting by clicking
“OK”.

Step 4: After all the parameters of the initializing commands have been set save
the file (toolbar: “Save”).

 148

7.2.3 Open an initialization table file
Step 1: Open the “i8094H Resource” tree in the tree view on the left hand sight.

Step 2: Click on the “Initial Table” folder.

Step 3: Click File Open to select an existing file with the extension .it. You
can also directly click the “Open” button in the toolbar. Make sure that the
file you select is in the following directory:

“\System_Disk\EzProg-I\EzMake”

 The table will be added to the “Initial Table” folder:

 149

7.2.4 Remove an initialization table from the tree view

Initialization tables can be removed from the tree view without actually deleting the file.
You can always add the file again to the “Initial Table” folder.

Step 1: Select the initialization table you like to remove from the “Initial Table”

folder.

Step 2: Click the “Remove” button in the tool bar.

7.2.5 Downloading of an initialization file
After the initialization table has been set it can be directly downloaded to the i-8094H
motion module.

Step 1: Select the initialization table you like to download to the i-8094H module.

Step 2: Click the “Download” button in the tool bar. The file will be downloaded
to a non volatile memory of the i-8094H module and will immediately
initialize the module to the new setting.

 150

7.3 Macro Program Files (MP Files)

The main task of the EzMake utility is to assist the user to write motion control macros
for the i-8094H module. The utility always provides the user with a list of available
motion commands for the respective macro and thereby ensures that not an incorrect
command is being used. In addition the utility supports debugging your macro.

A macro file contains one or more macro forms called MP. The i-8094H supports up to
157 macro forms (MP1~MP157) with different sizes (stacks). The size indicates how
many command lines a macro form supports. Therefore a macro form has to be selected
according to the number of motion commands to be used in a macro. The macro forms
are divided according to their sizes into five categories (8/16/32/64/128/512 stacks). A
macro form with a stack size of 32 has space for 32 instructions. The user can add up to
157 macro forms to one macro file.

7.3.1 Create a new macro file

Follow the steps to create a new macro file:

Step 1: Click on the “Macro Program” folder.

Step 2: Click File Create to create a new macro file. You can also directly click
the “Create” button in the toolbar.

Step 3: In the dialog box enter a name for the macro file and click “OK”

 151

Step 4: The name of the new macro file will be added to the “Macro Program”
folder.
Note:

i. The actual macro file has not been created yet. It will only be
created once you save the macro file (see next step).

ii. You can add at most 5 macro files to the “Macro Program” folder.

Step 5: Save the macro file: Click on the name of the macro file in the tree view
and then the “Save” button of the toolbar. The macro filename extension
is .mp.
The file is saved to the following directory:
 “\System_Disk\EzProg-I\EzMake”

7.3.2 Adding a macro form to a macro file
Each macro file can save up to 157 macro forms. The macro forms are numbered from
MP1 to MP157. It is only possible to add one macro form of the same number to the
macro file.

The next steps describe the procedure to add a macro form to a macro file:

Step 1: Click on the macro file folder you want to add a macro form. In the

following picture the macro file is MyMacro.mp.

Step 2: Click the “Create” button in the toolbar.

Step 3: Determine the number of command lines the macro form has to support.

Six different form sizes are available. Always make sure that a form is
selected which provides more command lines and not less than is actually
needed for the macro. For example if the macro has to hold 20 commands
then a macro form with 32 stacks has to be selected.

 152

Step 4: Double click a macro name to add it to the macro file list. More than one
macro form can be selected.

Step 5: Click “OK”. The name of the new macro forms are shown in the macro
file folder.
Note: The macro forms have not been saved yet.

Step 6: Save the macro file: Click on the name of the macro file in the tree view
and then the “Save” button of the toolbar.

Step 7: Now start adding motion control commands to the macro forms.

 153

7.3.3 Open a macro file
A macro file is a file which contains one or more macro programs. When a macro file is
opened all the macro forms in the file will be loaded to the utility.
The following steps describe the loading procedure:

Step 1: Open the “i8094H Resource” tree in the tree view on the left hand sight.

Step 2: Click on the “Macro Program” folder.

Step 3: Click the “Open” button in the toolbar. Make sure that the file you select
is in the following directory:

“\System_Disk\EzProg-I\EzMake”

 The table will be added to the “Macro Program” folder:

 154

7.3.4 Writing macros (motion commands)

The motion commands can not be edited via keyboard to the macro form but has to be
selected from the command list. Consult the i-8094H user manual for a detailed
description of the individual commands. This section describes how to use the EzMake
utility to write macro programs but does not give any assistance in writing an actual
motion control macro program.

7.3.4.1 Adding motion commands to a macro form
Step 1: Click on a macro form of a macro file. For example “MP95” in the

following figure:

Step 2: The motion commands are arranged into 11 categories to facilitate the
selection. Select a command category.

 After selecting a category a list of motion commands appears on the right
 side of the utility window.

Step 3: Double click a command to add it to the macro form.

 155

Step 4: Set all parameters for the command. Click with the mouse on the row of a
parameter in the “Quick Select” column to open a combo box with all
possible parameters values.

Step 5: After all the parameters have been set close the dialog window by clicking
“OK”. The new command will be added one line below the last macro
command in the macro form.

Step 6: Save the macro file after you have finished editing commands to the
macro from: Click on the name of the macro file in the tree view and then
the “Save” button of the toolbar.

 156

7.3.4.2 Modifying a macro program
A command in the macro form can be manipulated in the following way:

Icon Description

 Move command up one line

 Move command down one line

 Move command to the first line

 Move command to the bottom line

 Delete command

Parameter values are change by double clicking the command in the macro form. The
parameter window popping up allows you to modify the existing values of the selected
command.

 157

7.3.5 Downloading and executing a macro file

After the macro programming has been completed the macro files has to be downloaded
to the i-8094H motion module.

Step 1: Select the macro file in the “Macro Program” folder you like to download
to the i-8094H module.

Step 2: Click the “Download” button in the tool bar. The file will be downloaded
to a non volatile memory of the i-8094H module.

Step 3: Now you can directly call and execute the macro on the i-8094H module

and monitor the command executions. Select a macro from the macro file
and click the “Run” button on the toolbar.

The utility highlights the command currently being executed by the
motion module. Axis statuses such as the logic position, encoder position,
velocity and acceleration are displayed in the “Axis Status” tab window at
the bottom of the utility. The debug tab window shows which commands
have been successfully carried out. The execution of the macro commands
can be stopped or aborted at any time.

Icon Description

 Halt macro execution

 Continue macro execution

 Cancel macro execution

 158

Step 4: After the last command has been executed click the button in the

toolbar to end the macro execution mode.

 159

7.4 Interrupt Service Routine (ISR) macro
A macro called by the interrupt service routine is created in the same way as a normal
motion control macro described in the previous chapter. The 8094H manual (chapter 6.3)
describes in detail the procedure to enable the ISR and link the ISR to a macro. The
8094H module is designed to store up to 20 macros (ISR1 ~ ISR20). The macros are
categorized according to the number of commands they can hold (8/16/32/64 commands).

The procedure for adding, deleting, saving and loading of macro forms is very similar to
the procedure of a normal motion control macro. The only difference is that the interrupt
macro forms are created in the “Interrupt Service Routine” folder and that they are called
(ISR1, ISR2, ISR3…). The editing, downloading and testing of an ISR macro is identical
to the motion control macro described in the previous chapter. Therefore consult the
chapter 7.3 for implementing an ISR macro.

Note:
In an ISR macro no “for” loop is allowed and it is not possible to call inside an ISR
macro a MP macro.

 160

7.5 Project Files
So far files for the three different macro types had to be created and saved individually.
By creating a project file all these macro files can be saved, opened and downloaded at
once.

7.5.1 Create a new project file

Step 1: Click on the “Project” folder.

Step 2: Click the “Create” button in the toolbar.

Step 3: In the dialog box enter a name for the project file.

Step 4: Determine which macro types the project file should include. In the
following the “Initial Table”, “Macro Program” and “Interrupt Service
Routine” are selected. Furthermore the “Create” options have to be
selected to indicate that these macros types are newly created. All the
newly created macro types automatically adopt the name of the project file.
The names can be changed.

 161

Step 5: Confirm the selection by clicking “OK”.

Step 6: Confirm or change the name of the initial table. In addition you can add a

comment to the file to describe its purpose. Click “OK”.

Step 7: Confirm or change the name of the macro program file. Add one or more
macro forms to the macro program file by double clicking a macro form
name. Click “OK”.

Step 8: Confirm or change the name of the interrupt service routine file. Select
one or more macro forms to the ISR file. Click “OK”.

 162

Step 9: The newly created project is now added to the “Project” folder.

Note:
The new project file is visible in the “Project” folder but the file in
fact has not been created yet. It will only be created once you save
the project.

Step 10: Save the project file: Click on the newly created project name in the tree

view and then the “Save” button in the toolbar.

 163

The project filename extension is .prj. The file is saved to the
following directory:

 “\System_Disk\EzProg-I\EzMake”

Step 11: Now you can start editing the macros.

7.5.2 Downloading a project file

After finishing the macro programming the complete project files can be downloaded to
the i-8094H motion module at once or the different macro file types can be downloaded
separately.

Step 1: Select the project file in the “Project” folder you like to download to the i-
8094H module.

If you want to download the different macro types separately, just click on
the macro file type (in this example: MyFirstProject.it,
MyFirstProject.mp or MyFirstProject.isr) and then the “Download”
button on the toolbar.

Step 2: Click the “Download” button in the tool bar. The complete file with all the

macros will be downloaded to the non volatile memory of the i-8094H
module.

Step 3: Now you can directly call and execute the macro on the i-8094H module

and monitor the command executions. Select a macro from the macro file
and click the “Run” button on the toolbar.

 164

7.6 Macro motion commands
The following table introduces the macros supported by the EzMake utility. The 8094H
manual describes these commands and their parameter setting in more detail. The
EzMake support three macro types:

− Macros for module initialization (IT)
− Macros for motion control (MP)
− Macros for interrupt service routine (ISR)

Some macro commands are only valid for a specific macro type. The last three columns
of the command table indicate whether the respective macro type supports the command.

 165

7.6.1 Basic Setting Functions
Icon Function Name Statement IT MP ISR

i8094H_SET_PULSE_MODE

This function sets the pulse output mode
as either CW/CCW or PULSE/DIR for
the assigned axes and their direction
definition.

◎ ◎

i8094H_SET_MAX_V

This function sets the maximum rate for
the output pulses (speed). A larger value
will cause a rougher resolution.

◎ ◎

i8094H_SET_HLMT This function sets the active logic level of

the hardware limit switch inputs. ◎ ◎

i8094H_LIMITSTOP_MODE

This function sets the motion stop mode
of the axes when the corresponding limit
switches are detected.

◎ ◎

i8094H_SET_NHOME This function sets the trigger level of the

near home sensor (NHOME). ◎ ◎

i8094H_SET_HOME_EDGE This function sets the trigger level of the

home sensor (HOME). ◎ ◎

i8094H_SET_SLMT This function sets the software limits. ◎ ◎

i8094H_CLEAR_SLMT This function clears the software limits. ◎ ◎

i8094H_SET_ENCODER This function sets the encoder input

related parameters. ◎ ◎

i8094H_SERVO_ON This function outputs a DO signal

(ENABLE) to enable the motor driver. ◎ ◎

i8094H_SERVO_OFF This function outputs a DO signal

(ENABLE) to disable the motor driver. ◎ ◎

i8094H_SET_ALARM This function sets the ALARM input

signal related parameters. ◎ ◎

i8094H_SET_INPOS This function sets the INPOS input signal

related parameters. ◎ ◎

i8094H_SET_FILTER

This function selects the axes and sets the
time constant for digital filters of the
input signals.

◎ ◎

i8094H_VRING_ENABLE

This function enables the linear counter
of the assigned axes as variable ring
counters.

◎ ◎

i8094H_VRING_DISABLE This function disables the variable ring

counter function. ◎ ◎

i8094H_AVTRI_ENABLE

This function prevents a triangle form in
linear acceleration (T-curve) fixed pulse
driving even if the number of output
pulses is low.

◎ ◎

i8094H_AVTRI_DISABLE

This function disables the function that
prevents a triangle form in linear
acceleration fixed pulse driving.

◎ ◎

 166

7.6.2 Status Functions
Icon Function Name Statement IT MP ISR

i8094H_SET_LP

This function sets the command position
counter value (logical position counter,
LP).

 ◎ ◎

i8094H_GET_LP

This function reads the command
position counter value (logical position
counter, LP).

 ◎ ◎

i8094H_SET_EP

This function sets the encoder position
counter value (real position counter, or
EP).

 ◎ ◎

i8094H_GET_EP This function reads the encoder position

counter value (EP). ◎ ◎

i8094H_GET_DI This function reads the digital input (DI)

status. ◎ ◎

i8094H_GET_ERROR This function checks whether an error

occurs or not. ◎ ◎

i8094H_GET_ERROR_CODE This function reads the ERROR status. ◎ ◎

7.6.3 FRnet DIO Functions
Icon Function Name Statement IT MP ISR

i8094H_FRNET_IN

This function reads the FRnet digital
input signals. One group comprises 16
bits data. Therefore, total 128 DI can be
defined for one FRnet interface.

◎ ◎

i8094H_FRNET_OUT

This function writes data to the FRnet
digital output. One group comprises 16
bits data. Therefore, total 128 DO can
be defined for one FRnet interface.

◎ ◎

7.6.4 Auto Home Functions
Icon Function Name Statement IT MP ISR

i8094MF_SET_HV This function sets the homing speed.

◎

i8094MF_HOME _LIMIT This function sets the Limit Switch to be

used as the HOME sensor.

◎

i8094MF_SET_HOME_MODE This function sets the homing method

and other related parameters.

◎

i8094MF_HOME _START This function starts the home search of

assigned axes.

◎

 167

7.6.5 Axis Move Functions
Icon Function Name Statement IT MP ISR

i8094H_NORMAL_SPEED The function sets the speed mode.

◎ ◎

i8094H_SET_SV This function sets the start speed for the

assigned axes.

◎ ◎

i8094H_SET_V This function sets the desired speed for

the assigned axes.

◎ ◎

i8094H_SET_A This function sets the acceleration value

for the assigned axes.

◎ ◎

i8094H_SET_D This function sets the deceleration value

for the assigned axes.

◎ ◎

i8094H_SET_K The function sets the acceleration rate

(i.e., Jerk) value for the assigned axes.

◎ ◎

i8094H_SET_L This function sets the deceleration rate

(i.e., Jerk) value for the assigned axes.

◎ ◎

i8094H_SET_AO

This function sets the number of
remaining offset pulses for the assigned
axes. Please refer to the figure below for
a definition of the remaining offset pulse
value.

◎ ◎

i8094H_FIXED_MOVE Command a point-to-point motion for

several independent axes.

◎ ◎

i8094H_SET_PULSE This function sets the pulse number for

fixed pulse driving.

◎ ◎

i8094H_CONTINUE_MOVE This function issues a continuous motion

command for several independent axes.

◎ ◎

7.6.6 Interpolation Functions
Icon Function Name Statement IT MP ISR

i8094H_AXIS_ASSIGN

This function assigns the axes to be used
for interpolation. Either two or three axes
can be assigned using this function.
Interpolation commands will refer to the
assigned axes to construct a working
coordinate system. The X axis does not
necessarily have to be the first axis.
However, it is easier to use the X axis as
the first axis, the Y axis as the second
axis, and the Z axis as the third axis.

◎ ◎

i8094H_VECTOR_SPEED

This function assigns the mode of
interpolation. Either two or three axes
will join this interpolation. Each
interpolation mode will refer to some
assigned axes that construct a working
coordinate system. The assigned axes are
defined by i8094H_AXIS_ASSIGN()
function. The X axis does not necessarily
have to be the first axis. However, it is
easier to let the X axis as the first axis,
the Y axis as the second axis, and the Z
axis as the third axis in applications.
Different modes need different settings.

◎ ◎

 168

Please refer to the mode definitions.

i8094H_SET_VSV

This function sets the starting speed of
the principle axis (axis 1) for the
interpolation motion.

◎ ◎

i8094H_SET_VV

This function sets the vector speed of the
interpolation motion. Users do not need
to assign any axes on this function. The
speed setting will take effect on the
current working coordinate system which
is defined by the
i8094H_AXIS_ASSIGN() function.

◎ ◎

i8094H_SET_VA

This function sets the vector acceleration
for interpolation motion. Users do not
have to assign any axes on this function.
This speed setting will take effect on the
current working coordinate system which
is defined by the
i8094H_AXIS_ASSIGN() function.

◎ ◎

i8094H_SET_VD This function sets the deceleration value

for the interpolation motion.

◎ ◎

i8094H_SET_VK Set the acceleration rate (jerk) value for

interpolation motion.

◎ ◎

i8094H_SET_VL This function sets the deceleration rate of

the interpolation motion.

◎ ◎

i8094H_SET_VAO

Set this value will cause the motion
control chip to start deceleration earlier.
The remaining offset pulses will be
completed at low speed to allow the
controller to stop immediately when the
offset pulse value has been reached.
Please refer to the figure below for more
information.

◎ ◎

i8094H_LINE_2D This function executes a 2-axis linear

interpolation motion.

◎ ◎

i8094H_LINE_3D This function executes a 3-axis linear

interpolation motion.

◎ ◎

i8094H_ARC_CW

This function executes a 2-axis circular
interpolation motion in a clockwise (CW)
direction.

◎ ◎

i8094H_ARC_CCW

This function executes a 2-axis circular
interpolation motion in a counter-
clockwise (CCW) direction.

◎ ◎

i8094H_CIRCLE_CW

This function executes a 2-axis circular
interpolation motion in a clockwise (CW)
direction.

◎ ◎

i8094H_CIRCLE_CCW

This function executes a 2-axis circular
interpolation motion in a counter-
clockwise (CCW) direction.

◎ ◎

 169

7.6.7 Synchronous Action Functions
Icon Function Name Statement IT MP ISR

i8094H_SYNC_ACTION

This function sets the activation factors
(provocative) and the specified action
when a specified activation factor
occurs.

 ◎ ◎

i8094H_SET_COMPARE

This function sets the values of
COMPARE registers. However, it will
disable the functions of software
limits.

 ◎ ◎

i8094H_GET_LATCH This function gets the values from the

LATCH register. ◎ ◎

i8094H_SET_PRESET This function sets the PRESET value

for synchronous action. ◎ ◎

i8094H_SET_OUT

This function sets the pulse by
collocated the
i8094H_SYNC_ACTION function.

 ◎ ◎

7.6.8 Continuous Interpolation Functions
Icon Function Name Statement IT MP ISR

i8094H_RECTANGLE

Continuous interpolation will be
performed to create a rectangular
motion, which is formed by 4 lines and
4 arcs. The length of each side can be
changed. The radius of each arc is the
same and it can also be changed. The
deceleration point will be calculated
automatically. This is a command
macro command that appears in
various motion applications.

◎

i8094H_LINE_2D_INITIAL

This function sets the necessary
parameters for a 2-axis continuous
linear interpolation using symmetric T-
curve speed profile.

◎

i8094H_LINE_2D_CONTINUE This function executes a 2-axis

continuous linear interpolation.

◎

i8094H_LINE_3D_INITIAL

This function sets the necessary
parameters for a 3-axis continuous
linear interpolation using symmetric T-
curve speed profile.

◎

i8094H_LINE_3D_CONTINUE This function executes a 3-axis

continuous linear interpolation.

◎

i8094H_MIX_2D_INITIAL

This function does the initial settings
for mixed linear and circular 2-axis
motions in continuous interpolation.

◎

i8094H_MIX_2D_CONTINUE

This function executes mixed linear
and circular 2-axis motion in
continuous interpolation.

◎

i8094H_HELIX_3D This function performs a 3-axis helical

motion.

◎

i8094H_RATIO_INITIAL

This function sets the Initial values for
ratio motion (motion in ratio) using a
symmetric T-curve speed profile.

◎

 170

i8094H_RATIO_2D This function executes a two-axis ratio

motion.

◎

7.6.9 Interrupt Control Functions
Icon Function Name Statement IT MP ISR

i8094H_ENABLE_INT This function enables the interrupt.

◎

i8094H_DISABLE_INT This function disables the

interrupt.

◎

i8094H_INTFACTOR_ENABLE This function sets the interrupt factors.

◎

i8094H_INTFACTOR_DISABLE This function disables the interrupt

factors.

◎

7.6.10 Other Functions
Icon Function Name Statement IT MP ISR

i8094H_DRV_START

This command is usually used when
users desire to start multi-axis driving
simultaneously. When this command is
issued, users may write other driving
commands to the control card. All the
driving commands will be held after
i8094H_DRV_HOLD() is issued, and
these commands will be started once the
i8094H_DRV_START() is issued.
However, if in driving, this command
will not cause the driving to be stopped.
But the next command will be held.

◎ ◎

i8094H_DRV_HOLD

This command releases the holding
status, and start the driving of the
assigned axes immediately.

◎ ◎

i8094H_STOP_SUDDENLY This function immediately stops the

assigned axes.

◎

i8094H_STOP_SLOWLY This function decelerates and finally

stops the assigned axes slowly.

◎

i8094H_VSTOP_SUDDENLY This function stops interpolation motion

of the assigned module immediately.

◎

i8094H_VSTOP_SLOWLY

This function stops interpolation motion
of the assigned module in a decelerating
way.

◎

i8094H_CLEAR_STOP

After using anyone of the stop
functions, please solve the malfunction,
and then issue this function to clear the
stop status.

◎

i8094H_INTP_END

1. If the current motion status is
running a interpolation motion and you
would like to issue a single axis motion
or change the coordinate definition,

◎

 171

you should call this function before the
new command is issued.

2.You can redefine the MAX V for each
axis. In this way, you do not have to
execute i8094H_INTP_END() function.

7.6.11 Macro Program Functions
Icon Function Name Statement IT MP ISR

i8094H_MP_CALL

This function sets the number of the
macro program for jump executing
in the next procedure layer.

 ◎

i8094H_MP_SET_VAR This function sets VARn to be the

global value. ◎

i8094H_MP_SET_RVAR This function sets VARn to be the

global return value. ◎

i8094H_MP_VAR_CALCULATE

This function issues the “addition”,
“subtraction” “multiplication”, and the
“division” for supporting the variable
arithmetic operation. For example:
varNo (+-*/) varNo1 = varNo2.

 ◎

i8094H_MP_FOR This function issues the “for loop”

condition statement. ◎

i8094H_MP_NEXT This function issues the “end of for

loop” condition statement. ◎

i8094H_MP_IF This function issues the “If” condition

statement. ◎

i8094H_MP_ELSE This function issues the “else”

condition statement. ◎

i8094H_MP_IF_END This function issues the “end of If”

condition statement. ◎

i8094H_MP_TIMER This function issues a procedure delay. ◎

i8094H_MP_STOP_WAIT

This function can be used to assign
commands to be performed while
waiting for all motion to be completed
(stopped).

 ◎

i8094H_MP_SET_RINT

This function sets the i-8094H module
to produce an interrupt signal with the
0x04 code to the WinCon controller.

 ◎

	1 Introduction
	2 EzProg-I framework
	2.1.1 EzProg-I Register

	3 EzTemplate
	3.1.1 Pages
	3.1.2 Programming interfaces
	3.1.2.1 Initialization
	3.1.2.2 User Thread
	3.1.2.3 Real Time Service Routine (RTSR)
	3.1.2.3.1 RTSR Activation

	4 EzHMI
	4.2.1 Visual Studio 2008 IDE
	4.2.1.1 Adding EzHMI ActiveX controls
	4.2.1.2 Adding ActiveX controls to dialog resource

	4.2.2 Refresh Time
	4.2.3 Language Switching
	4.2.4 Register linking
	4.3.1 LED Control
	4.3.1.1 Description
	4.3.1.2 LED Appearances
	4.3.1.3 Caption
	4.3.1.4 Flash Timer
	4.3.1.5 Register assignment

	4.3.2 Switch
	4.3.2.1 Description
	4.3.2.2 SWITCH Appearances
	4.3.2.3 Caption
	4.3.2.4 Flash Timer
	4.3.2.5 Register assignment

	4.3.3 EzHMI Lable
	4.3.3.1 Description
	4.3.3.2 LABEL Appearances
	4.3.3.3 Caption
	4.3.3.4 Register assignment

	4.3.4 EzHMI ColorEdit
	4.3.4.1 Description
	4.3.4.2 Flash Timer
	4.3.4.3 Register assignment
	4.3.4.4 Virtual Keyboard

	4.3.5 EzHMI ButtonST
	4.3.5.1 Description
	4.3.5.2 ButtonST Appearances
	4.3.5.3 Caption
	4.3.5.4 Bitmap Attachment
	4.3.5.5 Register assignment

	4.3.6 EzHMI Image Control
	4.3.6.1 Description
	4.3.6.2 Bitmap Attachment
	4.3.6.2.1 Adding Default Image
	4.3.6.2.2 Changing Image at Runtime
	4.3.6.2.3 Changing the Image position at runtime

	4.3.6.3 Events

	4.3.7 EzHMI ColorCheck
	4.3.7.1 Description
	4.3.7.2 Caption
	4.3.7.2.1 ColorCheck Caption
	4.3.7.2.2 Checkbox Caption

	4.3.7.3 Register assignment

	4.3.8 EzHMI ColorRadio
	4.3.8.1 Description
	4.3.8.2 Caption
	4.3.8.3 Register assignment

	4.3.9 EzHMI EzKnob
	4.3.9.1 Description
	4.3.9.2 Appearances
	4.3.9.3 Register assignment
	4.3.9.3.1 Display register data
	4.3.9.3.2 Enter and display register data

	4.3.10 EzHMI EzSlider
	4.3.10.1 Description
	4.3.10.2 Appearances
	4.3.10.3 Register assignment
	4.3.10.3.1 Display source register data
	4.3.10.3.2 Change and display destination register data

	4.3.11 EzHMI EzList
	4.3.11.1 Description
	4.3.11.2 Appearances
	4.3.11.3 Register assignment

	4.3.12 EzHMI Position
	4.3.12.1 Description
	4.3.12.2 Configuration

	5 EzConfig Utility
	5.4.1 Digital input configuration
	5.4.2 Digital output configuration
	5.4.3 Digital IO configuration
	5.4.4 FRnet configuration
	5.4.5 Analog input configuration
	5.4.5.1 Offset and Gain

	5.4.6 Analog output configuration
	5.4.6.1 Offset and Gain for analog output

	6 EzGo
	6.2.1 Selection window
	6.2.2 Initialization and configuration window
	6.2.2.1 Parameter settings
	6.2.2.1.1 Pulse output / input type selection
	6.2.2.1.2 Hardware signal setting
	6.2.2.1.3 Input signal settings
	6.2.2.1.4 Input signal filter
	6.2.2.1.5 Other Settings

	6.2.3 Basic Operation: Independent axis motion
	6.2.3.1 Configuration procedure
	6.2.3.2 Status Indicators

	6.2.4 Advance motion features: Multi-axis interpolation
	6.2.4.1 Configuration procedure
	6.2.4.1.1 Linear interpolation
	6.2.4.1.2 Circular interpolation

	7 EzMake
	7.1.1 Main user interface
	7.2.1 Create a new initialization table
	7.2.2 Modifying a initialization table
	7.2.3 Open an initialization table file
	7.2.4 Remove an initialization table from the tree view
	7.2.5 Downloading of an initialization file
	7.3.1 Create a new macro file
	7.3.2 Adding a macro form to a macro file
	7.3.3 Open a macro file
	7.3.4 Writing macros (motion commands)
	7.3.4.1 Adding motion commands to a macro form
	7.3.4.2 Modifying a macro program

	7.3.5 Downloading and executing a macro file
	7.5.1 Create a new project file
	7.5.2 Downloading a project file
	7.6.1 Basic Setting Functions
	7.6.2 Status Functions
	7.6.3 FRnet DIO Functions
	7.6.4 Auto Home Functions
	7.6.5 Axis Move Functions
	7.6.6 Interpolation Functions
	7.6.7 Synchronous Action Functions
	7.6.8 Continuous Interpolation Functions
	7.6.9 Interrupt Control Functions
	7.6.10 Other Functions
	7.6.11 Macro Program Functions

