
 

KinCon-8000 QUICK START GUIDE 
(Version 1.03) 

 

Warranty 
All products manufactured by ICPDAS Inc. are warranted 

against defective materials for a period of one year from the date 
of delivery to the original purchaser. 
Warning 

ICPDAS Inc. assumes no liability for damages consequent to 
the use of this product. ICPDAS Inc. reserves the right to change 
this manual at any time without notice. The information furnished 
by ICPDAS Inc. is believed to be accurate and reliable. However, 
no responsibility is assumed by ICPDAS Inc. for its use, or for any 
infringements of patents or other rights of third parties resulting 
from its use. 
Copyright 

Copyright 1997-2007 by ICPDAS Inc., LTD. All rights 
reserved worldwide. 
Trademark 

The names used for identification only maybe registered 
trademarks of their respective companies. 
License 

The user can use, modify and backup this software on a 
single machine. The user may not reproduce, transfer or 
distribute this software, or any copy, in whole or in part. 

 
 
 
 
 

1 



PACKAGE LIST ....................................................................................................................................................... 5 
INTRODUCTION ..................................................................................................................................................... 5 

ABOUT THIS MANUAL ....................................................................................................................................... 7 
PART 1: KINCON-8000 OVERVIEW .................................................................................................................. 10 

ORDERING INFORMATION ..................................................................................................................................... 10 
HARDWARE SPECIFICATION ................................................................................................................................. 11 

KinCon-8x4x Front View .............................................................................................................................. 12 
Definition of Rotary SW ................................................................................................................................ 12 
Specifications ................................................................................................................................................. 13 

SOFTWARE TOOLS ............................................................................................................................................... 13 
Windows CE Settings ....................................................................................................................................... 13 
WinCon Utility ................................................................................................................................................ 16 
DCON Utility for I-87K Module Settings ..................................................................................................... 24 

VCEP 4.2 .............................................................................................................................................................. 28 
KINCON-8000 CONFIGURATION ............................................................................................................................ 29 

Register .......................................................................................................................................................... 29 
Configuration .................................................................................................................................................. 31 

PART 2: MULTIPROG .......................................................................................................................................... 32 
DEVELOPING A SAMPLE PROJECT ............................................................................................................... 32 
PHASE 1 ............................................................................................................................................................. 33 
CREATING A NEW PROJECT USING THE PROJECT WIZARD ................................................................... 33 

STARTING THE PROJECT WIZARD ............................................................................................................. 33 
USING THE PROJECT WIZARD .................................................................................................................... 34 

PHASE 2 ............................................................................................................................................................. 39 
DEVELOPING THE LD CODE ......................................................................................................................... 39 

INSERTING A LD NETWORK ........................................................................................................................ 39 
DECLARING THE PROPERTIES .............................................................................................................. 40 
INSERTING A COUNTER USING THE EDIT WIZARD .......................................................................... 43 
INSERTING THE COUNTER 'RESET' CONTACT .................................................................................. 45 
DECLARING THE PROPERTIES OF THE COUNTER'S ....................................................................... 46 
'RESET' CONTACT ...................................................................................................................................... 46 
INSERTING A SECOND LD NETWORK AND EDITING ........................................................................ 50 
NETWORK DESCRIPTION COMMENTS ................................................................................................. 50 

PHASE 3 ............................................................................................................................................................. 57 
COMPILING THE EXAMPLE PROJECT ........................................................................................................ 57 

'MAKING' THE PROJECT ........................................................................................................................... 57 
HANDLING ERRORS AND MESSAGES .................................................................................................. 59 

PHASE 4 ............................................................................................................................................................. 60 
DOWNLOADING THE PROJECT TO THE IO SIMULATION OR KINCON-8000 ....................................... 60 

Download to Simulation ................................................................................................................................ 60 
Download to KinCon-8000 ........................................................................................................................... 61 

PHASE 5 ............................................................................................................................................................. 64 
DEBUGGING THE PROJECT .......................................................................................................................... 64 

DEBUG MODE .............................................................................................................................................. 64 
ONLINE EDITING ......................................................................................................................................... 65 
CROSS REFERENCE WINDOW ............................................................................................................... 68 
VARIABLES WATCH WINDOW ................................................................................................................. 69 
FORCING AND OVERWRITING ................................................................................................................ 70 
BREAKPOINTS ............................................................................................................................................. 71 

PHASE 6 ............................................................................................................................................................. 74 
PRINTING THE PROJECT DOCUMENTATION ........................................................................................... 74 

SELECTING A PRINTER............................................................................................................................. 74 
SETTING THE PAGELAYOUT ................................................................................................................... 74 

2 



PRINTING THE PROJECT .......................................................................................................................... 75 
PRINT PREVIEW .......................................................................................................................................... 75 
PRINTING A SINGLE WORKSHEET ........................................................................................................ 76 

USING THE I/O CONFIGURATION ................................................................................................................ 77 
Using Simulation .............................................................................................................................................. 77 
Using KinCon-8000 ......................................................................................................................................... 79 

CREATING AN USER DEFINED FUNCTION ................................................................................................ 82 
CHANGING THE TASK CYCLE TIME ............................................................................................................ 90 
USING RETAIN VARIABLE ..................................................................................................................................... 91 
USING MODBUS TCP SLAVE ............................................................................................................................... 92 
USING MODBUS RTU SLAVE ............................................................................................................................... 93 
USING MODBUS TCP/RTU MASTER ................................................................................................................... 93 

PART 3: THE OPC SERVER ............................................................................................................................... 97 
INTRODUCTION ................................................................................................................................................ 97 
ADDING AN OPC RESOURCE ....................................................................................................................... 98 

On PC: ............................................................................................................................................................ 98 
On KinCon-8000: ........................................................................................................................................... 99 

GENERATING THE CSV FILE ....................................................................................................................... 100 
PREPARING AND DOWNLOADING THE PROJECT ................................................................................ 101 
WITH OPC DATA ............................................................................................................................................. 101 
USING THE OPC TEST CLIENT ................................................................................................................... 103 

PART 4: PROVISIT .............................................................................................................................................. 106 
PREPARING THE SAMPLE PROJECT FOR THE ..................................................................................... 106 
VISUALIZATION .............................................................................................................................................. 106 
DESIGNING A VISUALIZATION PROJECT ................................................................................................ 110 

CREATING A NEW VISUALIZATION PROJECT .................................................................................. 110 
SETTING THE VISUALIZATION SCREEN PROPERTIES .................................................................. 111 
VISUALIZING THE 'ACTUAL_TIME' VARIABLE BY A ......................................................................... 111 
DYNAMIC RECTANGLE ............................................................................................................................ 111 
VISUALIZING THE 'VISU_MOTOR_START' CONTACT BY ............................................................... 116 
A LIBRARY PUSH BUTTON ..................................................................................................................... 116 
VISUALIZING THE 'VISU_EMERGENCY_STOP' ................................................................................. 118 
CONTACT BY A LIBRARY EMERGENCY SWITCH ............................................................................ 118 
VISUALIZING THE VARIABLE 'PRESSED' BY A LIBRARY ............................................................... 120 
LCD ELEMENT ........................................................................................................................................... 120 
VISUALIZING THE 'MOTOR' COIL BY A LIBRARY LED ..................................................................... 121 
VISUALIZING THE RUNNING MOTOR USING A SELF ...................................................................... 122 
DESIGNED OBJECT AND A SCRIPT ..................................................................................................... 122 

SWITCHING THE VISUALIZATION TO RUNTIME..................................................................................... 128 
DOWNLOADING PROJECT TO KINCON-8000 ..................................................................................................... 130 

APPENDIX............................................................................................................................................................. 132 
IEC PROJECT COMPONENTS IN THE ....................................................................................................... 132 
PROGRAMMING SYSTEM ............................................................................................................................ 132 

PROGRAM ORGANIZATION UNITS (POUS) ....................................................................................... 132 
INSTANTIATION OF POUS AND FUNCTION BLOCKS ............................................................................ 134 
VARIABLES AND DATA TYPES ................................................................................................................... 134 

VARIABLE TYPES ...................................................................................................................................... 134 
VARIABLES ADDRESSES ........................................................................................................................ 135 
DATA TYPES ............................................................................................................................................... 136 

DRIVER PARAMETERS ........................................................................................................................................ 137 
For Embedded I-8K/I87K Modules ........................................................................................................... 137 
For Remote I-7K/I87K Modules ................................................................................................................. 141 

MODBUS ADDRESS V.S. INTERNAL ADDRESS ................................................................................................... 145 

3 



MODBUS TCP/RTU MASTER FBS ..................................................................................................................... 146 
MB_TCPInit .................................................................................................................................................. 146 
MB_TCPClos ............................................................................................................................................... 146 
MB_TCPRCS ............................................................................................................................................... 147 
MB_TCPWC ................................................................................................................................................. 147 
MB_TCPWCS .............................................................................................................................................. 148 
MB_TCPRRS ............................................................................................................................................... 149 
MB_TCPWR ................................................................................................................................................. 150 
MB_TCPWRS .............................................................................................................................................. 150 
MB_RTUInit .................................................................................................................................................. 151 
MB_RTUClos ............................................................................................................................................... 152 
MB_RTURCS ............................................................................................................................................... 152 
MB_RTUWC ................................................................................................................................................ 153 
MB_RTUWCS .............................................................................................................................................. 154 
MB_RTURRS ............................................................................................................................................... 155 
MB_RTUWR ................................................................................................................................................ 156 
MB_RTUWRS .............................................................................................................................................. 156 

ERROR LIST AND DESCRIPTION ............................................................................................................................ 157 
DEMO LIST .......................................................................................................................................................... 158 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 



Package List 
The package includes the following items: 

 One set of KinCon8000 hardware 
 One Compact Flash Memory Card for storing system files 
 One KW-Software Product CD 
 One ICPDAS software utility CD with Software User’s Manual included 

 
NOTE 

If any of these items are missing or damaged, contact the local distributors for more 
information. Save the shipping materials and cartons in case you want to ship in the 
future. 

It is recommended to read README.TXT first from CD\\README.TXT and to 
visit http://www.icpdas.com/products/PAC/kincon/indusoft_kincon.htm frequently. We 
will provide new library, template, and demo. 

 
Ordering Information 

Call distributor for details. 
 

INTRODUCTION 
The ICP DAS KinCon-8045/8345/8745 is a Windows based PAC (Programmable 
Automation Controller). It features with Windows CE Operating System and supports 
KW-Software solution including ProConOS, OPC Server, and ProVisIT(RT). The 
integration of SoftLogic and HMI makes KinCon-8000 to be a real-time multitasking 
PAC which combines the feature of IPC and PLC. The description of MultiProg, 
ProVisIT and OPC Server is as below:  
 
MULTIPROG is a standard programming system for IEC designed PLCs and traditional 
PLCs. It is based on the standard IEC 61131-3 and includes the full range of IEC 
features. 

 
The programming system is based on a modern 32 bit windows technology, providing 
comfortable handling including zoom, drag & drop and dockable windows. The system 
allows the handling of IEC configuration elements, including libraries and provides a 
powerful debug system. With MULTIPROG all functionalities are easily accessible via 
the menu and it only takes you a few dialogs to get through project generation. Having 
finished that, you can immediately start developing your program. 

 
The programming system consists of a PLC independent kernel for programming in the 
various IEC programming languages. To do so, the textual languages ST and IL as well 
as the graphical languages LD, FDB and SFC are provided. Each editor provides an 
Edit Wizard allowing keywords, statements, operators, functions and function blocks to 
be inserted fast and easy. The Edit Wizard can also be used for declaring data types. 
Specific parts adapted to the different PLCs complete the independent kernel. 

 

5 

http://www.icpdas.com/products/PAC/kincon/indusoft_kincon.htm


The OPC Server was especially designed to enable the communication between any 
OPC Client (e.g. ProVisIT) and your PLC. It allows an OPC Client to read/write values 
from/to the PLC in order to visualize or control the running processes. 

 
ProVisIT is a tool for machine visualization purposes. Using it, visualizations are 
created intuitively within the graphical editor which provides a large number of standard 
objects and dynamizations for example Size, Position, Rotation, Color changes and 
different Actions. The assignment and scaling of dynamizations is done easily by drag & 
drop. 
 
ProVisIT is able to communicate with all controls and devices which provide an OPC 
Server. Double data input while programming is avoided by browsing OPC variables. 
Using Visual Basic Script, for example variable values can be calculated and 
visualization objects can simply be accessed. 

6 



ABOUT THIS MANUAL 
 
This manual is divided into four parts. The first part describes some 
necessary configurations including hardware setting, and software tool using. 
The second to fourth parts each describing one separate tool: MULTIPROG,  
OPC Server and ProVisIT. 
 
Part 1: KinCon Overview 
The first part lists the order information of KinCon-8000 introducing hardware 
specifications of KinCon-8000 and the instruction of software tools (WinCon 
Utility, DCON Utility and VCEP) for warm start of the second to fourth parts. 
 
Part 2: MULTIPROG 
The second part provides step by step instructions for developing, 
editing and running a sample Ladder Diagram (LD) program 
using MULTIPROG. The development of the sample project is 
divided into several phases as shown in the following figure: 
 
CREATING 
(PHASE 1) 
 EDITING 
 (PHASE 2) 
  COMPILING 
  (PHASE 3) 
   DOWNLOADING 
   (PHASE 4) 
    DEBUGGING 
    (PHASE 5) 
     PRINTING 
     (PHASE 6) 
Each phase will be described in detail and without any gap – 
from project generation to project documentation. 
 
The example application explained in this manual is a basic 
motor control circuit. The logic requires the operator to press 
the start button three times to start the motor. The motor stops 
running after 20 seconds. 
 
Part 3: OPC Server 
In the third manual part starting at page 62, we are going to 
deal with the OPC Server which enables the communication 
between any OPC client (the visualization in our case) and the 
PLC. The manual describes how to configure the server. 
 
Part 4: ProVisIT 
The fourth part of this manual starting at page 70 describes the visualization 

7 



software ProVisIT. You will find step by step descriptions proving the 
effectiveness by means of a sample visualization project: We are going to 
visualize the MULTIPROG demo project developed in part 2 of the manual. 
 
After working through this Quick Start Guide you will be familiar 
with the main features of these three highly capable tools and relative tools 
on KinCon. 
SYSTEM REQUIREMENTS 
 
HARDWARE REQUIREMENTS 

Device Minimum Recommended 
IBM compatible PC with 
Pentium processor 

Pentium II 
350 MHz 

Pentium III 
500 MHz 

System RAM 64 MB 128 MB 
Hard disk 200 MB free memory space 
CD ROM drive  Required 
VGA Monitor 
Color settings 
Resolution 

256 colors 
800 x 600 
 

True color 
1024 x 768 
 

RS232 interface Optional  
Mouse Recommended for MULTIPROG 

Required for ProVisIT 
 
 
SOFTWARE REQUIREMENTS 
 

 Microsoft Windows 95/98 or Windows NT 4.0 SP5 
   or Windows 2000 SP2 or Windows XP 

 
 Microsoft Internet Explorer 4.02 

8 



INSTALLING THE SOFTWARE 
 
To install the software, insert the KW-Software product CD in your CD ROM 
drive. 
 
Select the corresponding entry on the product CD start page to 
launch the Installation Wizard which will guide you through the 
installation process of each tool. If the autorun feature is 
deactivated on your PC you can alternatively browse the CD 
contents and execute the setup files one after the other. 
 
Install the tools in the following order: 
‧ MULTIPROG 
‧ OPC Server 
‧ ProVisIT 
 
Detailed information about installing and registering the tools 
can be found in the Installation Guide which is also available on 
the product CD. 
 

9 



PART 1: KinCon-8000 Overview 
Ordering Information 

 

K-8045  0-slot KinCon PAC, dual Ethernet dual USB, support 
KW-software 

 

K-8345  3-slot KinCon PAC, dual Ethernet dual USB, support 
KW-software 

 

K-8745  7-slot KinCon PAC, dual Ethernet dual USB, support 
KW-software 

 

GA-700YY-UOM / 
USB  7” TFT RS-232 / USB LCD Monitor w/ VGA & Touch Panel

 

S-256 / S-512  256K / 512Kbytes battery backup SRAM (K-8045 doesn’t 
support S-256 / S-512) 

 

MULTIPROG 4.0 KW-Software MULTIPROG 4.0 IEC 61131 programming 
system, with 6 PLC languages 

 

OPC-Server 2.0 KW-Software OPC-Server 2.0，OPC software 

 

ProVisIT 2.3  KW-Software ProVisIT 2.3 machine visualization 

 S-256/S-512 is needed for retain variables in KinCon-8000 
 MULTIPROG is needed for softlogic programming 
 MULTIPROG, OPC, and ProVisIT are all needed for softlogic programming and 

embedded HMI design 
 

10 



Hardware Specification 

 
The model type of KinCon-8000 is ruled as K-8X4X, as shown in the above figure. The 
Second number shows the slot numbers coming with the main controller unit. Currently, 
we provide three types of 0,3 and 7 slots. The last number demonstrates the application 
platform. Number 5 is for general KW-Software solution. It will have different number for 
different application in the future. For more detail products specification, please refer to 
the following product model table. 

 
Model Description CPU 

Speed
Embedded

OS 
Slot Flash SDRAM Peripherals 

 
K-8045 
 

KW-Software 
Embedded 
Controller 

206MHz
Windows 
CE .NET 

4.1 

 
0 
 

32 
MB 64MB 

10/100BaseT 
Ethernet Port×2 

VGA Port×1 
CF Slot×1 

USB×2 
RS-232×1 
RS-485×1 

FRnet×1(Option)

 
K-8345 
 

 
3 
 

 
K-8745 

 
7 

11 



 
KinCon-8x4x Front View 

 
Definition of Rotary SW 
 
 
 
 
 
 
 
 

Position Mode 
0 Normal Mode 

1 Clear Registry 

2 OS updated by PB 

3~7 Reserved  

8-F User defined 

 
Always keep rotary SW at “0” position (normal mode), except : 

 To clear registry, rotate to “1”position and power on KinCon then wait for 3 sec , 
KinCon will recover its registry to factory (default) setting. 

 If user wants to update OS image by platform builder, please rotate to “2” position. 
 
For detail, please refer to WinCon Getting Start user manual. 
 
 

12 



Specifications 
Main Control unit 

 Intel Strong ARM CPU, 206 MHz     
 SRAM : 64M bytes    
 Flash RAM : 32M bytes 
 EEPROM : 16K bytes   
 64-bit hardware unique  

serial number 
 Built-in Watchdog Timer 
 Real Time Clock 

Cabinet 
 COM0: Internal use 
 COM1: Serial Control for 87K Series 
 COM2: RS-232 
 COM3: RS-485 
 FRnet(option) 
 I/O Expansion Slot : 

0 - slot for K-80X5 
3 - slot for K-83X5 

        7 - slot for K-87X5 
 Power Supply : 20W, Unregulated + 10Vdc +30Vdc 
 Environment :  

Operating Temp. : -25  to + 75℃ ℃ 
Storage Temp. : -30  to +85℃ ℃ 

 Humidity : 5~95% 
 Dimensions : 

115.66×110×93.8(none slot) 
230.25×110×93.8(3 slot) 
354.26×110×93.8(7 slot) 

 I/O module(optional) 
I-8000 series modules, which include DI,DO,AO,AI… 
I-87K series modules, which include DI,DO,AO,AI… 
I-7000 series modules, which include DI,DO,AO,AI… 

For more information please refer to relative catalog or http://www.icpdas.com

 1 VGA port : 
320×240×16 to 1024×768×16 
Default is 640×480×16 

 1 Compact Flash slot : CF memory card
 Reset button 
 Power LEDs 
 USB 1.1 host x 2 
 10/100 Base T x 2 

 

 
Software Tools 
Windows CE Settings 

Setting Up the System Time 

You can setup a new date or time in the Windows CE system by using the following 

steps: 

13 

http://www.icpdas.com/


1. Choose Start  Settings  Control panel to open the Control panel dialog.  

 
Fig. 2-1 

2. Double click the Date/Time icon on the Control panel dialog. 

 
Fig. 2-2 

3. When the Date/Time Properties dialog displays, set the date or current Time 
and click the Apply button to set your system date and time. 

 Note: If you have changed any value of the date and time. You must save the 
registry by means of WinCon Utility tools. For more information about 
WinCon Utility tools, please refer to the WinCon Utility section. 

 

Setup the network 

Generally, most users don't need to setup the network because DHCP is the 

default setting. However, if your network system does not contain a DHCP server, you 

need to configure the network setting by using the manual method. The following steps 

demonstrate the procedure for how to configure the network system. 

1. Choose Start  Settings  Network and Dial_up Connections on the 
Windows CE desktop to open this dialog. 

2. Double click the LAN90001 icon to open the “LAN9000 Network Compatible 
Adapter Settings” dialog. 

14 



 
Fig. 2-3 

3. When the “LAN9000 Network Compatible Adapter Settings” dialog displays 
(see figure), click (enable) the “Specify an IP address” radio button in the IP 
Address tab and type in the IP Address, Subnet Mask, and Default Gateway 
into the respective fields. 

4. Choose the “Name Servers” tab and also type in the Primary DNS, Secondary 
DNS, Primary WINS, and Secondary WINS into the respective fields, as shown 
in the figure below. 

 
Fig. 2-4 

5. Click OK. 

 Note: If you have changed any value of network configuration, you must save 
the registry by means of WinCon Utility tools. For more information about the 
WinCon Utility tool, please refer to the WinCon Utility section. 

 

Setting up the Device Name 

You can configure Wincon-8000 to have the device name of your choice. To 

change the device name please refer to the following steps: 

1. Choose Start  Settings  Control panel to open the Control panel dialog. 
2. Double click the System icon on the Control panel dialog to open the System 

15 



Properties. 
3. When the System Properties dialog is displayed (see figure), select the Device 

Name tab in the dialog window. 

 
Fig. 2-5 

4. Type your preferred Device Name in the Device Name box, and click OK. 
 

 Note: If you have changed any information of the Device Name, you must 
save the registry by means of WinCon Utility tools. For more information 
about the WinCon Utility tool, please refer to the WinCon Utility section. 

Here, we only provide some demonstrations for configuring your settings. The 

configuration steps and operation methods are the same as with the windows system. 

However, you need to keep in mind “if you have changed any setting on 
KinCon-8000 embedded controller, you would need to use the WinCon utility to 
save the current setting into non-volatile internal memory”. Otherwise, when you 

restart the system, the setting will not change.  

WinCon Utility 
The WinCon Utility provides many tools to save/view the system information 

registry and to setup the HTTP/FTP path and update non-volatile internal memory 

within the Wincon-8000 embedded controller. This handy utility (WinCon Utility 1.exe 

located in the Compact Flash/icpdas/Tools directory) should be located in the 

computer's Program group. Therefore, you can launch it on the computer through Start 
 Programs  WinCon Utility menu. The WinCon Utility provides many functions 

within the following five tabs: 

 Save Registry Tab 

 System Config Tab 

 Auto-execute Tab 

16 



 Version Update Tab 

 Com Tab 

 About WinCon Utility 1 Tab 

 

Save Registry Tab 

This tab provides functions to save/view the registry of the systems information and 

to setup the HTTP/FTP directory path. It is very important to save the registry when 
you change any system information. Then you need to click the “Save and 
Reboot” button to renew the system configuration. If you do not save the current 
configuration into the registry, you will lose your information settings when you 
reboot the Wincon-8000. 

 Note: The OS image in flash memory will crash if we push the reset or 
power-off buttons for WinCon-8000 whilst it was writing the registry 
settings to flash memory. It will take 10-15 seconds to save the registry 
settings. Add these notes to your user manual because it is very 
important! 

 
Fig. 2-6 

17 



The Save Registry tab includes the following folders: 

 Save and Reboot button: It will take several seconds to save your settings 

into registry and non-volatile internal memory. You must then reboot the 

system for the new configuration. 

 Recover to Factory Setting button: It will take several seconds to clear your 

registry settings back to Factory Setting and Wright to non-volatile internal 
memory. You must then reboot the system for the new configuration. 

 View Registry button: Any settings are changed in the KinCon embedded 

controller can be pre-viewed by using this function. It is just like the regedit 

function in the windows system that you are very familiar with (shown in below 

figure). 

 
Fig. 2-7 

 
 Change the VGA resolution box: You can setting the VGA Resolution to 

320x240,640x480,800x600 or 1024x768, and 2,4,8,16 bits color (Bpp),the 

monitor reflash Frequncy for normal TFT LCD setting is 60 Hz. 

 Change FTP default directory to box: Enter a FTP default directory path and 

click change button to setup the defined path to the ftp server. 

 Change HTTP default directory to box: Enter a HTTP default directory path 

and click on the change button to setup the defined path for the web server. 

System Config Tab 

The System Config tab allows you to view the information in the KinCon-8000 

embedded controller system. 

18 



 

Fig. 2-8 

 

This tab includes the following folders: 

 Slot 1~7 box: The Slot1~7 fields display the module names plugged in the 

KinCon-8000. 

 Serial Number box: This field displays the serial number of the KinCon-8000. 

 MAC address: The field displays the physical address of Ethernet port. 

(For K-8X4X, upper field displays 1st Ethernet MAC address, Lower field 

displays 2nd Ethernet MAC address)        

 EEPROM Size box: This field displays the EEPROM size of the KinCon-8000. 

 Flash Memory Size box: This field displays the Flash memory size of the 

KinCon-8000. 

 OS Version box: This field displays the current operating system. 

 OS Image Size box: This field displays the size of the current operating 

system. 

19 



 WinCon SDK Version box: This field displays the current WinconSDK_DLL 

version. 

Auto-execute Tab 

The Auto-execute tab, provides ten execute files, which can be run after the WinCE 

system has been launched on the WinCon-8000 system. You can set ten execute files 

through the Browse button on the tab for WinCon Utility, as shown in the below figure. 

Note that they are executed in order of program 1, program 2, ... 

 
Fig. 2-9 

The tab includes the following folders: 

 Program 1~10 boxes: These files allow one to configure the auto-execute files 

for KinCon-8000 for when it is started up. You can choose the execute file and 

file directory path by means of the Browse button. 

 Save Setting button: If you have changed the settings for the Program 1 ~ 10 

field contents, you must then click the Save Setting button before closing the 

WinCon Utility window. 

20 



Version Update Tab 

The Version Update tab provides the function to be able to update newer versions 

of the operating system. Users can download the OS image file from the web 

site: http://www.icpdas.com. You can choose the new OS image file name and directory 

path with the Browse button. Click the “Write to flash now” button to update the current 

OS version. It will take ten or more minutes to update your OS to Flash memory, and 

then reboot your system. 

 
Fig. 2-10 

ComPort Tab 
Fig. 2-12 KinCon-8000 show set the touch screen Com Port No, now we can 

support ELO,3COM Dynapro,EGALAX….,Please plug in the right Com Port No。 
 

21 

http://www.icpdas.com/


 
Fig. 2-11 
 

 Setting the I-81XX Serial Port 
1. To click New Card Wizard button and show the New Card Wizard Window: 

 
2. To click Slot Scan button and show all Cards in system: 

22 



 
 
3. To click Save New Module button and save the setting: 

 

23 



 
4. To click Yes button and reset to finish adding Com Port. 

 

About WinCon Utility 1 Tab 

This tab provides an easy function to hyperlink to the ICPDAS World Wide Web 
site http://www.icpdas.com. This is the best place to go for the latest developments, a
support information, application stories, and product news. 

nd 

 
DCON Utility for I-87K Module Settings 

When the module of I-87K is put in the slots of KinCon-8000，it can be set up 
through the DCON_Utility of PC。The method is easy to use。 When you do it orderly，

you will find it is easy to set up the parameter of the I-87K module。 
 

1.  You must prepare for a cable(CAT6) to start the DCON_CE of KinCon for PC 
through ethernet (telnet to use)。 To prepare one line of Full Null Modem 
and connect the Comport of PC and the COM2 of WinCon-8000 (data 
transmission)。 

24 

http://www.icpdas.com/


 

 
 

DB-9-1  DB9-2  

Receive Data  2  3  Transmit Data  

Transmit Data  3  2  Receive Data  

Data Terminal Ready  4  6、1 Data Set Ready 、Carrier Detect 

Signal Ground  5  5  Signal Ground  

Data Set Ready 、Carrier Detect 6、1 4  Data Terminal Ready  

Request to Send  7  8  Clear to Send  

Clear to Send  8  7  Request to Send  

 
  

2.  To confirm the DCON_CE_V200.exe in the folder of KinCon-8000 
\Compact Flash\ICPDAS\Tools 

3.  To enforce the DCON_Utility V4.3.8(later vision) of PC and press the 
connective button of Telnet to open the DCON_CE_V200  V2.0.0 
(WinCon-8000)。 

25 



 

Telnet button 

BaudRate setting 115200 bps 
user can change Comport (COM 1  COM n…) 

4.   To input the address of IP of KinCon-8000。 

 
 
 
 
 
 

26 



5.   After connecting the KinCon-8000，refer to the manual of the DCON_Utility.  

 

DCON_CE exit button 

 

        
6.  To press the exit button of DCON_CE and it can close the 

27 



DCON_CE_V200.exe of KinCon-8000。Moreover，it will exit automatically 
when the DCON_Utility does not work during the programs automatically scan 
in thirty minutes。 

 
 
    Please operate the methods according to the steps。If you find the abnormal 
situation，you can close the DCON_Utility first and then power ON/OFF KinCon-8000。 
 
Web Download :   
1) DCON_Utility (PC side)  http://www.icpdas.com/products/wincon/winconutility.htm 
2) DCON_CE (WinCon)  http://www.icpdas.com/products/wincon/winconutility.htm 

 
VCEP 4.2 

 
ICP DAS VCEP 4.2 is designed to allow Desktop PC users to remotely manage a broad 
range of KinCon-8000 from a single management interface. ICP DAS VCEP 4.2 
provides secure, remote access to KinCon-8000 and supports network connections 
over a local area network(LAN), wide area network(WAN), Internet, and direct cable 
connections using a serial or parallel port. ICP DAS VCEP 4.2 is composed of two main 
components: The server which runs on the KinCon and the client software which runs 
on a Desktop PC. Once a connection is established between the client and server, the 
client will periodically send requests for screen updates and send mouse/key click 
information to the server. Each video frame is inter-compressed against the previous 
frame and then intra-compressed with a modified LZW scheme to minimize the amount 
of data transmitted from server to client. 

28 

http://www.icpdas.com/products/wincon/winconutility.htm
http://www.icpdas.com/download/7000/7000.htm


 
For more details, please refer to 
CD\Virtual_CE_Pro\VCEP_Quick_Started_Manual.pdf 
 
KinCon-8000 Configuration 
Register 

Each KinCon-8000 has demo version of OPC server and ProVisIT(RT) limited 
working 60 minutes continuously. If you wants to upgrade to be official version, 
please purchase the license from ICP DAS distributor. This section describe how to 
register after you purchase the license of OPC Server and ProVisIT(RT). 

 
OPC Server: 
Step1:Execute \CompactFlash\KW_OPC20\OpcRegister.exe，press OK when 

      registration finish. 

 
 

Step2:Execute \CompactFlash\KW_OPC20\PcosOpc.exe 

 
 

Step3:You can see the prompt ‘Demo mode 60 minutes’. If you just want to try it,  
please execute ‘Save and Reboot’ in WinCon Utility. If you have purchased 
license, please continue to next step. 

29 



 
Step4:Click the icon  at the status bar and choose ‘Register’ to enter registration  

number. 

          
 

Step5:Enter your license number at the left-top of license paper. And then execute 
 ‘   Save and Reboot’ in WinCon Utility. 

 
 
ProVisIT(RT): 
 

Step1:Execute \CompactFlash\KW_ProVisIt\ProVisIt.exe, then you can see the  
  prompt showing ‘DEMO MODE’. 

 
 

 
 

Step2:Execute ’?’ for Registration. 

30 



   
 
 

Step3: Enter your license number at the left-top of license paper. And then execute 
 ‘Save and Reboot’ in WinCon Utility. 

 
 
Configuration 

KinCon-8000 boot file, \CompactFlash\KW_Pcos\KWBoot.exe, refers to 
\CompactFlash\ICPDAS\Tools\ProCos.bat and 
\CompactFlash\ICPDAS\Tools\ProVisIt.bat to start ProConOS and ProVisIt(RT). 
Thus, you can change the context of ProCos.bat to configure your KinCon-8000.  

  
Parameter description 
-S SRAM size(1~512 KBytes) 
-B Baudrate for Modbus/RTU Slave(4800~115200) 
-COM COM port number(2~9) 
-SN Slave number(1~255) 
-ST System Ticks(2~16)，Recommended: 4 

NOTE: “-ST” allows user to decide the system ticks of ProConOS. Smaller “ST” 
value causes higher system loading. On the contrary, smaller “S” value causes 
lower system loading. 
 
For example: 
General start: 

ProCos.bat Context 
@echo off 
\CompactFlash\KW_Pcos\pcwce4.exe 

 
Start with S256 using 5 KBytes: 

ProCos.bat Context 
@echo off 
\CompactFlash\KW_Pcos\pcwce4.exe -S 5 

 
 

31 



 
Start with S512 using 300 KBytes: 

ProCos.bat Context 
@echo off 
\CompactFlash\KW_Pcos\pcwce4.exe -S 300 

 
Start with Modbus/RTU Slave at baudrate:19200 COM port:2 Slave No: 1: 

ProCos.bat Context 
@echo off 
\CompactFlash\KW_Pcos\pcwce4.exe –B19200 –COM2 –SN1 

NOTE: Please double check the setting whether it conflicts with I/O configuration 
of remote devices. COM port can NOT share with another use. 
 
Start with system ticks: 4ms 

ProCos.bat Context 
@echo off 
\CompactFlash\KW_Pcos\pcwce4.exe –ST 4 

     
    You can mix all parameters together to configure your KinCon-8000. 
    If you want to start ProConOS and ProVisIt(RT) every time you boot 
KinCon-8000, please add KWBoot.exe to ‘Auto-execute’ in WinCon Utility. 

 

 
 

PART 2: MULTIPROG 
 

DEVELOPING A SAMPLE PROJECT 
 
Start the programming system. 
 
We will now develop a sample project using the programming 
language Ladder Diagram (LD). In the first phase we create a 
new, empty project. 
 
In order to get the best possible result we recommend to use 
the identifiers and names we use in this manual. 
 
 

32 



PHASE 1  
CREATING A NEW PROJECT USING THE 
PROJECT WIZARD 

 
The Project Wizard guides you in 6 steps through the process 
of creating the new project. Here, you have to define the name 
and path of the project, the programming language and the type 
of the PLC used.  
 

STARTING THE PROJECT WIZARD 
 
Click on the 'New Project' icon: 
 

 
 
The 'New Project' dialog appears. Double click on the 'Project 
Wizard' icon: 
 

 
 
The dialog 'Project Wizard (Step 1 of 6)' appears. 

33 



USING THE PROJECT WIZARD USING THE PROJECT WIZARD 
  

 

Figure 1:  
Dialog 'Project 
Wizard 
(Step 1 of 6)' for 
specifying the 
project 
name and project 
path 

Fill in the dialog fields as follows: 
 
a. Enter the desired project name ('My_first_Project') into the 
first input field as shown in the figure above. The Project 
Wizard will save the project to a corresponding file 
'My_first_Project.mwt' and create a subfolder of the same 
name, in which the code bodies, variables' files, etc. will be 
stored. 
 
According to the rules for projects, the name and the path of 
the project must not contain any blanks or special 
characters. The maximum number of characters for the 
project name is 24. 
 
The default path for the project has been entered 
automatically. 
If you want to store your project in another path, specify this 
in the second input field as described below: 
 
b. Click on the browse button: 

 
The 'Select Directory' dialog appears. 
 
c. Choose a folder for the new project. 
d. Click on the button 'Next' to continue. 

 
The dialog 'Project Wizard (Step 2 of 6)' appears. 

34 



 

Figure 2: 
Dialog 'Project 
Wizard 
(Step 2 of 6)' for 
entering the first 
POU 
and selecting the 
programming 
l

 
e. Enter the name for the first POU, which will be automatically 
inserted by the Project Wizard in the project tree when 
creating the project. Enter 'Main' for our example POU. 
Choose the language for the first program by activating the 
corresponding radio button. 
As we want to program our sample project in the graphical 
language Ladder Diagram, select 'Ladder (LD)'. 
 
f. Click 'Next' to continue. 

 
The dialog 'Project Wizard (Step 3 of 6)' appears. 
 

 

Figure 3: 
Dialog 'Project 
Wizard 
(Step 3 of 6)' for 
selecting the 
configuration 
name and 
type 

 
g. Enter the desired configuration name into the input field. 
The configuration can be compared to a programmable 
controller system, e.g. a rack. In our example we enter 
'Configuration'. 

35 



h. Select a configuration type for the project. This is necessary 
because the system generates PLC specific code when 
compiling the project. 
Select the PLC type in the list box. In our example we 
choose 'IPC_32', so the compiler will generate Intel　 code 
for ProConOS 3.2. 
 
For detailed information about PLC types please refer to the 
corresponding PLC manual. 
 
i. Click 'Next' to continue. 

Figure 4: 
Dialog 'Project 
Wizard 
(Step 4 of 6)' 
for 
selecting the 
resource 
name and type 

 
The dialog 'Project Wizard (Step 4 of 6)' appears. 
 

 
 
j. Enter a name for the resource (in our example 'Resource'). 
The resource can be compared to a CPU which can be 
inserted into the rack (i.e. into the configuration). 
In the list box select the resource type. The list box only 
offers CPU types which belong to the configuration you 
have defined in the dialog 'Project Wizard (Step 3 of 6)' 
(refer to Figure 3). 
 
k. Click 'Next' to continue. 

 
The dialog 'Project Wizard (Step 5 of 6)' appears. 

36 



 

Figure 5: 
Dialog 'Project 
Wizard 
(Step 5 of 6)' for 
selecting the task 
name 
and type 

 
l. Enter the name of the first task into the input field (in our 
example 'Task'). 
In the list box select the task type 'CYCLIC'. 
 
Detailed information about the different task types can be 
found in the online help system. 
 
m. Click 'Next' to continue. 

 
The dialog 'Project Wizard (Step 6 of 6)' appears. 

Figure 6: 
Dialog 'Project 
Wizard 
(Step 6 of 6)' 
displaying 
an overview 
on the 
project 
settings 

 

 
This dialog shows the project description, which is an 
overview of the settings you have made in the steps 1 to 5. 
If an invalid name was entered the error message 'Invalid 
name' appears and the 'Finish' button is greyed out. If this is 
the case, check the spelling of the suspected identifier. 

37 



To correct an error browse to the corresponding step using 
the 'Back' button. Make sure that the rules for defining 
identifiers are followed. 
 
n. If no error message occurs click 'Finish': 

 
The new project will be created and inserted in the project 
tree window. 
In the project tree window, you can see the newly generated 
project with its POU 'Main' in the subtree 'Logical POUs' and 
the configuration, resource and task in the subtree 'Physical 
Hardware'. 
 

 

Figure 7: 
Automaticall
y 
generated 
project in 
the project 
tree 

 
The empty code body worksheet of the program 'Main' is 
automatically opened. 
 

38 



PHASE 2  
DEVELOPING THE LD CODE 

 
Now that we have created the new project we will start phase 2 
and develop the project code. 
 
To do so, we will use the programming language Ladder 
Diagram (LD). Having finished editing the project code, the 
project can be compiled, downloaded and debugged. 
 
In the following steps we will explain how to 
 
� insert a first LD network 
� declare the properties of LD objects which are 
  automatically inserted with the first LD network 
� insert and connect a function block in the LD code body 
  worksheet using the Edit Wizard 
� insert and connect a contact in the LD code worksheet 
  using the connection mode 
� declare the properties of contacts and coils 
� insert a second LD network and edit network description 
  Comments 

 
INSERTING A LD NETWORK 
 
We want to insert the first LD network '001': 
 
a. Click with the left mouse button into the worksheet to set an 
insertion mark at the position shown below. Here, the 
network will be inserted. 
 

 
 
b. Click on the 'Contact network' icon to insert the LD network: 

 
 
c. The network comes with a contact and a coil, and its width 
is set automatically as well. 

39 



Figure 8: 
New LD network in 
the worksheet  

 
 

DECLARING THE PROPERTIES 
 
We now want to declare the properties of the LD objects which 
have been automatically inserted with the first LD network 
 
a. Double click on the contact 'C000'. 
As an option you can mark the contact by clicking on it and 
then press <Enter>. 
 
The 'Contact/Coil Properties' dialog appears. 
 
b. Change the variable name from its default name 'C000' to 
'Motor_Start'. 

 

Figure 9: 
Dialog 
'Contact/Coil 
Properties' 
for 
setting the 
contact 
properties 

 
c. Click 'Apply' or press <Enter>. The dialog page 'Common' is 
opened automatically. 
 
d. In the list box 'Usage' (see Figure 10) select 
'VAR_EXTERNAL' so that the variable will be declared as 
global variable, meaning it can be used in each POU of the 
project. 

40 



e. We now want to assign the variable 'Motor_Start' to our I/O 
simulator, so we can test the logic on the screen. To do so, 
we have to assign the variable's physical PLC address in 
the input field 'I/O address'. Since this contact is meant to 
start the motor, we need to declare an input variable. 
Enter '%IX0.0' for the declaration of the located variable 
'Motor_Start'. This is the simulator position, where '0.0' 
designates 'first module.first point'. 
 

 

Figure 10: 
Dialog 
'Contact/Coil 
Properties' for 
setting the 
contact 
properties 

 
f. Open the dialog page 'Local scope' and select 'Default' from 
the tree. 
By selecting this entry we define, that the VAR_EXTERNAL 
declaration of the new variable will be inserted into the 
variables group 'Default' of the local variables grid 
worksheet. 
 
As we are declaring a global variable (usage 
VAR_EXTERNAL) we have to select both, a local and a 
global scope. 

41 



 

Figure 11: 
Dialog 'Contact/Coil 
Properties' for 
setting the contact 
properties 

 
g. Open the dialog page 'Global scope' and select 'Default' 
from the tree. 
By selecting this entry we define, that the VAR_GLOBAL 
declaration of the new variable will be inserted into the 
variables group 'Default' of the resource's global variables 
grid worksheet. 
 
As we are declaring a global variable (usage 
VAR_EXTERNAL) we have to select both, a local and a 
global scope. 
 

 

Figure 12: 
Dialog 
'Contact/Coil 
Properties' for 
setting the 
contact 
properties 

 
For detailed information on the variable declaration and the 
function of local and global variables refer to the Appendix, 
section 'Variables and Data Types'. 
 
h. Click 'OK' to confirm the 'Contact/Coil Properties' dialog. 
The variable and its declaration will be inserted. 
 

Figure 13: 
LD code 
worksheet 
with global input 
variable 
'Motor_Start' 

Now your screen should look as follows: 

 

42 



INSERTING A COUNTER USING THE EDIT WIZARD 
 
Now we want to insert and connect a counter in the LD code 
worksheet using the Edit Wizard. 
 
a. As we want to insert the counter between 'Motor_Start' and 
'C001', click on the line to mark it: Figure 14: 

Line marked to 
specify the position 
for inserting the 
counter 

 
 
 
 
b. If the Edit Wizard is not already opened, click on the 'Edit 
Wizard' icon in the toolbar: 

 
The Edit Wizard appears. 
 
c. Open the group 'Function 
blocks' (if not already open). 
In the list of function blocks 
browse for the entry 'CTU' 
and double click on it. 
 
 
 
 
 
The dialog 'Variable Properties' appears. 

43 



 

Figure 15: 
Dialog 
'Variable 
Properties' for 
setting the 
counter 
properties 

 
d. Change the instance name from its default name to 
'Motor_Count' in the 'Name' input field and click 'OK'. The 
'Common' dialog page is opened automatically. Confirm the 
dialog with 'OK'. 
 
e. Hide the Edit Wizard by clicking on the 'Edit Wizard' icon 
again: 
 

 
 
Your worksheet should now look as follows: 

Figure 16: 
LD code 
worksheet 
with inserted 
counter 'CTU' 

 

 

44 



INSERTING THE COUNTER 'RESET' CONTACT 
 
Now we want to define the 'Reset' input of the CTU function 
block and connect it to the left powerrail. 
 
a. Click on the 'Reset' input to mark it: 
 

Figure 17: 
Marked input of the 
counter for 
connecting a 
contact 

 
 
b. Click on the 'Add contact left' icon in the toolbar to insert a 
contact left of the 'Reset' input. 

 

 

Figure 18: 
Inserting a contact 
in the LD network 

 
c. Click on the 'Connect Objects' icon in the toolbar: 

 
d. Click on the contact 'C002' for the starting point of the 
connection line. 
 
e. Move the mouse to the left powerrail and click once to end 
the line. 
 

Figure 19: 
Connecting the 
contact using the 
connection mode  

 
Moving the contact: 
 
f. Switch from connection mode to mark mode by pressing 
<Esc> or clicking on the 'Mark' icon: 

 
 
g. Click on the contact 'C002'. 
Drag the contact to the left powerrail until it is positioned 
below 'Motor_Start'. 

45 



h. Release the mouse button to drop the contact 'C002': 
 

 

Figure 20: 
Moving the contact 

 
DECLARING THE PROPERTIES OF THE COUNTER'S 
'RESET' CONTACT 

 
Next we declare the properties of the reset contact 'C002'. 
 
a. Double click on the contact 'C002' to open the 'Contact/Coil 
Properties' dialog. 
 
b. Change the name from the default name 'C002' to 'Motor'. 
 

 

Figure 21: 
'Contact/Coil 
Properties' dialog 
for setting the 
contact properties 

 
c. Click 'Apply' or press <Enter>. The dialog page 'Common' is 
opened automatically. 
 
d. In the list box 'Usage' (see Figure 22) select 
'VAR_EXTERNAL' so that the variable will be declared as 
global variable, meaning it can be used in each POU of the 
project. 
 
e. We now want to assign the variable 'Motor' to our I/O 
simulator, so we can test the logic on the screen. 

46 



The input field 'I/O address:' specifies the physical PLC 
address for the variable. Enter '%QX0.0' for the declaration 
of the variable 'Motor', where 'Q' designates 'Output' and 
'0.0' signifies 'first output module.first point'. 

Figure 22: 
Dialog 'Contact/Coil 
Properties' for 
setting the contact 
properties 

 
Since we have already specified the local and global scope 
(i.e. variable group) for the first variable 'Motor_Count', it is 
not necessary to select a group for all further variables of 
the same groups. 
For further information about the location and size prefixes 
refer to the Appendix, section 'Variables and Data Types'. 
 
f. Click 'OK' or press <Enter> to confirm the 'Contact/Coil 
Properties' dialog. Now your LD worksheet should look as 
follows: 

Figure 23: 
Newly declared 
variable 'Motor' in 
LD code worksheet  

 

47 



Defining the counter parameters 
 
Defining the counter's preset value: 
 
g. Double click on the blue connection point of the preset value 
'PV'. 
 
The 'Variable Properties' dialog appears (see Figure 24). 
 
h. As we want the motor to start after pushing the start button 
three times, enter 'INT#3' as preset value in the 'Name' input 
field. 'INT' means 'Integer', '#' designates a constant and '3' 
is the actual value. 

 

Figure 24: 
'Variable Properties' 
dialog for defining 
the type and name 
of a variable 

 
i. Confirm the dialog with 'OK'. The integer value is directly 
inserted into the code body. 

Figure 25: 
Newly declared 
constant in LD code 
worksheet 

 

 
 
Configuring the counter's current value 'CV': 
 
j. Double click on the green connection point of the current 
value output 'CV'. 
 
The 'Variable Properties' dialog appears. 

48 



k. Enter 'Pressed' as variable name. The current value of the 
counter will now be stored in the variable 'Pressed'. 
 
l. Click 'OK'. The dialog page 'Common' is opened 
automatically. 
 
The current value is an integer, so select the data type 'INT' 
from the 'Data Type' list box. 

 

Figure 26: 
'Variable Properties' 
dialog for setting the 
variable properties 

 
m. Click 'OK'. Your worksheet should look as follows: 

Figure 27: 
Newly declared 
variables in LD 
code worksheet  

 
Configuring the coil 'C001': 
 
n. Double click on 'C001'. The 'Contact/Coil Properties' dialog 
appears. 
 
o. For this coil we select the existing variable 'Motor'. The list 
below the 'Name' input field contains all variables which 
have already been declared (local or global), depending on 
the activated scope radio button. 
From the list select the local variable 'Motor'. 

49 



 

Figure 28: 
'Contac/Coil 
Properties' 
dialog for selecting a 
variable for a coil 

 
p. Since we want the motor to run continuously after we 
started it, we will use a SET coil. 
From the 'Type' list box select '-(S)-' (see Figure 28). 
 
q. Click 'OK'. Your worksheet should look as follows: 

 

Figure 29: 
Inserted 'Motor' 
variable 

 
INSERTING A SECOND LD NETWORK AND EDITING 
NETWORK DESCRIPTION COMMENTS 

 
Now we want to insert a logic to stop the motor and edit the 
network description comments. 
 
a. Click with the left mouse button at a suitable distance below 
the existing LD network, to set an insertion mark at the 
position shown below. 

50 



 Figure 30: 
Insertion mark for 
inserting a second 
LD network 

 
 
b. Click on the 'Contact Network' icon to insert a new LD 
network: 

 
 

 

Figure 31: 
Second LD network 
inserted in the LD 
code body 
worksheet 

 
c. Double click on the contact 'C003' to declare the contact 
properties. 
 
d. In the 'Contact/Coil Properties' dialog which appears select 
the local variable 'Motor' from the list: 

Figure 32: 
Dialog 'Contac/Coil 
Properties' for 
setting the variable 
type for the contact 

 
 
e. Click 'OK'. The variable 'Motor' is inserted at contact 'C003'. 
 
Inserting a timer: 
 
Now we will insert the timer that controls how long the motor 
will run. 

51 



f. Open the Edit Wizard by clicking on the 'Edit Wizard' icon in 
the toolbar. 

 
 
g. In the second LD network, mark the line between 'Motor' 
and 'C004' to insert and connect a function block at this 
position. 
 

Figure 33: 
Marked line 

 
 
h. From the Edit Wizard's 'Group' list box select the group 
'Function blocks'. 
 
i. From the list of function blocks select the timer 'TON' ('Timer 
On Delay') and insert it by double clicking on it. 
 
j. The dialog 'Variable Properties' appears. Enter 'M_Time' as 
instance name in the 'Name' input field: 

 

Figure 34: 
Dialog 'Variable 
Properties' for 
declaring the 
instance name 

 
k. Click 'OK'. The 'Common' dialog page is opened 
automatically. Confirm the dialog with 'OK'. 

52 



Since you have marked the line before inserting the object, 
the function block will be inserted and connected directly at 
the specified position. 
Your screen should look as follows: 

Figure 35: 
LD code worksheet 
with second LD 
network and 
function block 
'TON' 

 
 
l. Hide the Edit Wizard by clicking on the 'Edit Wizard' icon 
again: 

 
 
Now we want to determine the timer's preset time 'PT', which 
will control how long the motor runs: 
 
m. Double click on the blue connection point of input 'PT'. 
 
The 'Variable Properties' dialog appears. 
 

Figure 36: 
'Variable Properties' 
dialog for declaring a 
local variable 

 
 

53 



n. Enter 'T#20s' as time constant in the 'Name' input field. Here 
'T' designates a time value, '#' signifies 'constant' and '20s' 
is the actual time value of 20 seconds (because we want the 
motor to run 20 seconds). 
 
o. Click 'OK'. The constant 'T#20s' is inserted directly at the 
input PT (see Figure 39). 
 
Now we are going to define a variable to hold the elapsed 
time 'ET': 
 
p. Double click on the green connection point of output 'ET'. 
The 'Variable Properties' dialog appears. 
 
q. Enter 'Actual_Time' as name for the local variable. 
 

 

Figure 37: 
'Variable Properties' 
dialog for declaring a 
local variable 

 
r. Click 'OK'. The 'Common' dialog page is opened 
automatically. 
 
s. The timer output 'ET' needs a variable of the data type 
'TIME'. For that reason, select the data type 'TIME' from the 
'Data type' list box. 

54 



 

Figure 38: 
'Variable Properties' 
dialog for declaring a 
local variable 

 
t. Click 'OK' to insert the newly declared variable. 
 
Your worksheet should look as follows: 
 

 

Figure 39: 
LD code worksheet 
with second LD 
network and 
function block 
'TON' 

 
The last variable we have to declare is the one for the coil 
'C004'. 
 
u. Double click on the coil 'C004' to open the 'Contact/Coil 
Properties' dialog. Select the variable 'Motor' from the 
variables list. 
 
v. When energized, this coil will stop the motor. Since we use 
a Set coil to start the motor, we need to use a Reset coil to 
stop it. 
 
So set the coil type to 'RESET' by selecting the 
corresponding list box entry as shown in the following figure. 

55 



 

Figure 40: 
'Contact/Coil 
Properties' dialog 
for setting the coil 
and variable type 

 
w. Click 'OK'. Your worksheet should look as follows: 

Figure 41: 
LD code worksheet 
with inserted 
second LD network 
and function block 
'TON' 

 
 
Finally, we will insert the network description comments. 
 
x. Double click on the left powerrail in the LD code worksheet: 

Figure 42: 
Marked powerrail 

 
 
The 'Comment' dialog appears: 

56 



 

Figure 43: 
'Comment' dialog 
for entering 
comments in the 
LD code worksheet 

 
y. In the 'Comment' dialog type 'Motor Control Circuit'. 
 
By clicking on the button 'Font >>', you can change the font 
properties. Select 'blue' as color and the font width '20'. 
 
z. Click 'OK'. 

 
 

PHASE 3  
COMPILING THE EXAMPLE PROJECT 

 
Now that the editing process is finished we have to compile the 
project. During compilation the contents of the worksheets are 
translated and transformed to special code which can be 
executed by your PLC. 
 
The programming system provides several possibilities for 
compiling. For detailed information please refer to the online 
help. 
 
 

'MAKING' THE PROJECT 
 
a. In our example we are working with the simulation. Make 
sure, that the simulation has been activated. To do so, right 
click in the project tree on the folder 'Resource' and select 
'Settings...' from the appearing context menu: 

57 



 

Figure 44: 
Project tree with 
context menu for 
calling the resource 
settings 

 
The 'Resource settings' dialog appears: 
 

Figure 45: 
Dialog 'Resource 
settings' for setting 
the output device 

 
 
b. Activate 'Simulation 1', if necessary, and close the dialog 
with 'OK'. 
 
c. Click on the 'Make' icon in the toolbar: 

 
 
The compilation process is displayed in the 'Build' tab of the 
message window. Errors and warnings detected during 
compilation are logged in the corresponding sheets of the 
message window. You can use the message window to access 
a particular code body worksheet by double clicking on the error 
message. 

58 



 

Figure 46: 
Message Window 
after compiling the 
project using the 
'Make' command 

 
 
 

HANDLING ERRORS AND MESSAGES 
 
 
During the 'Make' process it is possible that you will detect 
errors or warnings. 
 
Errors will prevent the compile process from being completed 
and include such issues as syntax errors or structure problems. 
Warnings indicate potential problems like a variable that is not 
being used. Warnings do not prevent the compilation process 
from being completed. 
 
You can ignore warnings, but you must fix errors to proceed 
with the exercise. 
 
� To display the detected errors, click on the 'Errors' tab in 
the message window. 
A list of the errors will then be displayed in the message 
window. 
 
� In order to display the list of warnings, click on the 
'Warnings' tab. 
 
� In most cases double clicking on an error/warning will 
directly open the worksheet in which the programming 
error/the reason for the warning has occurred. The 
corresponding line or object is marked. 
You can also mark the error and press <SHIFT> + <F1> 
to get the corresponding help topic with information on the 
cause of the error and the further steps necessary to fix it. 
 
� Fix all errors (if any have occurred) and re-compile the 
project using the 'Make' icon. 
 
� Only then you can download the program to the PLC. 

59 



PHASE 4 
DOWNLOADING THE PROJECT TO THE IO 
SIMULATION OR KinCon-8000 

 
Now, the compiled project has to be downloaded (i.e. sent) to 
the I/O Simulation or KinCon-8000. 
 
The communication with the simulation or KinCon-8000 is done 
using the PLC control dialog, named 'Resource'. 
 
When working with several resources, different dialogs are 
used to download a project and control the targets. 
Please refer to the online help system for detailed information. 
 

Download to Simulation 
a. Click on the 'Project Control Dialog' icon to open the 
resource control dialog. 

 
 
The control dialog appears showing the resource name in 
its titlebar.  
 

 Figure 47: 
' Resource' dialog 
f or controlling the 
 PLC or simulation 

 

 
 
b. Press the 'Download' button. 
The 'Download' dialog appears: 

60 



 

Figure 48: 
'Download' dialog 
for initiating the 
project download 

 
The dialog is used to start the download process. You can send 
either a "normal" project or the zipped project source (which can 
be used as a backup) to the KinCon-8000 or simulation. 
 
c. Press the 'Download' button in the 'Project' section to 
download the project: 
The successful download process is indicated by a blue 
status bar at the bottom of the screen. 
 
d. Press the 'Cold' button in the control dialog to execute a 
cold start: 

 
 
The state of the resource changes from 'Stop' to 'Run': 
 

 
 

Download to KinCon-8000 
 

For download to KinCon-8000, We have to create a new Configuration in 
MultiProg. The process is as below: 
 
a. Press right mouse button on Physical Hardware. Insert ‘Configuration’ 
then enter ‘Name’, and choose ’ARM_L_33’ as PLC type. Press ’OK’ to 
finish. 

61 



 
 
b. Copy ‘Resource:PROCONOS’ under ‘Configuration:IPC_32’ to 
‘KinCon:ARM_L_33’ 
 
c. Adjust Resource setting. Choose ‘DLL’ and then set the KinCon-8000 IP 
address in Parameter field. 

 
 
d. Click on the 'Project Control Dialog' icon to open the 
resource control dialog. 

 
 
The control dialog appears showing the resource name in 
its titlebar.  
 

62 



 
 
e. Press the 'Download' button. The 'Download' dialog appears: 

 
 
The dialog is used to start the download process. You can send 
either a "normal" project or the zipped project source (which can 
be used as a backup) to the KinCon-8000 or simulation. 
 
f. Press the 'Download' button in the 'Project' section to 
download the project: 
The successful download process is indicated by a blue 
status bar at the bottom of the screen. 
 
g. Press the 'Cold' button in the control dialog to execute a 
cold start: 

 
 
The state of the resource changes from 'Stop' to 'Run': 
 

 

63 



PHASE 5 
DEBUGGING THE PROJECT 

 
In the following, the programming system debug tools will be 
explained. The system supports several debug tools providing a 
fast and easy way to bring your application online. Although these functions 
are described on ‘Simulation’, it is the same on KinCon-8000. 
 

DEBUG MODE 
 
Worksheets can be switched from edit mode (offline) to debug 
mode (online) and vice versa. The Online mode is used to 
detect programming errors and to make sure that the PLC 
program is running correctly. In Online mode the current values 
and states of the variables are displayed. 
 
a. Make sure that the KinCon-8000/Simulation is running. The PLC 
state is shown at the top of the 'Resource' control dialog. If 
the program is not running, perform a cold start by pressing 
the 'Cold' button in the control dialog. 
 
b. To activate the debug mode, make sure that the code body 
of our POU 'Main' is open, and click on the 'Debug on/off' 
icon in the toolbar: 

 
 
Note that the states and current values of the variables are 
displayed in several colors indicating the different states: 
 
� blue = false 
� red = true 
 
You can toggle between the online and the offline mode by 
clicking on the 'Debug on/off' icon. 
 
c. Click on the button 'DEMOIO - DRIVER' in the Windows 
taskbar to open the I/O simulator: 

64 



 

Figure 49: 
I/O simulator 

d. If necessary, place the I/O Simulator (by drag and drop) to a 
corner of the screen so that the worksheet is not hidden. 
 
e. Turn bit 0 of module 0 on and off three times by clicking on 
the first green "virtual LED" of the first input module: 

Figure 50: 
Toggle bit to start 
sample program 

 
 
Watch the reaction in the worksheet: 
 
� The motor starts running after marking 'Motor_Start' three 
times, because the current value 'CV' reaches the preset 
value 'PV' (note the update on the screen). 
 
� When the 'Motor' Set coil is switched on, it also starts the 
timer 'M_Time' in rung 002. 
 
� 'M_Time' (the actual time) runs for 20 seconds until 'ET' 
(elapsed time) reaches the preset time value 'PT'. The 
'Motor' Reset coil in rung 002 is switched on, thus 
unlatching the 'Motor' Set coil in rung 001 and turning the 
motor off. 
 

ONLINE EDITING 
 
Online editing is possible without stopping the program 
execution on the PLC / simulation. This operation is called 
'Patch POU'. When you use 'Patch POU', the changes you 
made in the code are compiled, the related code is generated 
and then downloaded automatically to the PLC. During the 
whole patch process the code execution on the PLC is not 
interrupted. 

65 



 
As a Patch POU example we want to insert an Emergency Stop 
for the motor: Activating the input 'Emergency_Stop' will stop 
the motor immediately. 
 
a. Switch to Offline Mode by clicking on the 'Debug on/off' 
icon: 

 
Our code body worksheet appears in editing mode again. 
The resource, however, just like a real controller, is still 
running: 
 

 
b. Set the insertion mark in the LD code worksheet below rung 
002. 
 
c. Click on the 'Network' icon to insert a new LD network: 

 
Your worksheet should look as follows: 

 

Figure 51: 
Inserting an LD 
network 

 
d. Double click on the contact 'C005' to open the 'Contact/Coil 
Properties' dialog. 
 
e. Change the name from the default name 'C005' to 
'Emergency_Stop'. 

 

Figure 52: 
Dialog 'Contact/Coil 
Properties' for 
setting the contact 
properties 

 

66 



f. Click 'OK'. The 'Common' dialog page is opened 
automatically. 
 
g. From the list box 'Usage', select 'VAR_EXTERNAL' to 
declare 'Emergency_Stop' as a global variable. 
 
h. We will use the second input point in the I/O simulator for 
the emergency stop. Enter '%IX0.1' as the address for this 
variable in the 'I/O address' input field and click 'OK'. 

 

Figure 53: 
'Contact/Coil 
Properties' dialog 
for setting the 
contact properties 

 
For further information on the location and size prefixes 
refer to the Appendix, section 'Variables and Data Types'. 
 
i. Double click on the contact 'C006'. The 'Contact/Coil 
Properties' dialog appears. Select '-(R)-' from the 'Type' list 
box and 'Motor' from the global 'Variable' list box. Then click 
'OK'. 
 
Your worksheet should look as follows: 

 

Figure 54: 
Online editing, 
changed variable 
properties 

 

67 



Now that we have changed the code, we make a Patch POU. 
This process will compile the changes and download them to 
the PLC without stopping the PLC. 
 
j. Click on the 'Patch POU' icon in the toolbar to compile the 
modified code and download it to the I/O Simulator: 

 
 
After the patch process has been successfully completed, 
the worksheet will be automatically set to Online mode. 
 
k. Click on the 'DEMOIO - DRIVER' button in the Windows 
taskbar to open the I/O simulator. 
 
l. Turn bit 0 of module 0 on and off three times by clicking on 
the corresponding input point (LED) (refer to Figure 50 on 
page 38). 
 
m. Use the new Emergency_Stop contact to immediately stop 
the motor by clicking on bit 1 of the input module 0 in the 
I/O simulator. 
 
 

CROSS REFERENCE WINDOW 
 
The cross reference list contains all variables, function blocks, 
jumps, labels and connectors which are used within the current 
project. This tool is particularly helpful for debugging and error 
isolation. 
 
a. Click on the 'Cross Reference Window' icon in the toolbar to 
open the Cross Reference Window (if not already opened): 

 
 
b. Place the cursor in the Cross Reference Window and right 
click on the window background to open the context menu: 

Figure 55: 
Cross Reference 
Window with 
context menu for 
building the cross 
references 

 
 
c. Select the menu item 'Build Cross References'. 

68 



Figure 56: 
Cross reference list 
in the sample 
project 

The cross reference list will be created. 

 
 
d. Double clicking on a variable in the Cross Reference 
Window will open the worksheet in which this variable is 
used and highlight the variable. 
In addition if you mark a variable in the worksheet, the 
corresponding variable in the Cross Reference Window will 
be marked as well. 
 
e. Close the Cross Reference Window and the Message 
Window by clicking on the corresponding toolbar icons. 

 And  
 

VARIABLES WATCH WINDOW 
 
The Variables Watch Window is a powerful tool allowing you to 
insert different variables easily into a list and observe their 
runtime behavior. Once a variable is added to the Watch 
Window, the corresponding worksheet does not have to be 
open to monitor its current value. As a result, you can focus on 
those variables you want to see for easier access. 
 
a. If this is not yet the case, switch the worksheet into Online 
Mode by pressing the 'Debug on/off' icon. 

 
 
b. Right click in the worksheet and select 'Open Watch 
Window...' from the context menu or click on the 'Watch 
Window' button. 
The Watch Window appears. 

 
 
c. In the online worksheet right click on 'Motor_Start' to open 
the context menu and select 'Add to Watch Window' to 
insert this variable into the list. 
 
d. Repeat this procedure for the variables 'Pressed' and 
'Actual_Time'. The three variables will appear in the list as 
shown in the figure below. 

69 



 

Figure 57: 
Variable Watch 
Window 

 
You can now use the I/O Simulator to manipulate the 
contacts and observe the changes of the values, both in the 
logic and in the Watch Window simultaneously. 
 

FORCING AND OVERWRITING 
 
In Online mode variables can be forced or overwritten. In both 
cases a new value is assigned to the corresponding variable. 
 
Force: A value is assigned to a variable (usually a contact or 
coil). The value remains until the force is reset. 
 
Overwrite: A value is temporarily assigned to a variable by the 
user. The value remains until the program overwrites this value 
again with the original value in the next program cycle. 
 
The steps necessary for forcing and overwriting a variable are 
nearly the same. 

 
Be very careful forcing or overwriting variables while your PLC 
is running. Forcing and overwriting variables mean that the PLC 
program is executed with the values of the forced or overwritten 
variable. 
 
In our example we want to force the variable 'Motor_Start': 
 
a. Make sure, that the worksheet is in Online Mode. If not, 
press the 'Debug on/off' icon in the toolbar: 

 
 
b. Click on the button 'DEMOIO - DRIVER' in the Windows 
taskbar to open the I/O simulator. 
 
c. Make sure, that all inputs are set to 'FALSE' by clicking on 
each illuminated LED (no input LED should be highlighted). 
 
d. Double click on 'Motor_Start'. The 'Debug: Resource' dialog 
appears: 

70 



 

Figure 58: 
'Debug: Resource' 
dialog for forcing 
and overwriting 
variables 

 
e. Select the radio button 'TRUE', then click on 'Force'. As a 
result 'Motor_Start' will be forced 'on' and highlighted red in 
the online worksheet. 
 
f. Double click 'Motor_Start' again and select 'Reset force' to 
deactivate the force. 
 
If you repeat the steps e. and f. the logic will start executing. 
 
g. In the 'Debug' dialog click on 'Reset force list. 
Now we want to overwrite the variable 'Motor'. 
 
h. Double click on the 'Motor' coil in rung 001, then click on 
'Overwrite'. This starts 'M_Time'. After 20 seconds, the 
'Motor' Reset coil in rung 002 will turn off 'Motor'. 
 

BREAKPOINTS 
 
Breakpoints can be set online in all worksheets using the 
controls in the right area of the 'Debug: Resource' dialog shown 
in Figure 58. 
 
When a breakpoint is set, program execution halts at that 
breakpoint until the developer makes it continue. The 
programming system provides the possibility to execute a 
program until the next breakpoint is reached (Single Step) or 
until the same breakpoint is reached again (Single Cycle). 
 
If a breakpoint is reached, the PLC state changes to HALT 
[DEBUG] and the control dialog shows the buttons 'Go', 'Step' 
and 'Trace' to continue with. 
Go: Clicking 'Go' causes the program to execute until the next 
breakpoint is met. 

71 



Step: Clicking 'STEP' causes the program to execute the next 
instruction. 
 
Trace: If an user defined function or a function block call is 
reached, the function or function block code body is opened 
and debugged step by step. 
 
Be very careful using breakpoints while the PLC is running, 
since the breakpoint actually halts program execution. The 
behavior of the I/Os when reaching a breakpoint depends on 
the PLC type. 
 
a. To observe breakpoint operation, the corresponding 
worksheet must be in Online mode ('Debug on/off' icon 
pressed): 

 
 
b. Click on the 'PLC Control' icon to open the resource control 
dialog: 

 
 
c. Double click on 'Motor_Start' and select 'Set' in the 'Debug: 
Resource' dialog to set a breakpoint at this variable. 

 
 
'Motor_Start' is highlighted orange in the online worksheet 
to indicate the point at which program execution is stopped. 

 
 
d. Press the 'Go' button in the 'Resource' dialog to activate 
program execution until the next breakpoint is met. 

 

72 



 
As we have set only one breakpoint, the program stops 
again on 'Motor_Start'. This is called a Single Cycle. 
 
e. Click on 'Step' several times and notice that the orange 
highlight moves to the next instruction each time to indicate 
the point at which the program execution has stopped. This 
is a Single Step execution. Also notice that 'Motor_Start' has 
a red highlight to indicate where the breakpoint has been 
set. 
 
f. Double click on 'Motor_Start' and press 'Reset' in the debug 
dialog to reset the breakpoint. Then click 'Go' in the 
'Resource' dialog to resume program execution. 
 
g. Click on the 'Debug on/off' icon again to switch to Offline 
mode: 

 
 
h. In the Control dialog, click on the 'Stop' button to stop the 
PLC, and close the 'Resource' control dialog using the 
'Close' button. 

 and  

73 



PHASE 6  
PRINTING THE PROJECT DOCUMENTATION 

 
For documentation purposes it is useful to print the whole 
project. The programming system offers several possibilities to 
print your project documentation. The 'File' menu contains the 
commands for a preview of the current page, for defining the 
printer settings, and for printing the entire project or single 
worksheets. 
 

SELECTING A PRINTER 
 
Printer options are located under 'Print Setup...' in the 'File' 
menu. Selecting this item will open the standard Windows 
dialog 'Print Setup'. 
 

SETTING THE PAGELAYOUT 
 
A pagelayout defines the appearance of printed worksheets 
such as the page size, page margins (borders), the source 
area, foot and head lines containing information such as a 
company's logo, date, project name or page numbers. 
 
The programming system allows the usage of different 
pagelayouts. In addition the pagelayouts can be changed. 
When printing your project or parts of it the default pagelayout is 
used automatically. 
 
To change the default pagelayout: 
 
a. Select menu 'Extras | Options...'. 
 
b. Open the tab 'Pagelayouts'. 
 
c. Select the desired pagelayouts. In our example we use the 
default pagelayout. 
 
A pagelayout is created and edited using the pagelayout editor. 
For further information refer to your online help system. 
 

74 



PRINTING THE PROJECT 
 
a. Choose the menu item 'Print Project...' from the 'File' menu. 
The 'Print Project' dialog appears. 
 
b. In the 'Print Project' dialog deselect the parts of the project 
you do not want to be printed by deactivating the 
corresponding checkboxes. 

 

Figure 59: 
'Print Project' dialog 

 
c. Click on the 'Print' button. 
 

PRINT PREVIEW 
 
The print preview allows you to have a look at how the 
worksheet would look like when being printed and to modify it if 
required. It helps you organize the elements on the page in a 
clear and structured way. 
 
Cross references are not displayed in the preview. 
 
How to call the preview: 
 
a. Make sure that the worksheet you want to see is the active 
window. 
 
b. Choose the menu item 'Print Preview...' from the 'File' menu. 
The print preview of the active worksheet will be displayed. 
 
c. To print the single worksheet which is displayed, click on the 
'Print' button. 

75 



PRINTING A SINGLE WORKSHEET 
 
You can print single worksheets that are opened in the graphic 
editor or text editor. 
 
Cross references are not printed using the menu item 'Print'. 
 
How to proceed: 
 
a. Make sure that the worksheet you want to print is active. 
 
b. Select the menu item 'Print' from the 'File' menu. 
The worksheet will be printed. 
 

76 



USING THE I/O CONFIGURATION 
 
The 'I/O Configuration' dialog is used to edit the I/O 
configuration worksheet. The I/O configuration normally 
contains declarations of the I/O modules, such as the logical 
addresses of a module (start and end address), device 
declarations (driver name or memory address), etc. 
 

Using Simulation 
 
The following steps explain how to use the I/O Configuration. In 
our example we will change the number of input modules in the 
existing I/O group to 10. 
 
a. To change the I/O Configuration, double click on the 
'IO_Configuration' in the subtree 'Physical Hardware': 

 
 
The 'I/O Configuration' dialog appears: 

Figure 60: 
Icon 'IO_Configuration 
in the subtree 'Physical 
Hardware' 

 

Figure 61: 
'I/O Configuration' 
dialog 

 
At this point you need to select the driver you will use from 
the list and configure it as described in the manual for the 
corresponding driver. 
The current I/O configuration is shown in the dialog. We 
want to change this configuration, i.e. we want to define 10 
input modules in the existing group. 
 
b. In the 'I/O Configuration' dialog click on the 'Properties' 
button: 

 
The 'Properties' dialog appears. 

77 



 
c. In the field 'Length' enter 10 and press the <TAB> key to 
update the entry in the field 'End address': 

 

Figure 62: 
'Properties' dialog 
for configuring the 
I/O Simulator 

 
d. Confirm the 'Properties' and I/O Configuration dialogs with 
'OK' to return to programming. 
 
e. Compile the project by clicking on the 'Make' icon in the 
toolbar. 
 
For detailed information on the compilation refer to Phase 3 
on page 32 of this Quick Start Manual. 
 
f. Download the project to the target as described in Phase 4 
on page 35. 
 
If the PLC/simulation is still running at this moment, the 
following message dialog appears before the download: 
 

 
If this is the case, click on 'Yes' to continue the download. 
 

78 



g. Click on the button 'DEMOIO - DRIVER' in the Windows 
taskbar to open the I/O Simulator. There should be 10 input 
modules available now: 

 
 

Using KinCon-8000 
The following describe how to configure ‘I/O Configuration’ for using ICP DAS 
I-8K/I-87K/I-7K modules in KinCon-8000. 
The user communicates with the channels of the KinCon-8000 modules by defining 
“I/O Groups” in the “IO_Configuration” part of MULTIPROG project. These I/O 
Groups need (at least) 

 
 
1) a starting address and the address width (the allowed/necessary widths depend 

on the specific module) 
2) driver parameters specifying the KinCon-8000 module and its parameters. 

 
These driver parameters are set through the “Driver information of standard device” 
dialog (select the “User defined input” of the “Board / IO Module and click the “Driver 
parameter…” button). 

 
For example: 
Add I-8077 in Slot 1 
Step 1: Enter ‘I8077In’ in ‘INPUT I/O Group’. The name can be any word. Start  
     address will prompt appropriate address. The I-8077 is 8 DIs - 8 DOs  

79 



  module, so the ‘Length’ is ‘1 Byte(8 bits)’. And then press ‘Driver Parameter’  
  button. 

 
 

Step 2: Enter parameters.  
Driver name: The driver name of the KinCon I/O-Driver is “WinCon8x”. 
Parameter 1: The slot number of the KinCon (1). 
Parameter 2: The module type ID of this slot(8077). 
Parameter 3: The timeout value for this module(ms). 
Parameter 4: Some flags used for certain modules. 

 
 
 
 
 
 

80 



Step 3: Repeat step1 to step2 in ‘OUTPUT’ I/O Group for I-8077 DOs  

 
 
See the APPENDIX for details of the driver parameters. 

81 



CREATING AN USER DEFINED FUNCTION 
 
In this chapter, we want to insert an user defined function in our 
project. The function should be generated using the textual 
language ST. It counts how often the motor has been active. 
 
Before you start: 
Select 'Extras | Options'. In the 'Options' dialog go to the 
'Graphical editor' tab and ensure that 'Functions with EN/ENO' 
is enabled: 

 
 
EN/ENO designates an additional boolean input 'EN' (= enable) 
and output 'ENO' (= enable output) for IEC 61131 functions in 
the programming languages LD and FBD. 
 
EN/ENO is not supported for all targets. 
 
a. To insert an user defined function, click on the 'Add 
Function' button in the toolbar: 

 
 
The 'Insert' dialog appears. 
 
b. Enter 'Cycle_Count' as name and select the language 'ST'. 
In the 'Datatype of return value' field you specify which 
datatype is applied to the function output. The variable 
connected to the function output has to fit to the datatype of 
the return value. In our example we use 'INT'. 

82 



 

Figure 64: 
Dialog 'Insert' for 
inserting an user 
defined POU 

c. Press 'OK'. The function is added to the project tree. The 
asterisk at the end of the function name indicates that the 
new POU has not yet been compiled. 
 
d. Open the code worksheet 'Cycle_Count' for editing the ST 
code by double clicking on it. 

 
 
e. In the worksheet, enter the following code: 

 
This line of code will generate a value that continuously 
increments each time the motor is started. 
 
f. Place the cursor on the variable 'Count': 

 
 
g. Click on the 'Variables' icon 

 
and declare the local variable as 'INT' and 'VAR_INPUT' as 
shown in Figure 65: 

83 



 

Figure 65: 
Dialog 'Variables' 

 
h. Confirm the dialog with 'OK'. The declaration will be 
automatically inserted in the variables worksheet of the new 
ST POU. 
 
i. Close the ST worksheet and save the changes. 

 
 
After closing the ST worksheet, the new user defined 
function is available in the Edit Wizard and can be inserted 
into other worksheets of the project. 
 
We now want to call the user defined function 'Cycle_Count' 
in our program POU 'Main'. 
 
j. In the code body of the program 'Main', set the insertion 
mark below the LD network '003' and insert a new network 
using the 'Network' icon. 
 
k. Mark the LD network '004' line between C007 and C008. 
 
l. Open the Edit Wizard and select the group 
'My_First_Project': 

84 



 
 
This group contains all user defined functions and function 
blocks of the current project (only 'Cycle_Count' in our 
example). 
 
m. Double click on the function 'Cycle_Count' to insert this user 
defined function at the position specified before. 

 

Figure 66: 
Inserted user 
defined function 
'Cycle_Count' 

 
Having done this, close the Wizard again. 
 
Now we have to connect a new variable to input 'Count' so 
that we can see the internal value. 
 
n. Double click on the blue connection point of the 'Count' 
input of 'Cycle_Count'. 
 
o. The 'Variable Properties' dialog appears. 
 
p. Declare the local variable 'Motor_Cycles' as follows: 

85 



 

Figure 67: 
Dialog 'Variable 
Properties'' 

 
q. Confirm the dialogs with 'OK' to insert the variable into the 
code body and its declaration into the local variables 
worksheet. 
 
The same variable now has to be connected to the function 
output. 
 
r. Double click on the green connection point of the output of 
'Cycle_Count' and select the variable 'Motor_Cycles' from 
the variables selection list of the 'Variables Properties' 
dialog. 
 
s. Confirm with 'OK' to insert the variable. 

 

86 



t. Change the name of contact 'C007' to 'Motor' using the 
'Contact/Coil Properties' dialog. To open the dialog double 
click on the contact. 
 
Be sure that the contact 'Motor' is marked. 
 
u. Activate the Edit Wizard. Select the group 'Function blocks' 
and insert the function block R_TRIG by double clicking on 
it. 
 
v. Enter 'Motor_Edge' in the 'Name' field of the 
'Variable Properties' dialog. 
 
w. Press 'OK'. The 'Common' dialog appears. Enter a 
description if desired and press 'OK' again to insert the 
function block and its declaration. 
 
x. Hide the Edit Wizard by clicking on the 'Edit Wizard' icon 
again: 

 
 
As the contact 'Motor' was marked when selecting the 
function block in the Edit Wizard, 'Motor_Edge' is directly 
connected to 'Motor'. 

 
 
y. Double click on the coil 'C008'. 
 
z. Declare the coil as follows: 

87 



 

Figure 68: 
'Contact/Coil 
Properties' dialog 

 
Compile the project using the 'Make' icon, start and then 
download it. 
 
Now our sample project is complete. You can check the 
behavior of the program using the worksheets in Online mode 
and the programming system I/O Simulator (refer to Phase 5 on 
page 37 of this manual). 
 
a. Switch the worksheet into online mode and click on the 
button 'DEMOIO - DRIVER' in the Windows taskbar to open 
the I/O Simulator. 
 
b. Turn bit 0 of module 0 on and off three times by clicking on 
the input point. 

 
 
The program executes: 

88 



 
 
Notice that each time the logic in the main program executes 
(motor starts, runs 20 seconds and stops) the value of 
'Motor_Cycles' is incremented by 1. 
 
It is possible to jump into the user defined function 
'Cycle_Count' (i.e. to call the related code body worksheet) 
without leaving the current worksheet. 
 
a. Double click on the function 'Cycle_Count' in the LD 
worksheet. The following dialog appears: 

 

89 



b. Confirm the dialog with 'Yes' to switch from variable status 
to powerflow. 
The code body worksheet of the function 'Cycle_Count' will 
be opened. In the now activated powerflow, the current 
values of the accumulator are displayed in the worksheet by 
symbols. 
  
Detailed information about powerflow and the symbols used 
can be found in the online help system. 
 
c. Close the code body worksheet to return to the LD 
worksheet. 
 

CHANGING THE TASK CYCLE TIME 
 
The programming system allows you to change the Task Cycle 
Time, i.e. the time interval in which the cyclic task is executed. 
Thus, decreasing the task cycle time will speed up process 
execution. It is important to get the execution of the cycle as 
close to scan time as possible. 
 
In our example we change the Task Cycle Time from 100ms to 
90ms. 
 
The shortest possible Task Cycle Time depends on the PLC 
used. 
 
a. Make sure, that the system is in Offline mode, i.e. the icon 
'Debug on/off' is not pressed. 

 
 
b. To change the Task Configuration, right click on the 
'TASK : CYCLIC' icon in the subtree 'Physical Hardware'. In 
the context menu that appears select 'Settings...'. 

 
 

90 



The dialog 'Task settings for IPC_32' appears: 

 

Figure 69: 
Dialog 'Task 
settings for IPC_32' 
for changing the 
Task Cycle Time 

 
The current Task Configuration is shown in the dialog. We 
want to change the Task Cycle Time from 100ms to 90ms. 
 
c. In the field 'Interval' enter 90 and click 'OK' to confirm the 
dialog. 
 
d. Compile the project by clicking on the 'Make' icon. For 
detailed information on the compilation refer to Phase 3 on 
page 32 of this Quick Start Manual. 
 
e. Download the project to the target as described in Phase 4 
on page 35. 
 
If the PLC/simulation is still running, the following message 
dialog appears before the download: 

 
 
If this is the case, click 'Yes' to continue the download. 
 
f. If desired, debug the project as described in Phase 5, 
'Debugging the project' on page 37 of this manual. 
 

Using Retain Variable 
Step1: Make sure the S-256 or S-512 is plugged in KinCon-8000 and refer to  
‘KinCon-8000 Configuration’ section to start it up correctly. 
 
Step2: Check the ‘Retain’ variable in worksheet 

91 



NOTE: Retain variable can NOT set address. If the variable already has 
address, please modify it by programming technique. 

 
 

Step3: Re-Compile , and download to KinCon-8000 
 
Using Modbus TCP Slave 

Modbus TCP Slave function is default setting in KinCon-8000. You do not need 
to start it specially but need to add %M declaration in ‘VARCONF’ of I/O Group 
in MultiPROG. The range depends on how many variables you want to use. 
Also, you have to give the variable a modbus address at ‘Address’ column. 
The relationship between ‘Modbus address’ and ‘Internal variable address’. 
Please refer to APPENDIX. 

 

92 



After that, third party software which supports ‘Modbus TCP Master’ can 
 access data via LAN1 and LAN2 of KinCon-8000 easily.  
 

Using Modbus RTU Slave 
Modbus RTU Slave function needs to configure at ProCos.bat. Please refer to 
‘Page 30: Configuration’. 
 
Start with Modbus/RTU Slave at baudrate:19200 COM port:2 Slave No: 1: 

ProCos.bat Context 
@echo off 
\CompactFlash\KW_Pcos\pcwce4.exe –B19200 –COM2 –SN1 

NOTE: Please double check the setting whether it conflicts with I/O 
configuration of remote devices. COM port can NOT share with another use. 
 
Also, you need to add %M declaration in ‘VARCONF’ of I/O Group in 
MultiPROG. The range depends on how many variables you want to use. And 
eyou have to give the variable a modbus address at ‘Address’ column. The 
relationship between ‘Modbus address’ and ‘Internal variable address’. Please 
refer to ‘APPENDIX - Modbus Address V.S. Internal Address’. 

 
Using Modbus TCP/RTU Master 

KinCon-8000 v1.02 implements 8 ‘Modbus TCP Master Function Blocks’ and 8 
‘Modbus RTU Master Function Blocks’. In order to help you developing your 
modbus master project, ICPDAS provides a ‘MBMaster’ library including 16 
modbus master function blocks and a ‘Modbus_Master’ template including 
necessary data type declaration and test POUs. We highly recommend starting 
your modbus master project from this template. 
 

 

93 



 
Step1: Configure Modbus Library in MultiProg 
Copy ‘MBMaster’ folder from product CD\\KW-Software\FW_Lib to your 
MULTIPROG ROOT\\PLC\FW_LIB. MBMaster library also can download 
from ‘Download Library’ at http://www.icpdas.com/products/PAC/kincon/ 
indusoft_kincon.htm 
 
Step2: Configure Template in MultiProg 
Copy ‘Modbus_Master’ folder and ‘Modbus_Master.twt’ from product 
CD\\KW-Software\Templates\ to your MULTIPROG ROOT\\templates\ . 
‘Modbus_Master’ folder and ‘Modbus_Master.twt’ also can download from  
‘Download Template’ at http://www.icpdas.com/products/PAC/kincon/ 
indusoft_kincon.htm 
 
Step3: New Project in MultiProg 
‘New Project’ in MultuProg and then choose ‘Modbus_Master’ 

 

94 

http://www.icpdas.com/products/PAC/kincon/%20indusoft_kincon.htm
http://www.icpdas.com/products/PAC/kincon/%20indusoft_kincon.htm
http://www.icpdas.com/products/PAC/kincon/%20indusoft_kincon.htm
http://www.icpdas.com/products/PAC/kincon/%20indusoft_kincon.htm


This template includes 1 ‘MBMaster’ library, 1 ‘Data type’ declaration, 5 POUs, 
3 Tasks and I-8077/I-8024/I-8017H settings. This template can make KinCon 
to be ‘Modbus TCP Slave’ and ‘Modbus RTU Slave’. Also, to be ‘Modbus TCP 
Master’ and ‘Modbus RTU Master’. KinCon-8000 can communicate to itself 
by Modbus TCP and Modbus RTU protocol. The settings are as bellows: 
 
I/O Configuration: 
Slot 1: I-8077 
Slot 2: I-8024 
Slot 3: I-8017H 
 
I-8024_Vout0 -----------  I-8017H_Vin4 
I-8024_Vout1 -----------  I-8017H_Vin5 
I-8024_Vout2 -----------  I-8017H_Vin6 
I-8024_Vout3 -----------  I-8017H_Vin7 
 
Libraries: 
MBMaster Library 
 
Data Types: 
SYS_FLAG_TYPE 
Include MB_R_Coils, MB_W_Coils, MB_R_Regs, and MB_W_Regs array 
declaration. 
 
Logical POUs: 
1) Assign: Connect physical and virtual variables 
2) MBTCP_RW_CoilANDReg: Modbus TCP Read/Write Coils & Registers 
3) MBRTU_RW_Coil: Modbus RTU Read/Write Coils 
4) MBRTU_RW_Register: Modbus RTU Read/Write Registers 
5) STOP: Stop Modbus TCP/RTU Master 
 
Tasks: 
1) Assign:DEFAULT: Bind ‘Assign’ POU 
2) Stop:SYSTEM: Bind ‘Stop’ POU 
3) Task:CYCLE: You can bind ‘MBTCP_RW_CoilANDReg’, 
‘MBRTU_RW_Coil’, or ‘MBRTU_RW_Register’ POU 
 
Step4: Modify your Resource 
Set IP parameter with KinCon-8000 IP address in Resource settings for 
ARM_L_33. In this template, the IP address is ’10.0.0.67’ 
 

95 



 
 
Step5: Test Modbus TCP 
1) Task:CYCLE: Bind ‘MBTCP_RW_CoilANDReg’ 
2) ‘Make’ and ‘Download’ to KinCon-8000 
3) Cold start 
 
Step6: Test Modbus RTU - Coils 
1) Check the context of ProCos.bat: 

  ProCos.bat Context 
@echo off 
\CompactFlash\KW_Pcos\pcwce4.exe -B 19200 -COM 2 -SN 2 -ST 4 

2) Connect COM2 and COM3 via I-7520 
3) Task:CYCLE: Bind ‘‘MBRTU_RW_Coil’ 
4) ‘Make’ and ‘Download’ to KinCon-8000 
5) Cold start 
 
Step7: Test Modbus RTU - Registers 
1) Check the context of ProCos.bat: 

  ProCos.bat Context 
@echo off 
\CompactFlash\KW_Pcos\pcwce4.exe -B 19200 -COM 2 -SN 2 -ST 4 

2) Connect COM2 and COM3 via I-7520 
3) Task:CYCLE: Bind ‘‘MBRTU_RW_Register’ 
4) ‘Make’ and ‘Download’ to KinCon-8000 
5) Cold start 
 
NOTE: For more information of Modbus FBs, please refer to APPENDIX - 
Modbus TCP/RTU Master FBs. 
 

 

96 



PART 3: THE OPC SERVER 
 

INTRODUCTION 
 
What is the OPC Server? 
 
"OPC" means OLE for Process Control and defines the communication 
between Windows NT, Windows 2000 and Windows 
XP applications. 
 
Thus, the OPC Server enables the communication between any 
OPC Client (e.g. ProVisIT) and your PLC (or simulation in our 
current context). 
 
Via the OPC Server any OPC Client can read and write variable 
values from/to the running PLC in order to visualize and control 
the running processes. 
 
Only variables stored in the CSV file of a project can be used 
by an OPC Server. This requires that the appropriate OPC flags 
are set in the programming system (please refer to the topic " 
 
Generating the CSV file" starting on page 63). Otherwise, the 
variables are not written into the CSV file and therefore can 
neither be read nor written by the OPC Server. 
 
Starting the OPC Server 
 
The OPC Server is started automatically, if an OPC Client is 
started which is connected to the server. In our context, two 
clients are available: The OPC Test Client (see page 67) and 
 
the visualization ProVisIT. 
For example, the OPC Server starts automatically, if you are 
browsing for an OPC variable in the visualization's 'Variable 
Browser' (see page 78) or if the visualization is switched to 
runtime mode (page 92). 

97 



ADDING AN OPC RESOURCE 
 

On PC: 
As already mentioned, the OPC Server reads and writes values 
from/to a PLC. For that purpose the communication between 
PLC and OPC Server must be established. 
 
This is done by defining an OPC resource for each PLC to be 
connected using the OPC Resource Editor. In our Quick Start 
Manual we have to add the PLC simulation as a new OPC 
resource. Proceed as follows: 
 
a. In the KW-Software program group start the 'OPC Resource 
Editor' by selecting the corresponding icon. As you can see 
now, the Resource Editor consists of only one dialog. 
 
b. Click on the button 'Add Resource' and enter 'Simu1' into 
the appearing dialog (representing simulation 1). Then 
confirm with 'OK'. 

 
 
c. Define the resource settings as shown below. As we are 
using our simulation no interface settings or TCP/IP settings 
are required. 

 

Figure 70: 
OPC Resource 
Editor with added 
'Simu1" resource 

 
NOTE: If you want to connect OPC Server in KinCon-8000, please choose 
TCP/IP and enter the IP address of KinCon-8000. 
 

98 



 
 
d. Close the OPC Resource editor. 
The resource is now added to the OPC Server. Each time, 
the server is started by an OPC Client, you can browse 
within the 'Simu1' resource for OPC variables. 
 

On KinCon-8000: 
 

Also, you should configure the ‘Resource’ of OPC server in KinCon-8000. 
Process as follows: 

  
Step1: Execute \CompactFlash\KW_OPC20\ResEdit.exe 

  Step2: Press ‘Add Resource’ button 
  Step3: Parameter is local IP: 127.0.0.1 

   
  
 

99 



GENERATING THE CSV FILE 
 
As already mentioned, the OPC Server only considers variables 
which are listed in the OPC CSV file. 
 
This file is generated by the programming system when building 
the project. It has to be included when downloading the project 
to the PLC. 
 
Which variables are included in the CSV file? 
 
Basically there are two "flags" in the programming system 
deciding which variables are contained in the CSV file. 
 

‧ For each variable an OPC flag exists in the variables 
properties dialog and in the variables grid respectively: 
 

 

Figure 71: 
OPC flag for each 
individual variable 

 
These individual flags are only considered, if the flag 
'Marked variables' is checked in the resource settings (see 
next item). 
 

‧ Further OPC flags are available in the 'Resource settings' 
dialog which is called via the context menu of the resource 
in the project tree of the programming system. 
 
In the 'OPC' area of this dialog three different settings are 
possible. Please note, that the entry 'Marked variables' 
relates to the OPC flag of each individual variable (see item 
above). 

100 



 

Figure 72: 
OPC settings in the 
'Resource settings' 
dialog 

 
PREPARING AND DOWNLOADING THE PROJECT 
WITH OPC DATA 

 
Before we can access the project variables via the OPC server, 
we have to set the OPC flags accordingly, rebuild the modified 
project and download it to the PLC including its OPC data (i.e. 
the CSV file). 
 
a. If already closed, start the programming system and open 
the project 'My_first_project.mwt' again. 
 
b. Open the 'Main' variables grid worksheet. 
 
c. In the variables grid, ensure that the 'OPC' flag is set for the 
local variables we want to access via the OPC Server. Mark 
the checkbox for the variables 'Pressed' and 'Actual_Time'. 
The grid is shown on page 64 
 
'Motor' and 'Motor_Start' are global variables for which the 
'OPC' setting is done in the resource settings (see next 
step). 
 
d. Right click on the 'Resource' node in the subtree 'Physical 
Hardware' and select the context menu item 'Settings...' 
(see Figure 72). 
 
In the 'OPC' area of the appearing 'Resource settings' dialog 
activate the checkboxes 'All global variables' and 'Marked 
variables' as shown in the figure above. Click 'OK' to confirm 

101 



the settings. 
e. Compile the modified sample project by clicking on the 
'Make' icon in the toolbar as described starting at page 32. 

 
 
f. Download the changed project to the PLC (simulation) as 
described starting at page 35. 
 
Ensure that the checkbox 'Include OPC data' is marked in 
the 'Download' dialog! 

 

Figure 73: 
Including OPC 
data (CSV file) 
when downloading 
a project 

 
g. After the download has been completed, press the 'Cold' 
button in the control dialog to execute a cold start: 

 
 
h. Exit the programming system. 
 
Now that the PLC is running with the modified project and the 
OPC data are downloaded with the newly compiled project, we 
are able to access the OPC variables via the OPC Server using 
the OPC Test Client. 

102 



USING THE OPC TEST CLIENT 
 
By the means of the OPC Test Client, you can monitor and 
manipulate variables processed on the PLC via the OPC 
Server. It can be used to simulate any other OPC Client (e.g. 
the visualization) in order to verify the communication between 
client and server. 
 
a. Start the OPC Test Client by double clicking on the program 
icon in the folder 'KW-Software\Tools'. The Client appears 
with an empty workspace. 
 

Figure 74: 
Empty OPC 
Test Client 

 
 
b. Connect the Test Client to the OPC Server by clicking on 
the 'Connect' icon in the toolbar: 

 
 
If the OPC Server is not already running, the 'Connect' 
command automatically starts it. When the OPC Server is 
running, the other toolbar icons for adding items, 
disconnecting, etc. become active. 
 
When the OPC Server is running, its icon is displayed in the 
SysTray on your desktop: 
 

 
 
Right clicking on the icon calls a context menu. Select the entry 
'Server Status' to get the following status dialog which is 
continuously updated: 

103 



 
c. Close the status dialog. 
 
d. Click on the icon 'Add Item' in the Test Client toolbar: 

 
 
The browse dialog appears listing all available OPC 
Resources ('Simu1' in our example). 

 

Figure 75: 
Adding an OPC 
variable to the Test 
Client workspace 

 
Browse for the desired variable (e.g. Emergency_Stop), 
mark it in the list on the right and confirm with 'OK'. 
 
The browse dialog is then closed and the added item 
appears in the Test Client workspace. 
 
e. Repeat step d. for each variable to be added. In our 
example we add the global variables 'Emergency_Stop', 
'Motor' and 'Motor_Start' as well as the local variables 
'Actual_Time' and 'Pressed' (located in the subfolder 'Main'). 

104 



 

Figure 76: 
OPC Test Client 
with items added 
from resource 
'Simu1' 

 
f. Click on the icon 'DEMOIO – DRIVER' in the Windows 
taskbar to open the I/O Simulator. 
Arrange the Simulator and the OPC Test Client in way, that 
both are visible. 
 
g. Turn bit 0 of module 0 (contact 
'Motor_Start') on and off three times 
to start the motor and watch the 
reaction in the OPC Test Client. 
Also manipulate bit 1 in module 0 
('Emergency_Stop'). 
 
h. Having monitored the variables values disconnect the OPC 
Test Client from the OPC Server by clicking on 

. 
 
i. Terminate the OPC Test Client by selecting 'File' > 'Exit'. 
 
After exiting the OPC Client, the OPC Server is shutdown 
automatically. Otherwise you can also terminate the OPC 
Server manually by right clicking on the OPC SysTray icon 
and selecting 'Exit' from the context menu. 

 
Once the OPC Server has been exited, you can also stop 
the PLC. For that purpose click on the icon 'PcSim32' in the 
Windows taskbar. In the PcSim32 window press 'Terminate'. 
The PLC is stopped and shuts down. The I/O Simulator is 
terminated too. 

105 



PART 4: PROVISIT 
 

PREPARING THE SAMPLE PROJECT FOR THE 
VISUALIZATION 

 
We will now visualize the sample project developed in part 1 of 
this manual. 
 
The aim is, to design a visualization screen which provides the 
most important operating and display elements used in our 
motor control program. The planned elements are shown in the 
figure on page 74. 
 
Required modifications in our MULTIPROG project 
 
However, some additions are required first in our MULTIPROG 
project because physical PLC inputs can not be forced. Due to 
this, the values of the variables 'Motor_Start' and 
'Emergency_Stop' can not be manipulated via the visualization. 
To solve this, we insert a new parallel contact to each of these 
located variables, declare them as local, non-located variables 
and designate them 'VISU_Motor_Start' and 
'VISU_Emergency_Stop'.Fehler! Verweisquelle konnte nicht 
gefunden werden. Using these "dummies" we can control our 
motor via the visualization. 
 
Inserting additional contacts 
 
a. If already closed, start the programming system and open 
the project 'My_first_project.mwt' again. 
 
b. Open the 'Main' code body worksheet. 
 
c. In rung 001 mark the contact 'Motor_Start' and click on the 
toolbar icon 'Add Contact/Coil above'. The new contact 
appears with its default name: 

Figure 77: 
Inserting a 
parallel contact to 
'Motor_Start' 

 
 
d. Double click on the new contact to open its properties 

106 



dialog. Define the new local variable 'VISU_Motor_Start' as 
shown in Figure 78. 
 

 

Figure 78: 
Declaring the 
variable 
'VISU_Motor_Start' 

Don't forget to mark the checkbox 'OPC'! If this checkbox is 
not marked, the variable will not be included in the CSV file. 
This means it can not be read by the OPC server and thus 
not be used by the visualization. 
 
After confirming the 'Contact/Coil Properties', the contact 
appears as follows: 

Figure 79: 
Inserting a 
parallel contact to 
'Motor_Start' 

 
 
The contact 'VISU_Motor_Start' appears with an * because 
the LD grid width is not big enough to show the entire 
variable name. 
 
e. In the same way as shown for 'VISU_Motor_Start' you have 
to insert a parallel contact to 'Emergency_Stop': Designate it 
'VISU_Emergency_Stop' and declare it as local Boolean 
variable. Don't forget to activate the checkbox 'OPC'! 

107 



 
After this, the complete code body worksheet should look as 
follows: 

 

Figure 80: 
Completed code 
body worksheet 

 
f. In the 'Main' variables worksheet, ensure that the 'OPC' flag 
is set for the variables needed by the visualization (we have 
already set these flags in the OPC chapter of this manual). 
Note in this context, that 'Motor' is a global variable for 
which the 'OPC' setting is done in the resource settings (see 
step g). 

 

Figure 81: 
OPC settings in 
the 'Main' variables 
grid worksheet 

 
g. Ensure that the OPC flags in the resource settings dialog 
are still set correctly (We have already defined them in the 
OPC chapter of this manual). 
 
Right click on the 'Resource' node in the subtree 'Physical 
Hardware' and select the context menu item 'Settings...'. 

108 



In the 'OPC' area of the appearing 'Resource settings' dialog 
the checkboxes 'All global variables' and 'Marked variables' 
must be activated. 
 
Please refer to the figure on page 65. 
 
h. Compile the modified sample project by clicking on the 
'Make' icon in the toolbar as described starting at page 32: 

 
 
i. Download the changed project to the PLC (simulation) as 
described in step f on page 66. 
 
Before downloading, ensure that the checkbox 'Include OPC 
data' is marked in the 'Download' dialog! 
 
Please refer to the figure on page 66. 
 
j. After the download has been completed, press the 'Cold' 
button in the control dialog to execute a cold start: 

 
 
k. Exit the programming system. 
 
Now that the PLC is running with the modified project and the 
OPC data are downloaded with the newly compiled project, we 
are ready to design our visualization project. 
 

109 



DESIGNING A VISUALIZATION PROJECT 
 
Let us begin with a preview to the finished visualization screen 
(in online mode) to get an appreciation for the project we are 
going to develop. The figure shows to which variables the 
objects are connected. 

 
 
Start the visualization software. 
 
If an already existing project is loaded automatically, you first 
have to create a new project. 
 

CREATING A NEW VISUALIZATION PROJECT 
 
Click on the 'New Project' icon: 

 
 
The new project will be created and inserted in the project tree 
window. The 'Screens' folder already contains one empty 
visualization worksheet named 'Screen1' which is opened in the 
design window. 

110 



SETTING THE VISUALIZATION SCREEN PROPERTIES SETTING THE VISUALIZATION SCREEN PROPERTIES 
  
At the beginning of the design process we are going to define At the beginning of the design process we are going to define 
the properties of our visualization screen (only one screen will the properties of our visualization screen (only one screen will 
be required in this sample project). be required in this sample project). 
  
a. In the visualization project tree right click on the worksheet a. In the visualization project tree right click on the worksheet 
icon and select the context menu item 'Properties...'. icon and select the context menu item 'Properties...'. 

 

Figure 82: 
Calling the 
'Worksheet 
Properties' dialog 

 
 
b. On the page 'General' of the appearing 'Worksheet 
Properties' dialog enter the name 'MotorControl'. 
 
c. Open the page 'Properties'. 
Select the 'Runtime representation' 'Non-modal dialog' and 
enter '800' (pixel) as dialog 'Width' and '600' as dialog 
'Height'. These settings specify, that your visualization 
screen will appear as modeless dialog during runtime mode. 
 
d. Click 'OK' in the properties dialog. 
 

VISUALIZING THE 'ACTUAL_TIME' VARIABLE BY A 
DYNAMIC RECTANGLE 

 
The first object we are going to design represents the variable 
'Actual_Time'. This variable holds the elapsed time, the motor is 
running. To visualize this variable we use a rectangle which 
changes its horizontal size depending on the elapsed time. 
 
a. Left click into the design window to activate the design 
toolbar. Click on the icon 'Rectangle'. 

 
 

111 



b. In the worksheet draw a rectangle: 

 
The rectangle should change its size depending on the value of 
the variable 'Actual_Time'. For that purpose we add the 
dynamic property 'Size' to the object. 
 
c. Right click on the rectangle and select the menu item 
'Dynamics > Size'. 

 

Figure 83: 
Assigning the 
dynamic property to 
a rectangle 

 
A dashed rectangle is added which represents the dynamic 
property. 

 
Now, the size of the dashed and the solid rectangle representing 
the minimum and maximum object size have to be defined. 
 
d. Adjust the size of the solid rectangle to the minimum 
possible width (Actual_Time = 0). Then adjust the size of 
the dashed rectangle to the desired maximum size 
(Actual_Time = 20 s). 
 
Changing the size is done by marking the solid/dashed 
rectangle, placing the mouse pointer on the corresponding 
object handle and dragging the mouse while keeping the left 
mouse button pressed. 
 
Observe that both rectangles should be aligned at their left 
borders and have the same height! 
 
Use the zoom functionality to facilitate drawing and 
designing. Enlarge the worksheet contents by clicking on 
the toolbar icon 'Zoom in'. 

112 



 

Figure 84: 
Rectangle with 
dynamic property 
'Size' 

 
e. Right click on the small solid rectangle and select the 
context menu item 'Properties...'. The 'Object Properties' 
dialog appears. 
 
f. Enter 'TimeBar' as 'Name' on the dialog page 'General'. 
 
g. Select a line 'Color', Width' and 'Style' on the dialog page 
'Line' and filling properties on the page 'Fill'. 
In our example we design the rectangle as follows: 
Line: black, 2 point, solid and 
Fill: 'Foreground color' blue and 'No Hatch'. 
 
h. On the page 'Size' we have to assign the variable on which 
the rectangle size should depend. For that purpose click on 
the browse button beneath the 'Item' field (see figure on 
next page). 
 
The dialog 'Variable Browser' appears to select the desired 
variable (see figure on next page). 
 
As we want to assign the rectangle's 'Size' to an OPC 
variable, the dialog page 'OPC' is applicable. 
 
i. In the tree on the left dialog side open the branch of the 
PCOS.OPC.20 Server and browse for the resource 'Simu1'. 
 
In part 2 of this manual we have configured our simulation 
as OPC resource 'Simu1' using the OPC Resource Editor. 
Due to this definition, 'Simu1' is now supported by the OPC 
Server. 

113 



 

Figure 85: 
Assigning a 
variable to the 
dynamic property 
'Size' using the 
dialog 'Variable 
Browser' 

 
If ‘OPC Resource’ has already linked to KinCon-8000, you can choose 
KinCon folder and choose the variable inside. 

 
 
j. Mark the variable 'Actual_Time' (located in the subfolder 
'Main') because the size of our rectangle should depend on 
this value. 
 
k. Click 'OK' to close the 'Variable Browser'. The variable with 
its path is now entered in the 'Item' field of the 'Object 
Properties' dialog (see next figure). 

114 



 
l. Now we have to scale the size change, i.e. we must define 
the value range which has to be covered by the minimum 
and maximum rectangle size. For that purpose, the 'Size' 
page of the properties dialog provides the fields 'Min' and 
'Max'. 
 
As our 'Actual_Time' variable reaches from 0 to 20000 
milliseconds fill in the fields as shown in the following figure. 

 

Figure 86: 
Scaling the value 
range of the 
dynamic property 
'Size' 

m. Click 'OK' to close the 'Object Properties' dialog. 
The object is now displayed as short blue rectangle. 
 
The rest of this step is "beautification": We will insert a symbolic 
scale ('0s' and '20s') as well as a static text below our TimeBar. 
 
n. To insert a static text element first select the toolbar icon . 
Left click into the worksheet and drag the mouse diagonally 
to draw the static text object. 

 
o. Double click on the object to open its properties dialog. 
On the dialog page 'Static Text' enter '0s' in the 'text' field. 
On the dialog page 'Line' check 'Transparent' to hide the 
object border. On the page 'Font' select 'Arial', 'Regular', '10' 
pt. Click 'OK' to confirm the settings 
 
p. Resize the text object. 

 
q. Duplicate the text object twice by Drag & Drop while holding 
the <Ctrl> key pressed (alternatively you can copy & paste 

115 



the object twice). Change one string to '20s' and the other to 
'Actual running time elapsed'. Move each changed object to 
its position above or below the TimeBar. 
 
r. Insert a rectangle as frame, send it to the back and group all 
objects. 

 
 

VISUALIZING THE 'VISU_MOTOR_START' CONTACT BY 
A LIBRARY PUSH BUTTON 

 
We now want to visualize the contact which must be activated 
three times in order to start the motor. For that purpose we are 
going to use an object which is provided in the firmware library. 
We just have to insert the library object, scale it to the desired 
size and connect it to the OPC variable 'VISU_Motor_Start' – 
ready! 
 
a. Click on the toolbar icon 'Library Object': 

 
b. The appearing 'Libraries' dialog contains all objects 
provided by firmware or user libraries. Browse into the 
'Buttons' branch and double click on the object 
'Push_Button'. 

 

Figure 87: 
Dialog 'Libraries' for 
inserting library 
objects 

 
The object is inserted into the worksheet: 

116 



 
c. Resize it by placing the mouse pointer to an object handle 
and drag the mouse while keeping the mouse button 
pressed: 

 
d. Double click on the object to open its properties dialog. 
 
e. On the dialog page 'Connections' we connect the object to 
the OPC variable 'VISU_Motor_Start' which should be 
overwritten when pressing the button. For that purpose click 
on the browse button in the table row 'Value'. 
 
In the appearing 'Variable Browser' stay on the page 'OPC', 
open the subfolder 'Main' in the resource branch 'Simu1' 
and mark the variable 'VISU_Motor_Start'. 
 

 

Figure 88: 
Connecting the 
library push button 
to the OPC variable 
'VISU_Motor_Start' 

Confirm the assignment by clicking on 'OK' in the 'Variable 
Browser'. 
 
f. Now change the caption of the button which is only visible 
during runtime. To do this, overwrite the default text 
'PushButton' with 'Press here' as shown: 

117 



 

Figure 89: 
Changing the 
runtime caption of 
the push button 

 
g. To change the object appearance open the dialog page 
'Font'. Select the same font settings as for our previously 
inserted static texts: Arial, Regular, 10pt. 
 
h. Finally we need the descriptive text 'Press 3 times to start 
the motor': 
 
Insert a new Static Text object and open its properties 
dialog. Enter the desired string on the dialog page 'Static 
Text'. Activate the checkbox 'Multiple Lines'. 
 
On the page 'Line' check 'Transparent' and on the page 'Fill' 
activate 'Transparent Fill'. Finally adjust the font settings to 
Arial. 
 
'Click 'OK' to confirm the Static Text settings. 
 
i. Resize the text object and move it to the desired position. 
 
Now the push button with its explaining text is complete. If 
desired mark both objects and group them: 

 
 

VISUALIZING THE 'VISU_EMERGENCY_STOP' 
CONTACT BY A LIBRARY EMERGENCY SWITCH 

 
We now want to visualize the emergency stop switch, i.e. the 
contact which stops the motor when activated. Again we use a 

118 



library object provided in the firmware library. As in step 4, we 
insert the object, scale it to the desired size and connect it to 
the OPC variable 'VISU_Emergency_Stop'. 
 
a. Click on the toolbar icon 'Library Object': 

 
b. In the appearing 'Libraries' dialog double click on 
'Emergency_Stop' in the 'Buttons' folder. 
 

 

Figure 90: 
Dialog 'Libraries' for 
inserting library 
objects 

The object is inserted into the worksheet. 
 
c. Resize it by placing the mouse pointer to an object handle in 
a corner and drag the mouse while keeping the mouse 
button pressed. To resize the object proportionally press the 
<Shift> key while dragging the mouse. 

 
 
d. Double click on the object to open its properties dialog. 
 
e. On the dialog page 'Connections' we connect the object to 
the OPC variable 'VISU_Motor_Start' which should be 
overwritten when pressing the button. For that purpose click 
on the browse button in the table row 'Value'. 
 
In the appearing 'Variable Browser' stay on the page 'OPC', 
open the subfolder 'Main' in the resource branch 'Simu1' 
and mark the variable 'VISU_Emergeny_Stop'. 

119 



 

Figure 91: 
Connecting the 
library emergency 
stop switch to the 
OPC variable 
'VISU_Emergency_ 
Stop' 

Click 'OK' in the 'Variable Browser' and in the 'Object 
Properties' dialog. 
 
Now the emergency switch is complete. 

 
VISUALIZING THE VARIABLE 'PRESSED' BY A LIBRARY 
LCD ELEMENT 

 
In our example motor control the variable 'Pressed' counts how 
often the contact 'Motor_Start' has been energized. 
 
If 'Pressed' = 3 the motor starts running and the counter is 
automatically reset. In the visualization we want to use a 7 
segment LCD element provided in a firmware library. For that 
purpose we have to connect the LCD element to the OPC 
variable 'Pressed'. 
 
a. Click on the toolbar icon 'Library Object': 

 
b. In the appearing 'Libraries' dialog browse into the 'Displays' 
folder and double click on 'Display_LCD_1'. The object is 
inserted into the worksheet. 
 
c. Resize it by placing the mouse pointer to an object handle in 
a corner and drag the mouse while keeping the mouse 
button pressed. To resize the object proportionally press the 
<Shift> key while dragging the mouse. 
 
d. Double click on the object to open its properties dialog. 

120 



 
e. On the dialog page 'Connections' we connect the object to 
the OPC variable it should display. For that purpose click on 
the browse button in the table row 'Value'. In the appearing 
'Variable Browser' stay on the page 'OPC', open the 
subfolder 'Main' in the resource branch 'Simu1' and mark 
the variable 'Pressed'. 
 
Click 'OK' in the 'Variable Browser' and in the 'Object 
Properties' dialog. 
 
f. Finally we need the descriptive texts 'You have pressed' 
and 'times'. For example you can create them by copying 
the descriptive text twice from the push button and change 
its contents accordingly. Arrange the copied and changed 
objects around the LCD element as shown below. 
 
Now the LCD element is complete. If desired, group the objects. 

 
 

VISUALIZING THE 'MOTOR' COIL BY A LIBRARY LED 
 
In our sample project we want to visualize the running motor in 
two ways: 
 

‧ By a green LED provided by the firmware library. This LED 
is connected to the coil 'Motor' and lights up if the coil is 
energized, i.e. if the motor is running. 
 

‧ By a self-designed rotating motor symbol connected to a 
visualization global variable which is processed in a script. 
Please refer to page 86. 
 
To insert and connect the LED proceed as follows: 
 
a. Click on the toolbar icon 'Library Object': 

 
b. In the appearing 'Libraries' dialog browse into the 
'Miscellaneous' folder and double click on 'LED_Green'. The 
object is inserted into the worksheet. 
 
c. Resize it by placing the mouse pointer to an object handle in 

121 



a corner and drag the mouse while keeping the mouse 
button pressed. To resize the object proportionally press the 
<Shift> key while dragging the mouse. 
 
d. Double click on the object to open its properties dialog. 
 
e. On the dialog page 'Connections' we connect the object to 
the OPC variable it should represent. For that purpose click 
on the browse button in the table row 'Value'. In the 
appearing 'Variable Browser' stay on the page 'OPC', open 
the resource branch 'Simu1' and mark the variable 'Motor'. 
 
Click 'OK' in the 'Variable Browser' and in the 'Object 
Properties' dialog. 
 
Now the green LED is complete. 

 
 

VISUALIZING THE RUNNING MOTOR USING A SELF 
DESIGNED OBJECT AND A SCRIPT 

 
Finally, we want to visualize the running motor in a more 
complex way: We are going to 
 

‧ design a motor symbol which basically consists of a polygon 
with the dynamic property 'Rotation'. 
 

‧ connect the dynamic property 'Rotation' to a visualization 
global variable 'rotateMe' which is calculated by a script. 
 

‧ write a script which calculates the variable 'rotateMe'. 
 
Designing the object 
 
a. Left click into the design window to activate the design 
toolbar. Click on the icon 'Polygon'. 

 
b. In the worksheet draw the shown figure by clicking two 
times to set the corners (1.) and (2.). At position (3.) double 
click to finish the polygon. 

122 



 
c. Double click on the polygon to open its 'Object Properties' 
dialog. In the tab 'Fill' select dark blue as 'Foreground Color'. 
Click 'OK'. 
 
d. Right click in the colored polygon and assign the dynamic 
property 'Rotation'. A dashed polygon is added to the object, 
representing the dynamic property. 

 

Figure 92: 
Assigning the 
dynamic property 
'Rotation' to a 
polygon 

 
e. Define the start and end position of the rotation. For that 
purpose left click on the dashed polygon. The mouse cursor 
changes its shape into a symbolic circular arrow. 
Place the mouse cursor on the dashed frame. Keep the 
mouse button pressed while dragging the dashed polygon 
to its target position. 

Figure 93: 
Defining the 
'Rotation' of a 
polygon 

 
Since we want the polygon to rotate all around, the dashed 
object must be congruent with the solid polygon but rotated 
by 180° as shown above. 
 
f. Click elsewhere in the design window to deselect the object. 
 
Declaring visualization global variables for the script 
 
Before we can complete the rotation of the polygon by 
assigning it to a variable, we have to declare two visualization 
global variables. 

123 



 
Why declare visualization global variables? 
This is necessary, because the rotation of our polygon is 
calculated by a global scriptAs we can not directly process our 
Boolean coil 'Motor' in a script, we have to use two global 
variables instead: 
 

‧ 'motorIsRunning' is connected to the OPC variable 'Motor' 
and therefore represents the state of our coil. 
‧ rotateMe is calculated by a script depending on the value of 
'motorIsRunning'. rotateMe is assigned to our polygon and 
causes its rotation. 
 
Declare the variables as follows: 
 
a. Open the dialog 'Variables Management': 

 
b. In the dialog click on 'Insert'. A new row is inserted with the 
default name 'Var1'. Click into the 'Name' field and overwrite 
this default entry with 'motorIsRunning'. 
 
Now we have to connect the new variable to the coil 'Motor'. 
For that purpose, click on the browse button beneath the 
'OPC Connections' field to call the 'Variables Browser'. 
 
Browse for the OPC resource 'Simu1' and mark the variable 
'Motor' as shown below. 

 

Figure 94: 
Connecting a new 
declared visualization 
global 
variable to an 
OPC variable 

Confirm the 'Variables Browser' with 'OK'. The variable is 
entered in the variables table (see figure on next page). 
 
c. In the dialog 'Variables Management insert a second 
variable and change the default name to 'rotateMe'. Since 
this is the variable which will be calculated by a script and 

124 



connected to our rotating polygon we do not assign any 
OPC variable. 
 
However, it is necessary to define an initial value: Click into 
the table field and enter '0'. 
 
Your variables table now looks as follows. 

 

Figure 95: 
Global variable with 
OPC connection 

 
Developing a global script 
 
The declared visualization global variables can now be used in 
scripts. So, we are going to write a global script which is 
executed at the beginning of each visualization cycle. 
 
In our script the value of the variable 'rotateMe' is calculated 
depending on the value of the variable 'motorIsRunning' which 
is connected to the OPC variable 'Motor'. 
 
Proceed as follows: 
 
a. In the script window click on the tab 'Global'. 
 
b. Click into the global script worksheet to set a text cursor. 
 
c. Type the following script: 

 

Figure 96: 
Global script 
calculating the 
variable for the 
polygon rotation 

 
Now that we have edited the script, only one step is left to 
complete the rotating polygon: It has to be connected to the 
variable 'rotateMe'. 

125 



 
Connecting the dynamic polygon property to a variable 
 
a. In the design window right click on the polygon and select 
the context menu item 'Properties...'. The 'Object Properties' 
dialog appears. 
 
b. Open the dialog page 'Rotation'. Click on the browse button 
beneath the 'Item' field to select the variable on which the 
rotation shall depend. 
 
Since we want to assign a visualization global variable to 
the property, open the browser page 'Global'. 
 
Mark the variable 'rotateMe'. 
 

 

Figure 97: 
Assigning the 
polygon rotation to 
a visualization 
global variable 

 
c. Click 'OK' in the 'Variable Browser'. The variable is entered 
in the 'Object Properties' dialog (see figure below). 
 
d. Now we have to scale the rotational motion. According to 
our script, the global variable 'rotateMe' which controls the 
rotation can assume values between 0 and 10. Thus, we 
define the rotation scaling accordingly: 
 

126 



 

Figure 98: 
Scaling the polygon 
rotation 

 
e. Confirm the properties dialog. 
 
Final beautification 
 
The polygon is now "ready to rotate"... Finally we will do some 
"cosmetics" again: Completing our motor symbol, arranging the 
individual objects and groups and framing them by rectangles: 
 
a. Draw a circle around the polygon and open its properties 
dialog. Select yellow as 'Foreground Color' and confirm the 
dialog. 
 
b. Right click on the circle and select 'Order > Send to Back' in 
the context menu. 
 
c. Mark both, the polygon and the circle by dragging the 
mouse around the objects: 

 

Figure 99: 
Marking two objects 
in mark mode 

 
d. Align them to the center and middle: 

127 



Figure 100: 
Aligning objects 

 
 
e. Group them by right clicking while both are still marked and 
selecting the context menu item 'Grouping > Group'. 
 
f. Arrange all objects in the worksheet as shown below. 
 
g. Insert rectangles, fill them and send them to the 
background. Use these rectangles to visually frame object 
groups as shown in the figure on the next page. 
 

SWITCHING THE VISUALIZATION TO RUNTIME 
 
Prior to switching the visualization to 
runtime mode, make sure that the PLC 
(i.e. the simulation) is still running 
correctly. For that purpose click on the 
'Demo IO' icon in the Windows taskbar.  
The 'Run' LED should be on. 
 
If this is not the case, restart the programming system and start 
the PLC via the resource control dialog as described starting at 
page 73. 
 
Switching to runtime mode 
 
a. Click on the 'Runtime' toolbar icon. 

 
The screen appears as defined in its runtime settings: A 
modeless dialog with the size 800 x 600 pixel. 

128 



 

Figure 101: 
Finished 
visualization screen 
in runtime mode 

 
b. Press the push button three times. Observe the display. 
After pressing three times, the display should be reset to 0, 
the green LED should be illuminated and the motor symbol 
should start rotating. The time bar increases its horizontal 
size. 
 
After 20 seconds the motor symbol stops spinning, the LED 
extinguishes and the time bar is reset. 
 
c. Start the motor again by pressing the push button three 
times. Then actuate the emergency switch (within the 20s 
running time period!). 
 
Observe the result: The motor should stop immediately and 
all displaying objects should be reset. 
 
Note, that the emergency stop works as a switch. This 
means, that you have to release the switch by pressing it 
again. 
 
Correcting errors in the visualization screen 
 
If any element is not reacting as desired, proceed as follows: 
 
a. Observe the message window for any messages, i.e. errors. 
 
b. Switch the visualization offline (i.e. back to design mode): 

129 



 
c. Check the properties of the suspected object, i.e. the 
assigned (OPC) variable. 
 
d. Correct any errors, save the project and switch to runtime 
mode again. 
 
Changing the visualization cycle time and OPC update rate 
 
a. Switch the visualization offline (i.e. back to design mode): 

 
b. Select 'Extras > Options'. In the appearing dialog open the 
page 'Runtime'. 
 
c. Change the time values for the 'OPC connectivity' and the 
'Cycle time'. Confirm the dialog. 
 
d. Switch the visualization screen online again. 
 
e. Start the motor and observe the effect of the changed time 
settings. 
 
If desired you can repeat these steps with different time 
settings. 
 

Downloading Project to KinCon-8000  
For download ProVisIT project to KinCon-8000, please start ProVisIt(RT) by 
executing KWBoot.exe. After that, follow the procedure below to download the 
project to KinCon-8000. 
 
Step1: Set up download target. Choose ’Extras’ in Menu and then click  

‘Option’ into ’Windows CE ’ page. Enter 
\CompactFlash\KW_ProVisIt\Projects\ in ’Project Folder on 
Windows CE device’ and IP address in ’IP address in Windows CE 
device’ 

 

130 



 
 

Step2: Choose ’WindowsCE’ in Menu. Press ‘Copy Project’ and ‘Run 
 Project’ sequentially. 

 
 

Step3: After that, you can see the runtime mode on KinCon-8000 

 

131 



APPENDIX 
 

IEC PROJECT COMPONENTS IN THE 
PROGRAMMING SYSTEM 

 
Programming systems that conform to IEC 61131-3 contain the 
following component elements: 
� Configurations 
� Resources 
� Tasks 
 
These will be displayed if you select the 'Hardware' tab of the 
project tree. 
 
Configurations can be compared to a programmable controller 
system such as a rack. 
 
Resources can be compared to a CPU that can be inserted in 
the rack. In a resource, global variables can be declared which 
are only valid within this resource. In a resource, one or several 
tasks can be executed. 
 
In general, tasks determine the time scheduling of the 
associated programs. This means that programs have to be 
associated to tasks. The settings of the task determine the time 
scheduling. The system provides one cyclic task to be assigned 
to your program. 
 

PROGRAM ORGANIZATION UNITS (POUS) 
 
Program organization units (POUs) are the language building 
blocks of an IEC 61131-3 control program. They are small, 
independent software units containing the program code. The 
name of a POU must be unique within the project. 
 
In IEC 61131-3 three types of POUs are supported: 
 
� Functions 
� Function blocks 
� Programs 
Functions are POUs with multiple input parameters and exactly 
one output parameter. Calling a function with the same values 
returns always the same result. Return values can be single 
data types. Within a function it is possible to call another 

132 



function but not a function block or a program. Recursive calls 
are not allowed. 
 
IEC 61131-3 lists different types of standard functions: 
 
� Type conversion functions, such as ANY_INT_TO_REAL 
� Numerical functions, such as ABS and LOG 
� Standard arithmetic functions, such as ADD and MUL 
� Bit-string functions, such as AND and SHL 
� Selection and comparison functions, such as SEL and GE 
� Character string functions, such as RIGHT and INSERT 
� Functions of time data types, such as SUB with the data 
type TIME ('SUB_T_T') 
 
Function blocks are POUs with multiple input/output 
parameters and internal memory. The value returned by a 
function block depends on the value of its internal memory. 
Within a function block it is possible to call another function 
block or functions. Recursive calls are not allowed. 
 
IEC 61131-3 lists different types of standard function blocks: 
 
� Edge detection function blocks, such as R_TRIG and 
F_TRIG 
� Counters, such as CTU and CTD 
� Timer function blocks, such as TON and TOF 
� Bistable function blocks SR and RS 
 
Programs are POUs that contain a logical combination of 
functions and function blocks according to the needs of the 
controller process. The behavior and the use of programs are 
similar to function blocks. Programs have an internal memory. 
Programs must be associated to tasks. Within a Program it is 
possible to call functions and function blocks. Recursive calls 
are not allowed. 

133 



INSTANTIATION OF POUS AND FUNCTION BLOCKS 
 
According to IEC 61131-3 the code of a FB POU (Function Block) can be 
reused in a project by calling the FB in another POU using an unique name. 
This is known as "Instantiation". By calling the FB instance the FB code must 
be defined only once. If the FB instance is called, the internal memory of the 
FB is allocated to the called instance. This allows the use of different 
memory areas. 
 
Each instance has an associated identifier the "instance name" and contains 
the input and output parameters and the internal memory for the POU or FB. 
A FB can be instantiated in another FB or in a program. The instance name 
of an FB has to be declared in the VAR declaration of the program or FB 
where it is going to be used. 
 

VARIABLES AND DATA TYPES 
 
Another powerful feature of IEC 61131 is the use of variables 
rather than the direct addressing scheme of traditional PLC 
systems. This increases flexibility and broadens the scope of 
functionality that can be performed in the programs. 
 

VARIABLE TYPES 
 
Variables must be declared first in order to be used in the logic. 
When inserting a variable into a worksheet, you can declare two 
variable types: 
 
1. Local variables 
2. Global variables 
 
A local variable is only used in one POU, whereas a global 
variable can be used in every POU of the corresponding 
project. 
 
The local variable is declared in the local variables worksheet 
of the POU in which it is used. 
 
The global variable has to be declared as 'VAR_GLOBAL' in 
the global variables' declaration of a resource and as 
'VAR_EXTERNAL' in each POU in which it is used. 
 
The programming system provides for automatic declaration of 
variables and their properties during program creation as the 
I/O address/logical name are assigned. Variables can also be 

134 



manually declared in the variables worksheet. 
 

VARIABLES ADDRESSES 
 
You can directly address your variables using the 'I/O address' 
input field. 
 
In accordance to IEC 61131, a location declaration consists of 
the keyword AT, the percent sign '%', a location prefix, a size 
prefix and the name of the logical address. 
In the programming system it is not necessary to enter the 
keyword AT. However, the sign '%' must be entered. 
Example of a possible variable address: '%QX0.0'. 
 
The following table shows the location and size prefixes for 
located variables: 
 
Location prefix  Description 
I  Physical input 
Q  Physical output 
M   Physical address in the PLC memory 
Size prefix  Description 
X  Single bit size (only with data type BOOL) 
None  Single bit size 
B  Byte size (8 bits) 
W  Word size (16 bits) 
D  Double word size (32 bits) 
 
When declaring a variable in the system the 'Variables 
Properties' dialog is automatically opened. Using this dialog the 
declaration of the current variable is inserted or changed 
automatically in the corresponding variables' worksheet. 
Local variables are inserted in the variables worksheet of the 
corresponding POU in the project tree, global variables in the 
global variables' worksheet in the subtree 'Physical Hardware'. 
 
The 'Variables Properties' dialog can also be called by clicking 
on 'Properties'. 
 
If you want to have a look at the declarations, click on the 
'Variables Worksheet' icon in the toolbar 

 
to open the variables grid worksheet of the POU (local 
variables grid worksheet): 

135 



 

Figure 102: 
Local variables grid 
worksheet 

 
or double click on 'Global Variables' in the project tree to open 
the global variables grid worksheet: 

Figure 103: 
Global variables 
grid worksheet 

 

 
 

DATA TYPES 
 
Data types determine the kind of value the variable can have. 
Data types define the initial value, range of possible values and 
the number of bits. 
 
IEC 61131-3 distinguishes three kinds of data types: 
 
� Elementary Data Types: 
The value ranges and size of elementary data types 
described in IEC 61131-3 are shown in the following table: 

136 



 
Data 
Type 

Description  Size  Range 

BOOL  Boolean  1  0...1 
SINT  Short integer  8 -128...127 
INT  Integer  16  -32768 ... 0 ... 32767 
DINT  Double integer 32 -2,147,483,648 up to 

2.147.483.647 
USINT  Unsigned short  

 integer 
8 0 up to 255 

UINT  Unsigned integer 16  0 up to 65535 
UDINT  Unsigned double   

 integer 
32  0 up to 4.294.967.295 

REAL  Real numbers 32  +/-1.18 x 10^-38 up to 
+/-3.40x10^38 

TIME Duration 32 +# 4.294.976.295 ms up to 
+# 4.294.976.295 s 

BYTE Bit string of 
length 

8 0x00...0xFF 

STRING Sequence of 
characters 

80 
 

 

WORD Bit string of 
length 

16 0x0000 ... 0xFFFF 

DWORD Bit string of 
length 

32 0x00000000 ... 
0xFFFFFFFF 

 
 
� Generic Data Types: 
Generic data types include groups of elementary data 
types. They are called e.g. ANY_BIT or ANY_INT. 
 
� User Defined Data Types: 
User Defined data types are groups of different data 
types, assembled for a specific purpose, and defined as 
ARRAYs and STRUCTures. 
 

Driver Parameters 
For Embedded I-8K/I87K Modules 

Driver name: The driver name of the KinCon I/O-Driver is “WinCon8x”. 
Parameter 1: The slot number of the KinCon. 
Parameter 2: The module ID of this slot. 
Parameter 3: The timeout value for this module. 
Parameter 4: Some flags used for certain modules(e.g. i-8017H) in order to 

 enable different settings. 
 

137 



The KinCon K-8745 has 7 slots running from 1 to 7 and the KinCon K-83445 
has 3 slots running from 1 to 3. A value in this range must be entered as 
parameter 1. Right now, only those modules which are on a main unit and 
therefore have a slot number can be used.  

    
Currently several KinCon modules of the I-8000 and I-87000 series are 
supported by the ProConOS. “WinCon8x” IO-Driver. The following list 
describes these KinCon modules briefly. 

 
The “Module ID” is the ID to enter as parameter 2 of the drivers setting. 
The “Address width” shows the allowed entries (in bytes) for the width of the 
I/O address in the I/O Group. 

 
The “Address value type” explains how these address are interpreted, i.e. 
which data types will be used for that address. 

 
The “Address value” describes what kind of data will be read/written. 

 
Module 
name 

Module 
ID 

Address 
width 

Address value 
type 

Address value Flag (value)/ 
Gain 

8017H, 
8017HS 

8017 4,8,12,,32 REAL (4 bytes) Float values of voltage / 
current corresponding to 
the gain set. 

0 +/-10V 
2 +/-5V 
4 +/-2.5V 
6 +/-1.25V 
8 20mA 

8024 8024 4, 8, 12, 16 REAL (4 bytes) Float values of voltage in 
the range -10V to +10V. 

- 

8037 8037 1, 2 WORD (2 bytes) Each bit of the output 
WORD represents the 
output of the corresponding 
channel. 

- 

8040 8040 1, 2, 3, 4 DWORD(4 bytes) Each bit of the input 
DWORD represents the 
input of the corresponding 
channel. 

- 

8041 8041 1, 2, 3, 4 DWORD(4 bytes) Each bit of the output 
DWORD represents the 
output of the corresponding 
channel. 

- 

8042 8042 1, 2, WORD (2 bytes) Each bit of the input/output 
WORD represents the 
input/output of the 
corresponding channel. 

- 

8050 8050 1, 2 WORD (2 bytes) Each bit of the input/output 
WORD represents the 
input/output of the 
corresponding channel. 

- 

8051 8051 1, 2 WORD (2 bytes) Each bit of the input WORD 
represents the input of the 
corresponding channel. 

- 

8052 8052 1 BYTE (1 byte) Each bit of the input BYTE 
represents the input of the 

- 

138 



corresponding channel. 
8053 8053 1, 2 WORD (2 bytes) Each bit of the input WORD 

represents the input of the 
corresponding channel. 

- 

8054 8054 1 BYTE (1 byte) Each bit of the input/output 
BYTE represents the 
input/output of the 
corresponding channel. 

- 

8055 8055 1 BYTE (1 byte) Each bit of the input/output 
BYTE represents the 
input/output of the 
corresponding channel. 

- 

8056 8056 1, 2 WORD (2 bytes) Each bit of the output 
WORD represents the 
output of the corresponding 
channel. 

- 

8057 8057 1, 2 WORD (2 bytes) Each bit of the output 
WORD represents the 
output of the corresponding 
channel. 

- 

8058 8058 1 BYTE (1 byte) Each bit of the input BYTE 
represents the input of the 
corresponding channel. 

- 

8060 8060 1 BYTE (1 byte) Each bit of the output BYTE 
represents the output of the 
corresponding channel. 

- 

8063 8063 1 BYTE (1 byte) Each bit of the input/output 
BYTE represents the 
input/output of the 
corresponding channel. 

- 

8064 8064 1 BYTE (1 byte) Each bit of the output BYTE 
represents the output of the 
corresponding channel. 

- 

8065 8065 1 BYTE (1 byte) Each bit of the output BYTE 
represents the output of the 
corresponding channel. 

- 

8066 8066 1 BYTE (1 byte) Each bit of the output BYTE 
represents the output of the 
corresponding channel. 

- 

8068 8068 1 BYTE (1 byte) Each bit of the output BYTE 
represents the output of the 
corresponding channel. 

- 

8069 8069 1 BYTE (1 byte) Each bit of the output BYTE 
represents the output of the 
corresponding channel. 

- 

8077 8077 1 BYTE (1 byte) Each bit of the input/output 
BYTE represents the 
input/output of the 
corresponding channel. 

- 

87013 17013 4, 8, 12, 16 REAL (4 bytes) Float values of 
temperatures (in degree 
Celsius) 

- 

87017 17017 4,8,12,,32 REAL (4 bytes) Float values of voltage/ 
current 

- 

87018 17018 4,8,12,,32 REAL (4 bytes) Float values of voltage/ - 

139 



current 
87019 17019 4,8,12,,32 REAL (4 bytes) Float values of voltage/ 

current 
- 

87022 17022 4, 8 REAL (4 bytes) Float values of voltage in 
the range -10V to +10V. 

- 

87024 17024 4, 8, 12, 16 REAL (4 bytes) Float values of voltage in 
the range -10V to +10V. 

- 

87026 17026 4, 8 REAL (4 bytes) Float values of voltage in 
the range -10V to +10V. 

- 

87040 17040 1, 2, 3, 4 DWORD(4 bytes) Each bit of the input 
DWORD represents the 
input of the corresponding 
channel. 

- 

87041 17041 1, 2, 3, 4 DWORD(4 bytes) Each bit of the output 
DWORD represents the 
output of the corresponding 
channel. 

- 

87051 17051 1, 2 WORD (2 bytes) Each bit of the input WORD 
represents the input of the 
corresponding channel. 

- 

87052 17052 1 BYTE (1 byte) Each bit of the input BYTE 
represents the input of the 
corresponding channel. 

- 

87053 17053 1, 2 WORD (2 bytes) Each bit of the input WORD 
represents the input of the 
corresponding channel. 

- 

87054 17054 1 BYTE (1 byte) Each bit of the input/output 
BYTE represents the 
input/output of the 
corresponding channel. 

- 

87055 17055 1 BYTE (1 byte) Each bit of the input/output 
BYTE represents the 
input/output of the 
corresponding channel. 

- 

87057 17057 1, 2 WORD (2 bytes) Each bit of the output 
WORD represents the 
output of the corresponding 
channel. 

- 

87058 17058 1 BYTE (1 byte) Each bit of the input BYTE 
represents the input of the 
corresponding channel. 

- 

87063 17063 1 BYTE (1 byte) Each bit of the input/output 
BYTE represents the 
input/output of the 
corresponding channel. 

- 

87064 17064 1 BYTE (1 byte) Each bit of the output BYTE 
represents the output of the 
corresponding channel. 

- 

87065 17065 1 BYTE (1 byte) Each bit of the output BYTE 
represents the output of the 
corresponding channel. 

- 

87066 17066 1 BYTE (1 byte) Each bit of the output BYTE 
represents the output of the 
corresponding channel. 

- 

87068 17068 1 BYTE (1 byte) Each bit of the output BYTE - 

140 



represents the output of the 
corresponding channel. 

87069 17069 1 BYTE (1 byte) Each bit of the output BYTE 
represents the output of the 
corresponding channel. 

- 

  
The ‘Timeout’ values to be entered in parameter 3 of the driver parameters of 
a KinCon-8000 module runs from 0 to 65535. “0” means no timeout is set (for 
this module). Otherwise it specifies the value in milliseconds used for the 
following procedure: 

 
If the KinCon-8000 module is an input module and a task defined by the user 
needs values from this module and if current values are available these values 
will be transferred to the input address and the driver will ask for new values 
starting a new timeout period. 

 
If there are no current values available the previously retrieved data will be 
used instead and the amount of time (from the last start period to the actual 
time) will be measured. If this time exceeds the user defined timeout value of 
this module an I/O driver error will be reported via ProConOS to MULTIPROG 
(which can handle this error by defining a system task). (Note: A timeout error 
of a KinCon-8000 input module will lead to an additional error because the 
corresponding output for that task cycle in which the input error occurred will 
be skipped.) 

 
If the KinCon-8000 module is an output module and a task defined by the user 
wants to write out new data to the channels of that module the I/O-Driver will 
check if the previous data were already written. If so, a new timeout period 
starts. If not, the amount of time (from the last start period to the actual time) 
will be measured. If this time exceeds the user defined timeout value of this 
module an I/O driver error will be reported. 

 
For Remote I-7K/I87K Modules 

Driver name: The driver name of the KinCon I/O-Driver is “WinCon8x”. 
Parameter 1: The combinative number of COM port, baudrate index and  
     module address. 
Parameter 2: The module ID 
Parameter 3: The timeout value for this module. 
Parameter 4: 0 

 
Currently several KinCon modules of the I-87000 and I-7000 series are 
supported by the ProConOS. “WinCon8x” IO-Driver. The following list 
describes these remote modules briefly. 
 
For communicating via COM port, we have to configure the COM port 
parameters first. Parameter 1 is a combinative number of COM port, baudrate 
index and module address. The rule is: 

141 



  parameter 1 = a x 212 + b x 28 + c 
  a is COM port number (2 ~ 9) 
    b is Baudrate index (0 ~ 7) 
      index 0: 1200 

      index 1: 2400 
     index 2: 4800 
     index 3 :9600 
     index 4: 19200 

index 5: 38400 
     index 6: 57600 
     index 7: 115200 
   c is Module address (0 ~ 255) 
  

For example: 
If the COM port number is 2, baudrate is 9600, and module address is 1, the 
parameter 1 is  
2 x 212 + 3 x 28 + 1 = 8961 

 
The “Module ID” is the ID to enter as parameter 2 of the drivers setting. 
The “Address width” shows the allowed entries (in bytes) for the width of the I/O 
address in the I/O Group. 

 
The “Address value type” explains how these address are interpreted, i.e. 
which data types will be used for that address. 

 
The “Address value” describes what kind of data will be read/written. 

 
Module name Module 

ID 
Address 

width 
Address value 

type 
Address value 

7011, 7011P 7011 4 REAL (4 bytes) Float values of temperatures (in 
degree Celsius) 

7012, 7012F 7012 4 REAL (4 bytes) Float values of voltage/ current 
7013 7013 4 REAL (4 bytes) Float values of temperatures (in 

degree Celsius) 
7014 7014 4 REAL (4 bytes) Float values of voltage/ current 
7015 7015 4, 8, 12, .. 24 REAL (4 bytes) Float values of temperatures (in 

degree Celsius) 
7016 7016 4, 8 REAL (4 bytes) Float values of voltage/ current 
7017, 7017F 
7017C, 7017FC, 
7017R, 7017RC, 
7017FR,7017RC 

7017 4, 8, 12, .. 32 REAL (4 bytes) Float values of voltage/ current 

7018, 7018P, 
7018BL, 7018R  

7018 4, 8, 12, .. 32 REAL (4 bytes) Measure V, mV, mA, 
temperature(Wiht thermocouple 
sensor) 

7019R 7019 4, 8, 12, .. 32 REAL (4 bytes) Measure V, mV, mA, 
temperature(Wiht thermocouple 
sensor) 

7021, 7021P 7021 4 REAL (4 bytes) Float values of voltage/ current 
7022 7022 4, 8 REAL (4 bytes) Float values of voltage/ current 

142 



7024 7024 4, 8, 12, 16 REAL (4 bytes) Float values of voltage/ current 
7033 7033 4,8,12 REAL (4 bytes) Float values of temperatures (in 

degree Celsius) 
7041 7041 1, 2 WORD (2 bytes) Each bit of the input WORD 

represents the input of the 
corresponding channel. 

7042 7042 1, 2 WORD (2 bytes) Each bit of the output WORD 
represents the output of the 
corresponding channel. 

7043 7043 1, 2 WORD (2 bytes) Each bit of the output WORD 
represents the output of the 
corresponding channel. 

7044 7044 1 BYTE (1 byte) Each bit of the input/output 
BYTE represents the 
input/output of the 
corresponding channel. 

7045 7045 1, 2 WORD (2 bytes) Each bit of the output WORD 
represents the output of the 
corresponding channel. 

7050, 7050A 7050 1 BYTE (1 byte) Each bit of the input BYTE 
represents the input of the 
corresponding channel. 

7051 7051 1, 2 WORD (2 bytes) Each bit of the input WORD 
represents the input of the 
corresponding channel. 

7052 7052 1 BYTE (1 byte) Each bit of the input BYTE 
represents the input of the 
corresponding channel. 

7053 7053 1, 2 WORD (2 bytes) Each bit of the input WORD 
represents the input of the 
corresponding channel. 

7055 7055 1 BYTE (1 byte) Each bit of the input/output 
BYTE represents the 
input/output of the 
corresponding channel. 

7058 7058 1 BYTE (1 byte) Each bit of the input BYTE 
represents the input of the 
corresponding channel. 

7059 7059 1 BYTE (1 byte) Each bit of the input BYTE 
represents the input of the 
corresponding channel. 

7060 7060 1 BYTE (1 byte) Each bit of the input/output 
BYTE represents the 
input/output of the 
corresponding channel. 

7063, 7063A, 
7063B 

7063 1 BYTE (1 byte) Each bit of the input BYTE 
represents the input of the 
corresponding channel. 

7065, 7065A, 
7065B 

7065 1 BYTE (1 byte) Each bit of the input/output 
BYTE represents the 
input/output of the 
corresponding channel. 

7066 7066 1 BYTE (1 byte) Each bit of the output BYTE 
represents the output of the 
corresponding channel. 

143 



7067 7067 1 BYTE (1 byte) Each bit of the output BYTE 
represents the output of the 
corresponding channel. 

87013 17013 4, 8, 12, 16 REAL (4 bytes) Float values of temperatures (in 
degree Celsius) 

87017 17017 4,8,12,,32 REAL (4 bytes) Float values of voltage/ current 
87018 17018 4,8,12,,32 REAL (4 bytes) Float values of voltage/ current 
87019 17019 4,8,12,,32 REAL (4 bytes) Float values of voltage/ current 
87022 17022 4, 8 REAL (4 bytes) Float values of voltage in the 

range -10V to +10V. 
87024 17024 4, 8, 12, 16 REAL (4 bytes) Float values of voltage in the 

range -10V to +10V. 
87026 17026 4, 8 REAL (4 bytes) Float values of voltage in the 

range -10V to +10V. 
87040 17040 1, 2, 3, 4 DWORD(4 bytes) Each bit of the input DWORD 

represents the input of the 
corresponding channel. 

87041 17041 1, 2, 3, 4 DWORD(4 bytes) Each bit of the output DWORD 
represents the output of the 
corresponding channel. 

87051 17051 1, 2 WORD (2 bytes) Each bit of the input WORD 
represents the input of the 
corresponding channel. 

87052 17052 1 BYTE (1 byte) Each bit of the input BYTE 
represents the input of the 
corresponding channel. 

87053 17053 1, 2 WORD (2 bytes) Each bit of the input WORD 
represents the input of the 
corresponding channel. 

87054 17054 1 BYTE (1 byte) Each bit of the input/output 
BYTE represents the 
input/output of the 
corresponding channel. 

87055 17055 1 BYTE (1 byte) Each bit of the input/output 
BYTE represents the 
input/output of the 
corresponding channel. 

87057 17057 1, 2 WORD (2 bytes) Each bit of the output WORD 
represents the output of the 
corresponding channel. 

87058 17058 1 BYTE (1 byte) Each bit of the input BYTE 
represents the input of the 
corresponding channel. 

87063 17063 1 BYTE (1 byte) Each bit of the input/output 
BYTE represents the 
input/output of the 
corresponding channel. 

87064 17064 1 BYTE (1 byte) Each bit of the output BYTE 
represents the output of the 
corresponding channel. 

87065 17065 1 BYTE (1 byte) Each bit of the output BYTE 
represents the output of the 
corresponding channel. 

87066 17066 1 BYTE (1 byte) Each bit of the output BYTE 
represents the output of the 

144 



corresponding channel. 
87068 17068 1 BYTE (1 byte) Each bit of the output BYTE 

represents the output of the 
corresponding channel. 

87069 17069 1 BYTE (1 byte) Each bit of the output BYTE 
represents the output of the 
corresponding channel. 

 
Modbus Address V.S. Internal Address 

The mapping relationship between ‘Internal address’ and ‘Modbus address’ in 
KinCon-8000 is as below. 

 
Modbus Address Internal Address Rule 

Modbus Coil 
[0xxxxx][1xxxxx] 

%MX a.b.c a=0 
b=(modbus address - 1)/8 
c=(modbus address - 1)%8 

Modbus Register 
[3xxxxx][4xxxxx] 

%MW a.b a=0 
b=modbus address - 1 

 
For example: 

 Output Coil   [000002]    %MX 0.0.1 
 Output Register  [400003]    %MW 0.2 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

145 



Modbus TCP/RTU Master FBs 
 
MB_TCPInit 
This function initializes the socket you want to create. 
 
FBD 

 
ST 
MB_TCPInit_1(iTimeOut:=(* INT *),tcpipport:=(* INT *),tcpipaddr:=(* STRING *), 
iSocketNumber:=(* INT *)); 
(* INT *):=MB_TCPInit_1.Result; 
 
Name Data Type Description 
iTimeOut INT Specifies the timeout (Response time) value for 

communication. 
tcpipport INT The port number of the target Modbus/TCP device. 
tcpipaddr STRING The IP address of the target Modbus/TCP device. 
iSocketNumber INT The socket ID number which’s range is from 0 to 255. 
Result INT 1 indicates success. (Please refer to the APPENDIX - 

Error list and description) 
 
Remarks 
Before you use the following Modbus/TCP function, you have to call this function to 
initialize your socket. 
 
 
MB_TCPClos 
This function close the existing socket which you created using MB_TCPInit. 
 
FBD 

 
ST 
MB_TCPClos_1(iSocketNumber:=(* INT *)); 
 

146 



Name Data Type Description 
iSocketNumber INT The socket ID number which’s range is from 0 to 255. 

 
Remarks 
If you don’t want to use the socket anymore, you had better call this function to close the 
socket. 
 
MB_TCPRCS 
This function allows you to read continuous coil statuses from the Modbus/TCP device. 
 
FBD 

 
ST 
MB_TCPRCS_1(iRecv:=(* MB_R_Coils *),iFuncNumber:=(* INT *),iCount:=(* INT *), 
iStartAddress:=(* INT *),iSlaveNumber:=(* INT *),iSocketNumber:=(* INT *)); 
(* MB_R_Coils *):=MB_TCPRCS_1.iRecv; 
(* UINT *):=MB_TCPRCS_1.Result; 
 
Name Data Type Description 
iRecv MB_R_Coils The array which contains coil statuses. The size of array must 

be no more than 256. 
iFuncNumber INT The function number is either 1 or 2 which depends on your 

Modbus/TCP device. 
iCount INT The count of the coils you want to read. It must be no more than 

256. 
iStartAddress INT The decimal starting address of the coils you want to read. 
iSlaveNumber INT The slave number of your Modbus/TCP device.(ANY) 
iSocketNumber INT The socket ID number you used to create using MB_TCPInit. 
Result UINT 1 indicates success. (Please refer to the APPENDIX - Error 

list and description) 
 
Remarks 
This function uses modbus function number 1 or 2. 
 
 
MB_TCPWC 
This function allows you to write a coil status to the Modbus/TCP device. 

147 



 
FBD 

 
ST 
MB_TCPWC_1(iCoilStatus:=(* INT *),iCoilAddress:=(* INT *),iSlaveNumber:=(* INT *), 
iSocketNumber:=(* INT *)); 
(* UINT *):=MB_TCPWC_1.Result; 
 
Name Data Type Description 
iCoilStatus INT The coil status you want to give. 1 indicates TRUE. 0 indicates 

FALSE. 
iCoilAddress INT The decimal address of the coil you want to write. 
iSlaveNumber INT The slave number of your Modbus/TCP device.(ANY) 
iSocketNumber INT The socket ID number you used to create using MB_TCPInit. 
Result UINT 1 indicates success. (Please refer to the APPENDIX - Error 

list and description) 
 
Remarks 
This function uses modbus function number 5. 
 
 
MB_TCPWCS 
This function allows you to write several coil statuses to the Modbus/TCP device. 
 
FBD 

 
ST 
MB_TCPWCS_1(iCoilStatus:=(* MB_W_Coils *),iCount:=(* INT *),iCoilAddress:=(* INT 
*), iSlaveNumber:=(* INT *),iSocketNumber:=(* INT *)); 
(*MB_W_Coils *):=MB_TCPWCS_1.iCoilStatus; 

148 



(* UINT *):=MB_TCPWCS_1.Result; 
 
Name Data Type Description 
iCoilStatus MB_W_Coils The array which contains coil statuses. The size of array must 

be no more than 256. 
iCount INT The count of the coils you want to write. It must be no more 

than 256. 
iCoilAddress INT The decimal starting address of the coils you want to write. 
iSlaveNumber INT The slave number of your Modbus/TCP device.(ANY) 
iSocketNumber INT The socket ID number you used to create using MB_TCPInit. 
Result UINT 1 indicates success. (Please refer to the APPENDIX - Error 

list and description) 
 
Remarks 
This function uses modbus function number 15. 
 
 
MB_TCPRRS 
This function allows you to read continuous register values from the Modbus/TCP 
device. 
 
FBD 

 
ST 
MB_TCPRRS_1(iRecv:=(* MB_R_Regs *),iFuncNumber:=(* INT *),iCount:=(* INT *), 
iStartAddress:=(* INT *),iSlaveNumber:=(* INT *),iSocketNumber:=(* INT *)); 
(* MB_R_Regs *):=MB_TCPRRS_1.iRecv; 
(* UINT *):=MB_TCPRRS_1.Result; 
 
Name Data Type Description 
iRecv MB_R_Regs The array which contains register values. The size of array must 

be no more than 100. 
iFuncNumber INT The function number is either 3 or 4 which depends on your 

Modbus/TCP device. 
iCount INT The count of the registers you want to read. It must be no more 

than 100. 
iStartAddress INT The decimal starting address of the registries you want to read. 
iSlaveNumber INT The slave number of your Modbus/TCP device.(ANY) 

149 



iSocketNumber INT The socket ID number you used to create using MB_TCPInit. 
Result UINT 1 indicates success. (Please refer to the APPENDIX - Error 

list and description) 
 
Remarks 
This function uses modbus function number 3 or 4. 
 
 
MB_TCPWR 
This function allows you to write a register value to the Modbus/TCP device. 
 
FBD 

 
ST 
MB_TCPWR_1(iRegStatus:=(* INT *),iRegAddress:=(* INT *),iSlaveNumber:=(* INT *), 
iSocketNumber:=(* INT *)); 
(* UINT *):=MB_TCPWR_1.Result; 
 
Name Data Type Description 
iRegStatus INT The register value you want to give. The range is from -32768 

to 32767. 
iRegAddress INT The decimal address of the register you want to write. 
iSlaveNumber INT The slave number of your Modbus/TCP device.(ANY) 
iSocketNumber INT The socket ID number you used to create using MB_TCPInit. 
Result UINT 1 indicates success. (Please refer to the APPENDIX - Error 

list and description) 
 
Remarks 
This function uses modbus function number 6. 
 
 
MB_TCPWRS 
This function allows you to write several register values to the Modbus/TCP device. 
 
 
 
 
 
 

150 



FBD 

 
ST 
MB_TCPWRS_1(iRegStatus:=(* MB_W_Regs *),iCount:=(* INT *),iRegAddress:=(* INT 
*), iSlaveNumber:=(* INT *),iSocketNumber:=(* INT *)); 
(* MB_W_Regs *):=MB_TCPWRS_1.iRegStatus; 
(* UINT *):=MB_TCPWRS_1.Result; 
 
Name Data Type Description 
iRegStatus MB_W_Regs The array which contains register values. The size of array must 

be no more than 100. The range is from -32768 to 32767. 
iCount INT The count of the registers you want to write. It must be no more 

than 100. 
iRegAddress INT The decimal starting address of the register you want to write. 
iSlaveNumber INT The slave number of your Modbus/TCP device.(ANY) 
iSocketNumber INT The socket ID number you used to create using MB_TCPInit. 
Result UINT 1 indicates success. (Please refer to the APPENDIX - Error 

list and description) 
 
Remarks 
This function uses modbus function number 16. 
 
MB_RTUInit 
This function initializes the COM port you want to create. 
 
FBD 

 
 
 

151 



ST 
MB_RTUInit_1(iTimeOut:=(* INT *),iStopBit:=(* INT *),iDataBit:=(* INT *),iParity:=(* INT 
*),iBaudrate:=(* INT *),iPortNumber:=(* INT *)); 
(* UINT *):=MB_RTUInit_1.Result; 
 
Name Data Type Description 
iTimeOut INT Specifies the timeout (Response time) value for 

communication. 
iStopBit INT 1 means 1 stop bit 

2 means 2 stop bits 
3 means 1.5 stop bits 

iDataBit INT Specifies the number of bits in the bytes transmitted and 
received. 

iParity INT 0 means No parity 
1 means Even 
2 means Mark 
3 means Odd 
4 means Space 

iBaudrate INT The baud rate of COM port which should be equal to the target 
Modbus/RTU device. 

iPortNumber INT The COM port number which’s range is from 2 to 9. 
Result UINT 1 indicates success. (Please refer to the APPENDIX - Error 

list and description) 
 
Remarks 
Before you use the following Modbus/RTU function, you have to call this function to 
initialize your COM. 
 
MB_RTUClos 
This function close the existing COM port which you created using MB_RTUInit. 
 
FBD 

 
ST 
MB_RTUClos_1(iSocketNumber:=(* INT *)); 
 
Name Data Type Description 
iPortNumber INT The COM port number you used to create using MB_RTUInit. 

 
Remarks 
If you don’t want to use the COM port anymore, you had better call this function to close 
the COM port. 
 
MB_RTURCS 
This function allows you to read continuous coil statuses from the Modbus/RTU device. 

152 



 
FBD 

 
ST 
MB_RTURCS_1(iRecv:=(* MB_R_Coils *),iFuncNumber:=(* INT *),iCount:=(* INT *), 
iStartAddress:=(* INT *),iSlaveNumber:=(* INT *),iPortNumber:=(* INT *)); 
(* MB_R_Coils *):=MB_RTURCS_1.iRecv; 
(* UINT *):=MB_RTURCS_1.Result; 
 
Name Data Type Description 
iRecv MB_R_Coils The array which contains coil statuses. The size of array must 

be no more than 256. 
iFuncNumber INT The function number is either 1 or 2 which depends on your 

Modbus/RTU device. 
iCount INT The count of the coils you want to read. It must be no more than 

256. 
iStartAddress INT The decimal starting address of the coils you want to read. 
iSlaveNumber INT The slave number of your Modbus/RTU device. 
iPortNumber INT The COM port number you used to create using MB_RTUInit. 
Result UINT 1 indicates success. (Please refer to the APPENDIX - Error 

list and description) 
 
Remarks 
This function uses modbus function number 1 or 2. 
 
 
MB_RTUWC 
This function allows you to write a coil status to the Modbus/RTU device. 
 
 
 
 
 
 
 
 
 

153 



FBD 

 
ST 
MB_RTUWC_1(iCoilStatus:=(* INT *),iCoilAddress:=(* INT *),iSlaveNumber:=(* INT *), 
iPortNumber:=(* INT *)); 
(* UINT *):=MB_RTUWC_1.Result; 
 
Name Data Type Description 
iCoilStatus INT The coil status you want to give. 1 indicates TRUE. 0 indicates 

FALSE. 
iCoilAddress INT The decimal address of the coil you want to write. 
iSlaveNumber INT The slave number of your Modbus/RTU device. 
iPortNumber INT The COM port number you used to create using MB_RTUInit. 
Result UINT 1 indicates success. (Please refer to the APPENDIX - Error 

list and description) 
 
Remarks 
This function uses modbus function number 5. 
 
 
MB_RTUWCS 
This function allows you to write several coil statuses to the Modbus/RTU device. 
 
FBD 

 
ST 
MB_RTUWCS_1(iCoilStatus:=(* MB_W_Coils *),iCount:=(* INT *),iCoilAddress:=(* INT 
*), iSlaveNumber:=(* INT *),iPortNumber:=(* INT *)); 
(* MB_W_Coils *):=MB_RTUWCS_1.iCoilStatus; 
(* UINT *):=MB_RTUWCS_1.Result; 

154 



Name Data Type Description 
iCoilStatus MB_W_Coils The array which contains coil statuses. The size of array must 

be no more than 256. 
iCount INT The count of the coils you want to write. It must be no more 

than 256. 
iCoilAddress INT The decimal starting address of the coils you want to write. 
iSlaveNumber INT The slave number of your Modbus/RTU device. 
iPortNumber INT The COM port number you used to create using MB_RTUInit. 
Result UINT 1 indicates success. (Please refer to the APPENDIX - Error 

list and description) 
 
Remarks 
This function uses modbus function number 15. 
 
MB_RTURRS 
This function allows you to read continuous register values from the Modbus/RTU 
device. 
 
FBD 

 
ST 
MB_RTURRS_1(iRecv:=(* MB_R_Regs *),iFuncNumber:=(* INT *),iCount:=(* INT *), 
iStartAddress:=(* INT *),iSlaveNumber:=(* INT *),iPortNumber:=(* INT *)); 
(* MB_R_Regs *):=MB_RTURRS_1.iRecv; 
(* UINT *):=MB_RTURRS_1.Result; 
 
Name Data Type Description 
iRecv MB_R_Regs The array which contains register values. The size of array must 

be no more than 100. 
iFuncNumber INT The function number is either 3 or 4 which depends on your 

Modbus/RTU device. 
iCount INT The count of the registers you want to read. It must be no more 

than 100. 
iStartAddress INT The decimal starting address of the registers you want to read. 
iSlaveNumber INT The slave number of your Modbus/RTU device. 
iPortNumber INT The COM port number you used to create using MB_RTUInit. 
Result UINT 1 indicates success. (Please refer to the APPENDIX - Error 

list and description) 

155 



Remarks 
This function uses modbus function number 3 or 4. 
 
MB_RTUWR 
This function allows you to write a register value to the Modbus/RTU device. 
 
FBD 

 
ST 
MB_RTUWR_1(iRegStatus:=(* INT *),iRegAddress:=(* INT *),iSlaveNumber:=(* INT *), 
iPortNumber:=(* INT *)); 
(* UINT *):=MB_RTUWR_1.Result; 
 
Name Data Type Description 
iRegStatus INT The register value you want to give. The range is from -32768 

to 32767. 
iRegAddress INT The decimal address of the register you want to write. 
iSlaveNumber INT The slave number of your Modbus/RTU device. 
iPortNumber INT The COM port number you used to create using MB_RTUInit. 
Result UINT 1 indicates success. (Please refer to the APPENDIX - Error 

list and description) 
 
Remarks 
This function uses modbus function number 6. 
 
MB_RTUWRS 
This function allows you to write several register values to the Modbus/RTU device. 
 
FBD 

 

156 



ST 
MB_RTUWRS_1(iRegStatus:=(* MB_W_Regs *),iCount:=(* INT *),iRegAddress:=(* INT 
*), iSlaveNumber:=(* INT *),iPortNumber:=(* INT *)); 
(* MB_W_Regs *):=MB_RTUWRS_1.iRegStatus; 
(* UINT *):=MB_RTUWRS_1.Result; 
 
Name Data Type Description 
iRegStatus MB_W_Regs The array which contains register values. The size of array must 

be no more than 100. The range is from -32768 to 32767. 
iCount INT The count of the registers you want to write. It must be no more 

than 100. 
iRegAddress INT The decimal starting address of the register you want to write. 
iSlaveNumber INT The slave number of your Modbus/RTU device. 
iPortNumber INT The COM port number you used to create using MB_RTUInit. 
Result UINT 1 indicates success. (Please refer to the APPENDIX - Error 

list and description) 
 
Remarks 
This function uses modbus function number 16. 
 
 
Error list and description 

Code Description I/O Unit Min Max 
Code Define Description 
101 MB_OPEN_PORT_ERROR Open COM/TCP Port error 
102 MB_PORTNO_OVER COM Port is 1 - 8 
103 MB_PORT_NOT_OPEN COM/TCP Port does not open yet 
104 MB_FUN_ERROR Modbus Fun. No. error 
105 MB_READ_COUNT_OVER reading Count of Register or Bits is over range 

RTU: 120 register, 1920 coils 
ASCII: 60 register, 960 coils 
TCP: 120 register, 1920 coils 

106 MB_SLAVENO_OVER Modbus Slave No. must be 1 - 247 
107 MB_ADDRESS_OVER Register or Coil Address must count from 1 
108 MB_COMM_TIMEOUT Comm. timeout 
109 MB_CRC_ERROR RTU CRC Check error 
110 MB_LRC_ERROR ASCII LRC Check error 
111 MB_INVALID_SOCKET Initial Socket error 
112 MB_TCP_CONNECT_ERROR Connect Remote Modbus Server error 
113 MB_TCP_SEND_ERROR Send TCP Data error 
114 MB_TCP_TIMEOUT Waiting Modbus Response Timeout 
115 MB_WSA_INIT_ERROR WSA Startup error 
116 MB_TCP_SOCKET_ERROR Create Socket error 
117 MB_TCP_BIND_ERROR TCP Server Bind error 
118 MB_TCP_LISTEN_ERROR TCP Server Listen error 

it has data from remote Modbus Master 
reading Count of Register or Bits is over range 
RTU: 120 register, 1920 coils 
ASCII: 60 register, 960 coils 
TCP: 120 register, 1920 coils 

119 
120 

MB_TCP_HAS_DATA 
MB_WRITE_COUNT_OVER 

 

157 



158 

Demo List 
MultiProg Project Description 

My_First_Project_Rt_Mb.zwt Project of Quick_Start_Guide 
MBMasterDemo.zwt Modbus Master Demo Project   
MultiLanguage.zwt IEC-61131 Language Demo Project 

ProVisIt Project Description 
Demo1_800x600.vwt ProVisIt demo showing basic component from ICPDAS 
MotorControl.vwt ProVisIt project of Quick_Start_Guide 
 
 


	Package List
	INTRODUCTION
	ABOUT THIS MANUAL

	PART 1: KinCon-8000 Overview
	Ordering Information
	Hardware Specification
	KinCon-8x4x Front View
	Definition of Rotary SW
	Specifications

	Software Tools
	Windows CE Settings
	WinCon Utility
	DCON Utility for I-87K Module Settings

	VCEP 4.2
	KinCon-8000 Configuration
	Register
	Configuration


	PART 2: MULTIPROG
	DEVELOPING A SAMPLE PROJECT
	PHASE 1 
	CREATING A NEW PROJECT USING THE PROJECT WIZARD
	STARTING THE PROJECT WIZARD
	USING THE PROJECT WIZARD

	PHASE 2 
	DEVELOPING THE LD CODE
	INSERTING A LD NETWORK
	DECLARING THE PROPERTIES
	INSERTING A COUNTER USING THE EDIT WIZARD
	INSERTING THE COUNTER 'RESET' CONTACT
	DECLARING THE PROPERTIES OF THE COUNTER'S
	'RESET' CONTACT
	INSERTING A SECOND LD NETWORK AND EDITING
	NETWORK DESCRIPTION COMMENTS

	PHASE 3 
	COMPILING THE EXAMPLE PROJECT
	'MAKING' THE PROJECT
	HANDLING ERRORS AND MESSAGES

	PHASE 4
	DOWNLOADING THE PROJECT TO THE IO SIMULATION OR KinCon-8000
	Download to Simulation
	Download to KinCon-8000

	PHASE 5
	DEBUGGING THE PROJECT
	DEBUG MODE
	ONLINE EDITING
	CROSS REFERENCE WINDOW
	VARIABLES WATCH WINDOW
	FORCING AND OVERWRITING
	BREAKPOINTS

	PHASE 6 
	PRINTING THE PROJECT DOCUMENTATION
	SELECTING A PRINTER
	SETTING THE PAGELAYOUT
	PRINTING THE PROJECT
	PRINT PREVIEW
	PRINTING A SINGLE WORKSHEET

	USING THE I/O CONFIGURATION
	Using Simulation
	Using KinCon-8000

	CREATING AN USER DEFINED FUNCTION
	CHANGING THE TASK CYCLE TIME
	Using Retain Variable
	Using Modbus TCP Slave
	Using Modbus RTU Slave
	Using Modbus TCP/RTU Master

	PART 3: THE OPC SERVER
	INTRODUCTION
	ADDING AN OPC RESOURCE
	On PC:
	On KinCon-8000:

	GENERATING THE CSV FILE
	PREPARING AND DOWNLOADING THE PROJECT
	WITH OPC DATA
	USING THE OPC TEST CLIENT

	PART 4: PROVISIT
	PREPARING THE SAMPLE PROJECT FOR THE
	VISUALIZATION
	DESIGNING A VISUALIZATION PROJECT
	CREATING A NEW VISUALIZATION PROJECT
	SETTING THE VISUALIZATION SCREEN PROPERTIES
	VISUALIZING THE 'ACTUAL_TIME' VARIABLE BY A
	DYNAMIC RECTANGLE
	VISUALIZING THE 'VISU_MOTOR_START' CONTACT BY
	A LIBRARY PUSH BUTTON
	VISUALIZING THE 'VISU_EMERGENCY_STOP'
	CONTACT BY A LIBRARY EMERGENCY SWITCH
	VISUALIZING THE VARIABLE 'PRESSED' BY A LIBRARY
	LCD ELEMENT
	VISUALIZING THE 'MOTOR' COIL BY A LIBRARY LED
	VISUALIZING THE RUNNING MOTOR USING A SELF
	DESIGNED OBJECT AND A SCRIPT

	SWITCHING THE VISUALIZATION TO RUNTIME
	Downloading Project to KinCon-8000 

	APPENDIX
	IEC PROJECT COMPONENTS IN THE
	PROGRAMMING SYSTEM
	PROGRAM ORGANIZATION UNITS (POUS)

	INSTANTIATION OF POUS AND FUNCTION BLOCKS
	VARIABLES AND DATA TYPES
	VARIABLE TYPES
	VARIABLES ADDRESSES
	DATA TYPES

	Driver Parameters
	For Embedded I-8K/I87K Modules
	For Remote I-7K/I87K Modules

	Modbus Address V.S. Internal Address
	Modbus TCP/RTU Master FBs
	MB_TCPInit
	MB_TCPClos
	MB_TCPRCS
	MB_TCPWC
	MB_TCPWCS
	MB_TCPRRS
	MB_TCPWR
	MB_TCPWRS
	MB_RTUInit
	MB_RTUClos
	MB_RTURCS
	MB_RTUWC
	MB_RTUWCS
	MB_RTURRS
	MB_RTUWR
	MB_RTUWRS

	Error list and description
	Demo List


