5.1 Modbus protocol format : Modbus RTU Serial

PC or HMI devices can accesse to the data of variables of I-8xx7 controllers if the variables are declared with a unique "Network address". Please refer to section 1.3.3 ~ 1.3.5 for the cabling between PC to I-8xx7 controllers.

The modbus format should be exactly correct to make link possible. I-8xx7 controllers support the following Modbus functions.

Modbus function
Action

1
read N bits (booleans)

2
read N bits (booleans)

3
read N words (short integers)

4
read N words (short integers)

5
write 1 bit (boolean)

6
write 1 word (short integer)

15
write N bits (booleans)

16
write N words (short integers)

For convenient representation, the following notations are used in this chapter.

slv
slave number (Net ID of I-8xx7)

nbw
number of words

nbb
number of bytes

nbi
number of bits

addH
network address, high byte , 0 ~ 3F

addL
network address, low byte , 0 ~ FF

vH
word value, high byte

vL
word Value, low byte

V
byte value

crcH
checksum, high byte , CRC-16

crcL
checksum, low byte , CRC-16

Notice : All the values in the request and answer frames are hexadecimal.

FUNCTION 1: read N bits

Read nbi bits (booleans) starting from network address addH/addL.

Req:
slv
01
addH
addL
00
nbi
crcH
crcL

Ans:
slv
01
nbb
 V0
 V1
…
crcH
crcL

V0, V1 … are bit field of nbb bytes with the following format.

[image: image1.wmf]Bit

 1

Bit

 9

Bit

 8

bit

nbi

V0

V1

V

nbb

0

0

0

0

Bit 1 correspond to the boolean value of the variables with network address addH/addL. Bit nbi correspond to the boolean value of the variable with network address addH/addL+nbi-1. If the value of the boolean variable is “TRUE”, the corresponding bit will be set to 1. If the value is “FALSE”, set to 0.
FUNCTION 2: read N bits

Function 2 has the same format as function 1.

FUNCTION 3: read N words

Read nbw words (short integer) starting from network address addH/addL.

Req:
slv
03
addH
addL
00
nbw
crcH
crcL

Ans:
slv
03
nbb
vH
 vL
…
crcH
crcL

nbb is the total byte numbers of all vH, vL.

Integer value can be read by function 3. Word is a 16 bit value, however integer variable is a 32 bit value, so only the lowest 16 bits of the integer variable are returned.

FUNCTION 4: read N words

Function 4 has the same format as function 3.

FUNCTION 5: write 1 bit

Write 1 bit to the boolean variable with network address addH/addL.

Req:
slv
05
addH
addL
 V
 0
crcH
crcL

Ans:
slv
05
addH
addL
 V
 0
crcH
crcL

Writing V to a non zero value will set the boolean variable to TRUE. Writing V to zero will set boolean variable to FALSE.
FUNCTION 6: write 1 word

Write 1 word to the integer variable with network address addH/addL.

Req:
slv
06
addH
addL
 vH
 vL
crcH
crcL

Ans:
slv
06
addH
addL
 vH
 vL
crcH
crcL

FUNCTION 15: write N bits

Write nbi bits to the boolean variables starting from network address addH/addL to addH/addL+nbi -1. nbb is the total bytes occupied by nbi bits, that is nbb=1 + nbi/8.

Req:
slv
 0F
addH
addL
00
nbi
nbb
V0
V1
…
crcH
crcL

Ans:
slv
 0F
addH
addL
00
nbi
crcH
crcL

The format of V0, V1, … is as following.

[image: image2.wmf]Bit

 1

Bit

 9

Bit

 8

bit

nbi

V0

V1

V

nbb

0

0

0

0

Bit 1 correspond to the boolean value of the variables with network address addH/addL. Bit nbi correspond to the boolean value of the variable with network address addH/addL+nbi-1. Writing bit to 1 will set the value of the correspnding boolean variable to “TRUE”. Writing bit to 0 will set the corresponding boolean variable to “FALSE”.
FUNCTION 16: write N words

Write nbw words to the integer variables starting from network address addH/addL to addH/addL+nbw -1. nbb is the total bytes occupied by nbw words, that is nbb=2*nbw.

Req:
slv
 10
addH
addL
00
nbw
nbb
vH
vL
…
crcH
crcL

Ans:
slv
 10
addH
addL
00
nbw
crcH
crcL

Examples:

Function 1: Read 15 bits starting from network address 0x1020. The NET ID is 1.

Req:
01
01
10
20
00
0F
79
04

Ans:
01
01
02
00
12
39
F1

It returns 2 bytes, the value are 0x0012. That is variables with network address 0x1029 and 0x102C are TRUE, all others are FALSE.

Function 5: Write 1 bit to the boolean variable with network address 0x0006. The NET ID is 1. The value to write is 0xFF.

Req:
01
05
00
06
FF
00
6C
3B

Ans:
01
05
00
06
FF
00
6C
3B

This example will set this boolean variable to TRUE.

Function 16: Write 2 words (4 bytes) to integer variables with network address starting from 0x2100. The first word value to write to is 0x1234. The second word value to write to is 0x5678. The NET ID is 1.

Req:
01
10
21
00
00
02
04
12
34
56
78
1C
CA

Ans:
01
10
21
00
00
02
4B
F4

5.2 Modbus protocol format : Modbus TCP/IP
All requests are sent via TCP on port No. 502.

Modbus TCP/IP protocol adds extra 6 bytes before “Modbus RTU serial” protocol and is packed inside the TCP/IP protocol.

TCP/IP
Extra 6 bytes
Modbus RTU serial
TCP/IP

The request and response are prefixed by six bytes as follows

byte 0: transaction identifier - copied by server

byte 1: transaction identifier - copied by server

byte 2: protocol identifier = 0

byte 3: protocol identifier = 0

byte 4: length field (upper byte) = 0 (since all messages are smaller than 256)

byte 5: length field (lower byte) = number of bytes following

It is the same as Modbus RTU serial protocol after byte 6 except the CRC-16 is not needed for Modbus TCP/IP.

byte 6: slave No.

byte 7: MODBUS function code

byte 8 on: data as needed

So an example transaction - read 1 word at network address 4 from slave No. 9 returning a value of 8 would be

request: 01 02 00 00 00 06 09 03 00 04 00 01

response: 01 02 00 00 00 05 09 03 02 00 08

Another sample - read 8 bits starting from network address 2 from slave No. 7 returning a value of 0x49 (bit field 01001001) would be

request: 03 29 00 00 00 06 07 01 00 02 00 08

response: 03 29 00 00 00 04 07 01 01 49

5.3 Algorithm of CRC-16 (only needed for Modbus RTU Serial)

The following rountines are written in C language. Call “crc_init()” one time at the beginning to init the checksum table. Then call “crc_make()” to calculate the checksum whenever it is need.
#define POLY_CRC16 0xA001

static BYTE TABLE1[256];

static BYTE TABLE2[256];

/* set crc table */

void crc_init(void)

{

 WORD mask,bit,crc,mem;

 for(mask=0;mask<0x100;mask++)

 {

 crc=mask;

 for(bit=0;bit<8;bit++)

 {

 mem=crc & 0x0001;

 crc/=2;

 if(mem!=0) crc ^= POLY_CRC16;

 }

 TABLE2[mask]=crc & 0xff;

 TABLE1[mask]=crc >> 8;

 }

}

/* calculate crc */

void crc_make(WORD size, BYTE *buff, BYTE *hi, BYTE *lo)

{

 BYTE car,i;

 BYTE crc[2];

 crc[0]=0xff;

 crc[1]=0xff;

 for(i=0;i<size;i++)

 {

 car = buff[i];

 car ^= crc[0];

 crc[0]=crc[1] ^ TABLE2[car];

 crc[1]=TABLE1[car];

 }

 *hi=crc[0];

 *lo=crc[1];

}
_1062012089.doc

 Vnbb

V0

V1

bit nbi

Bit 1

Bit 8

Bit 9

 0

 0

 0

 0

