
7188E/843X/844X/883X/884X

Networking Library User’s Manual

Warranty
All products manufactured by ICP DAS are warranted against defective
materials for a period of one year from the date of delivery to the original
purchaser.

Warning
ICP DAS assume no liability for damages consequent to the use of this
product. ICP DAS reserves the right to change this manual at any time
without notice. The information furnished by ICP DAS is believed to be
accurate and reliable. However, no responsibility is assumed by ICP
DAS for its use, nor for any infringements of patents or other rights of
third parties resulting from its use.

Copyright
Copyright 2004 by ICP DAS. All rights are reserved.

Trademark
The names used for identification only may be registered trademarks of
their respective companies.

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 1

Table of Contents

1. INTRODUCTION ... 4

1.1 PACKAGE LIST & RELEASE NOTES.. 4
1.2 WHY! ETHERNET SOLUTIONS ... 5
1.3 THE 7188EX, 7188EA & 7188EN SERIES .. 6
1.4 TCP/IP 4-LAYER MODEL... 8
1.5 INTERNET ADDRESS .. 8
1.6 CONNECTION-ORIENTED PROTOCOL... 9
1.7 CONNECTIONLESS PROTOCOL ... 10

2. SOFTWARE INSTALLATION... 11

3. COMPILING & LINKING .. 12

3.1 USING TC++... 12
3.2 USING BC ++ 3.1 .. 14

4. BSD SOCKET INTERFACE ... 18

4.1 ABOUT BSD SOCKETS .. 18
4.1.1 Accept .. 21
4.1.2 Bind ... 22
4.1.3 Closesocket.. 23
4.1.4 Connect.. 24
4.1.5 fcntlsocket.. 26
4.1.6 gethostbyname... 27
4.1.7 gethostbyname_r ... 28
4.1.8 getpeername .. 29
4.1.9 getsockname .. 30
4.1.10 getsockopt, setsockopt .. 31
4.1.11 ioctlsocket ... 33
4.1.12 listen ... 34
4.1.13 readsocket... 35
4.1.14 recv ... 36
4.1.15 recvfrom.. 38
4.1.16 recvmsg... 40
4.1.17 selectsocket ... 41
4.1.18 send... 43
4.1.19 sendmsg .. 45

Page 2 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

4.1.20 sendto ..46
4.1.21 shutdown..47
4.1.22 socket ...48
4.1.23 writesocket...49

5. DYNAMIC PROTOCOL INTERFACE ..50

5.1 OVERVIEW...50
5.2 BLOCKING VERSUS NON-BLOCKING OPERATION ..50
5.3 INITIALIZATION AND TERMINATION...50

5.3.1 Ninit..51
5.3.2 Nterm..52
5.3.3 Portinit ...53
5.3.4 Portterm ...55

5.4 CONNECTIONS..56
5.5 OPEN, CLOSE, READ, AND WRITE ..57

5.5.1 Nopen ...58
5.5.2 Nclose...61
5.5.3 Nread..62
5.5.4 Nwrite...64

5.6 DYNAMIC PROTOCOL INTERFACE MACROS ...66
5.6.1 SOCKET_NOBLOCK...67
5.6.2 SOCKET_BLOCK ..67
5.6.3 SOCKET_ISOPEN ...67
5.6.4 SOCKET_HASDATA..68
5.6.5 SOCKET_CANSEND ...68
5.6.6 SOCKET_TESTFIN..68
5.6.7 SOCKET_MAXDAT ...68
5.6.8 SOCKET_RXTOUT..69
5.6.9 SOCKET_IPADDR ..69
5.6.10 SOCKET_OWNIPADDR...69
5.6.11 SOCKET_PUSH..69
5.6.12 SOCKET_FIN..70
Broadcasting Example..70
Non-Blocking Operations Example ..71

APPENDIX...73

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 3

1. Introduction

1.1 Package List & Release Notes
Package List
In addition to this manual, all packages includes the following items:

 One 7188E hardware module
 One user’s manual (this manual)
 One release note
 One software utility disk or CD
 One download cable, CA0915

Note: If any of these items are missing or damaged, contact the local
distributors for more information. Save the shipping materials and
cartons in case you want to ship in the future.

Release Note

It is recommended to read the release note & README.TXT first.
The release note is given in the shipping. The README.TXT is given in
the CD\README.TXT. Some important information are given in the
release note & CD\README.TXT

Order Information
Call distributor for details.

Page 4 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

1.2 Why! Ethernet Solutions

“Embedded Internet” and “Embedded Ethernet” are hot topics today.

Nowadays, the Ethernet protocol has become the de-facto standard for
local area networks. Via the Internet, connectivity is spreading into many
different areas, from home appliances to vending machines, from testing
equipment to UPS...etc. Many embedded designers now face dilemma
of adding an Ethernet interface to their products, either for use with local
networks or for connecting to the Internet. Solutions to this problem
include both hardware and software. Connecting via Ethernet requires a
software protocol called TCP/IP. The installed base of Ethernet
networks is vast and growing quickly. Most office buildings, factories,
and new homes have an installed Ethernet network. With Ethernet, the
network is always available. Using Ethernet for network in industrial
areas is appealing because the required cabling is already installed.

The 7188E series are a series of embedded controllers designed to

meet the most common requirements of Internet/Ethernet applications.
They can be used to replace the PC or PLC for the harsh environment.

The 7188E series provide one on-board 10BASE-T port that is

directly driven by a NE2000 compatible Ethernet controller. The
10BASE-T port is equipped with a RJ-45 connector. The 10BASE-T
interface supports the max. cable length (100 meters) between 7188E &
a hub. To link the 7188E & the other device through a 10BASE_T hub,
simply use two straight-through cables: one cable connects to 7188E;
the other cable connects the hub to the other device.

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 5

1.3 The 7188EX, 7188EA & 7188EN Series

The I-7188EX is powered by a 80188-40 processor with 512K bytes

of static RAM, and 512K bytes of Flash memory. One serial RS-232 port
and one RS-485 port are provided. The Ethernet support is provided by
a NE-2000 compatible controller with 16K bytes of on-chip buffer
memory and 10Base-T media interface. The I-7188EX also provides 14
user defined I/O lines. A cost-effective I/O expansion board with A/D,
D/A, relays drivers and protected inputs are available. The I-7188EX
also supports a battery backup SRAM board and Flash-Rom board,
providing non-volatile mass storage from 128K bytes megabytes to 64
megabytes. The 10BASE-T port is equipped with a RJ-45 connector.
The 10BASE-T interface supports a max. of 100 meters of Cable length
between the I-7188EX and the network hub.

Compared to the I-7188EX, the I-7188EA adds seven open-collector

output channels and six digital Input channels. The I/O Expansion bus
has been occupied by a D/I/O expansion board.

The I-7188EX, Embedded Internet/Ethernet Controller, focuses on

embedded control applications while the I-7188EN, Internet
Communication Controller, focuses on communication applications and
applications dependant on different embedded firmware programs. The
Internet Communication Controller can be used as Device Server,
Addressable Ethernet to RS-232/485/422 Converter, or Embedded
Internet/Ethernet Controller. The user should refer to the comparison
table to choose the product that best suit their needs. Currently, we offer
a wide range of Internet Communication Controllers, such as the
I-7188E1/E2/E3/E4/E5/E8. Except the RTC circuitry, the basic hardware
of the I-7188EN is similar to the I-7188EX. Since there are too many
Configurations for the I-7188EN series product, an OEM or ODM
version is welcomed.

Page 6 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 7

1.4 TCP/IP 4-layer model

s

1.5

class A

class B

class C

class

Page 8
Application Layer

Transport Layer

Network Layer

Physical Layer1

2

3

4 TELNET, FTP, SMTP, DNS

TCP , UDP

IP, ICMP, ARP, RARP

Packet radio, Ethernet

l

 In

D

71
Figure 1: TCP/IP protocol suite using a 4-layer mode

ternet Address

01

01 1

01 1 1

NetID0

7 bits 24 bits

Host ID

Host IDNetID

NetID Host ID

Multicast address

14 bits 16 bits

21 bits 8 bits

28 bits

.

88E/843X/844X/883X
Figure 2: Internet Address
/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

 Network Mask:
Class A: 255.0.0.0
Class B: 255.255.0.0
Class C: 255.255.255.0
Class D: Multicast address

1.6 Connection-Oriented Protocol

blocks until connection
 from client

bind()

listen()

accept()

recv()

socket()

connect()

socket()

send()

recv()

connection required

connection established

Client side data sent

Server side reply

Server

send()

for example: "How are you?"

For example: "Fine thank you."

Client

F

2004.11 7188E
igure 3: Connection-Oriented Protocol (TCP)
/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 9

1.7 Connectionless Protocol

blocks until data is
receiced from client

bind()

recvfrom()

socket()

bind()

socket()

sendto()

recvfrom()

Client side data sent

Server side reply

Server

sendto()

Client

 Figure 4: Connectionless Protocol (UDP).

Page 10 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

2. Software Installation

 For the 7188E/843X/883X/844X/884X series
The software for the 7188E/843X/883X/844X/884X consists of one
CD-ROM.

Directories of CD-ROM: Napdos\MiniOS7\tcpip_lib
For example:

D:\8000\Napdos\MiniOS7\tcpip_lib>xcopy/e/s *.* c:\tcpip\.

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 11

3. Compiling & linking
User must use C Language when writing programs. You can use

TC++, BC++, MSC or MSVC++（before 1.52）. Please take care of the
following items:

 Generate a standard DOS executable program.
 Select CPU=80188/80186.
 Select EMULATION if floating point computation is required.(can not

select 8087)

3.1 Using TC++

 Select standard code:
 Options Application…

 Select EMULATION , 80186 , Debug info in OBJs cancel:
Option Compiler Advanced Code Generation…

7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

Page 12

 Select None Source Debugging

Option Debugger

 Select large mode:
Options Compiler Code generation…

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 13

3.2 Using BC ++ 3.1

Step 1: Create a new project.

1.1

1.2 1.3

1.4

Step 2: Add all necessary files into the project.

2.1

Page 14 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

2.2

Step 3: Set Code generation options.

3.2

3.1

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 15

Step 4: Set Advanced code generation options.

4.1

4.4

4.3

4.2

Step 5: Set Debugger options.

5.2

5.1

Page 16 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

Step 6: Make the project.

6

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 17

4. BSD Socket Interface

4.1 About BSD Sockets
The BSD 4.3 sockets are the closest thing there is to a standard user
interface to TCP/IP. However, they can only be approximated on a non-
UNIX system, because many UNIX functions interact with sockets.
Writing New Code
For somebody who already knows the BSD sockets, writing any new
code using them makes sense. (The Dynamic Protocol Interface (Refer
to Chapter 5) needs quite a bit less space, but the difference in speed is
not significant.) To support these users, we have made the sockets as
similar to 4.3 BSD sockets as reasonably possible. These points may
require special attention:

• Symbolic error codes are not perfectly standardized across
different UNIX systems. ICPDAS uses the Solaris names.

• The typical UNIX use of errno is not reentrant. If this becomes
critical, use getsockopt() to get the last error code.

• The function gethostbyname() is not reentrant. Use
gethostbyname_r() instead if this is critical.

• You can’t mix files and sockets. For instance, you can’t use a
selectsocket() to wait for either a keyboard character or a
network packet.

• Avoid non-blocking mode if multitasking is used.

Structures and Definitions
Many of the BSD socket routines use a pointer to structure sockaddr,
which specifies network address information. The sockaddr structure is
a generic structure that can be used with a number of different
communications protocols. ICPDAS only uses the Internet Protocol (IP),
and therefore only requires the use of the Internet structure sockaddr_in.
Values are assigned to sockaddr_in and passed into the socket routine
via the sockaddr parameter. This requires a typecast to sockaddr *.
The discussion of the connect() function provides an example. Here are
the structure definitions:

struct sockaddr { /* generic socket address */

Page 18 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

unsigned short sa_family; /* address family */
char sa_data[14]; /* up to 14 bytes of address */
};
In practice, this is used almost as a void pointer. The true Internet address
structure is:
struct in_addr { /* Internet address */
unsigned long S_addr;
};
struct sockaddr_in { /* Internet socket address */
short sin_family;
unsigned short sin_port;
struct in_addr sin_addr;
char sin_zero[8];
};

Please refer to tcpip.h for more details. (ICPDAS CD
Napdos\MiniOS7\tcpip_lib\)

BSD Socket Interface Functions
The BSD Socket Interface provides these function calls:
• accept() accepts a connection on a socket.
• bind() binds a name to a socket.
• closesocket() closes a socket.
• connect() initiates a connection on a socket.
• fcntlsocket() controls socket flags.
• gethostbyname() returns the IP address that corresponds to a

host name.
• getpeername() extracts the remote address information for a

socket.
• getsockname() extracts the local address information for a socket.
• getsockopt() gets options on sockets.
• ioctlsocket() sets control parameters for a socket.
• listen() listens for connections.
• readsocket() receives a message from a socket ID.
• recv() receives a message.
• recvfrom() receives a message from a connection.
• recvmsg() establishes a connection and receives a message.
• selectsocket() waits for activity on a set of sockets.
• send() sends a message on an established connection.

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 19

• sendmsg() sends a message that can be split between buffers.
• sendto() establishes a connection and sends a message.
• setsockopt() sets options on sockets (described with getsockopt).
• shutdown() shuts down part of a connection.
• socket() creates a socket.
• writesocket() sends a message to a socket.

Most functions return a value of -1 in case of an error. The error code is
stored in errno, and can also be retrieved using the getsockopt()
function, as in the following example:

int errcode, errlen;

i1 = connect(s, (struct sockaddr *)&socka, sizeof(socka));
if (i1 < 0)
{

i1 = errno;
if (getsockopt(s, SOL_SOCKET, SO_ERROR, &errcode, &errlen) >= 0)
i1 = errcode;
Print(“connect: error %d\n”, i1);/* additional error handling */

}

Here the value of errno is saved before calling getsockopt(), in case
this
call fails and causes errno to be overwritten. The getsockopt() function
should be used when possible in multitasking systems because errno is
not reentrant. If a call to socket() returns -1, there is no socket number
to refer to when trying to retrieve the error code. In this case, the error
code must be retrieved from errno.
The gethostbyname() functions return a pointer to a host data
structure.
If these functions fail, then a null pointer is returned.

Page 20 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

4.1.1 Accept
 Description: Accepts a connection on a socket.
 Syntax :int accept(int s, struct sockaddr * name, int * namelen);
 Input Parameter:
s Socket identifier.
name On return, this provides information about the remote end
of the connection.
Namelen On entry, this is a pointer to an integer containing the size
of the name structure, and on return this pointer points to
the size of the returned structure. This size will not change.

The accept() call is used by a server application to perform a passive
open for a socket. The socket will remain in the LISTEN state until a
client establishes a connection with the port offered by the server. The
return value from this function is an identifier for a newly created socket
over which communication with the remote client can occur. The original
socket remains in the LISTEN state, and can be used in a subsequent
call to accept() to provide additional connections.

 Reference: socket, bind, listen
 Return Value

-1 Error.
>= 0 Socket identifier for the established connection.

 Example

int s1, s2;
int socksz;
struct sockaddr_in socka;
…
socksz = sizeof(socka);
memset(&socka, 0, sizeof(socka));
socka.sin_family = AF_INET;
s2 = accept(s1, (struct sockaddr *)&socka,
&socksz);
if (s2 < 0)
Print(“Error in accept\n”);

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 21

4.1.2 Bind
 Description :Binds a name to a socket.
 Syntax :int bind(int s, struct sockaddr * name, int namelen);
 Input Parameter:

s Socket identifier.
name Structure that identifies the remote end of the connection.
The sin_family member of the structure can be left as 0 to accept
connections on any attached network interface.
Namelen Size of name.

A server application uses the bind() function to specify the local Internet
address and port number for a connection. The port number is the port
that the server will be listening on. A call to bind() can also optionally be
called by a client application before calling connect().

 Reference: socket, listen, accept, closesocket

 Return Value
-1 Error.
0 Success. The Internet address and port number have been
associated with the local end of the socket.

 Example
int rc; /* return code */
int s; /* socket identifier */
struct sockaddr_in socka; /* local port, etc */
…
memset(&socka, 0, sizeof(socka));
socka.sin_family = AF_INET;
socka.sin_port = htons(1100);

rc = bind(s, (struct sockaddr *)&socka,
sizeof(socka));
if (rc < 0)
Print(“Error in bind\n”);
In this example, 1100 is the local port number to be used. A client
performing a connect() to this server would also use port number 1100.

Page 22 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

4.1.3 Closesocket
 Description :Closes a socket.
 Syntax :int closesocket(int s);
 Input Parameter:

s Socket identifier.
The closesocket() function is used to close a socket. This function is
the
same as the regular BSD Sockets close() function, but it has been
renamed to avoid conflicts with the close() function that operates on file
descriptors.

 Reference: socket
 Return Value

-1 Error.
0 Close was successful.

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 23

4.1.4 Connect
 Description : Initiates a connection on a socket.
 Syntax :int connect(int s, struct sockaddr * name, int namelen);
 Input Parameter:

s Socket identifier.
Name Structure that identifies the remote end of the connection.
Namelen Size of name.

The connect() function performs an active open, allowing a client
application to establish a connection with a remote server. The name
structure is used to specify the Internet address and port number for the
remote end of the connection. The Internet address is usually retrieved
using the gethostbyname_r() function.

 Reference: closesocket
 Return Value

-1 Error.
0 Success. A connection has been established with the remote
server.

 Example
int rc; /* return code */
struct sockaddr_in socka; /* internet address */
/* and port number */
struct hostent hostent; /* for retrieving IP */
/* address from host */
unsigned char buff[BUFFLEN + 1];
…
memset(&socka, 0, sizeof(socka));
socka.sin_family = AF_INET;
gethostbyname_r(“host1”, &hostent, buff,
sizeof(buff), &rc);
if (rc < 0)
Print(“Error: gethostbyname_r\n”);
memcpy((char *)&socka.sin_addr,
(char *)hostent.h_addr_list[0], Iid_SZ);
socka.sin_port = htons(1100);
rc = connect(s, (struct sockaddr *)&socka,
sizeof(socka));
if (rc < 0)

Page 24 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

Print(“Error connecting to remote server\n”);
Here you can see that &socka which is of type sockaddr_in * must be
cast to a sockaddr * since this is what is expected by connect(). This
refers back to the previous discussion on structures and definitions.

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 25

4.1.5 fcntlsocket
 Description :Controls socket flags.
 Syntax :int fcntlsocket(int s, int cmd, int arg);
 Input Parameter:

s Socket identifier.

The networking commands are:
F_GETFL get flags
F_SETFL set flags
This should of course be fcntl, but we append “socket” to this to avoid
naming conflicts.
The fcntlsocket() function allows a socket to be set to use non-blocking
semantics, and also allows the current setting to be retrieved.
Networking uses only one flag: FNDELAY (or O_NDELAY; both names
seem to be in use) for non-blocking I/O.

 Reference: Non-blocking sockets in Chapter 5, Dynamic Protocol
Interface.

 Return Value
The return value is -1 for error, 0 for successful SETFL, the current
value of the flags for successful GETFL.

Page 26 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

4.1.6 gethostbyname
 Description :Returns the IP address that corresponds to a host

name.
 Syntax :struct hostent *gethostbyname(char * name);
 Input Parameter:

name The name of the host for which the IP address should be
obtained.

The gethostbyname() function is not reentrant. The
gethostbyname_r() function should be used in situations where
reentrancy is a requirement.
The name is normally of the form “hostname”, but “host/network” can
be used when you want to talk using a specific port or network
connection.

 Reference: gethostbyname_r
 Return Value

0 IP address could not be obtained.
!= 0 IP address is in the returned structure.

 Example
hostentp = gethostbyname(“testserver”);
if (hostentp != 0)
memcpy((char *)&socksav.sin_addr,
(char *)hostentp->h_addr_list[0], 4);

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 27

4.1.7 gethostbyname_r
 Description :Returns the IP address that corresponds to a host

name.
 Syntax :struct hostent * gethostbyname_r(char * name, struct

hostent* result, char * buff, int buflen, int * errcod);
 Input Parameter:

name The name of the host for which the IP address should be
obtained.
Result Structure in which the IP address should be stored. buff
Scratch buffer, which should provide at least 32 bytes.
Buflen Size of buff.
Errcod Return code from function.

The name is normally of the form “hostname”, but “host/network” can
be used when you want to talk using a specific port or network
connection.
The IP address of the host is placed into the structure hostent. This
function is reentrant and is available in many but not all 4.3 BSD
implementations.

 Reference: gethostbyname
 Return Value

0 IP address could not be obtained.
!= 0 IP address is in the returned structure.
The hostent structure is defined as follows:
struct hostent {
char *h_name; /* name for host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses */
};

 Example
if (gethostbyname_r(“testserver”, &hostentp,
buff, sizeof(buff),&errval))
memcpy((char *)&socksav.sin_addr,
(char *)hostentp->h_addr_list[0], 4);

Page 28 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

4.1.8 getpeername
 Description :Extracts the remote address information for a socket.
 Syntax :int getpeername(int s, struct sockaddr * name, int * namelen);
 Input Parameter:

s Socket identifier.
Name Structure into which the remote address information
should be stored.
Namelen A pointer to the length of the name structure.

The getpeername() function retrieves the remote address information
and stores it in the supplied structure.

 Return Value
-1 Error.
0 Remote address was retrieved.

 Example
struct sockaddr_in socka;
int rc; /* return value */
int s; /* socket identifier */
…
s = socket(PF_INET, SOCK_DGRAM, 0);
…
rc = getpeername(s, (struct sockaddr *)&socka,
&socksize);
if (rc < 0)
Print(“Error in getpeername\n”);

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 29

4.1.9 getsockname
 Description :Extracts the local address information for a socket.
 Syntax :int getsockname(int s, struct sockaddr * name, int * namelen);
 Input Parameter:

s Socket identifier.
Name Structure into which the local address information should
be stored.
Namelen A pointer to the length of the name structure.

The getsockname() function retrieves the local address information and
stores it in the supplied structure.

 Return Value
-1 Error.
0 Local address was retrieved.

 Example
struct sockaddr_in socka;
int rc; /* return value */
int s; /* socket identifier */
…
s = socket(PF_INET, SOCK_DGRAM, 0);
…
rc = getsockname(s, (struct sockaddr *)&socka,
&socksize);
if (rc < 0)
Print(“Error in getsockname\n”);

Page 30 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

4.1.10 getsockopt, setsockopt
 Description :Gets and sets options on sockets.
 Syntax :int getsockopt(int s, int level, int optname, char * optval, int * optlen);

int setsockopt(int s, int level, int optname, char * optval, int * optlen);
 Input Parameter:

s Socket handle.
level See Table 4-1 below.
Optname See Table 4-1 below.
Optval Pointer to option value.
Optlen Pointer to the size of the data stored in optval.
The functions in the following table manipulate socket options.

Table 4-1: Routines that Manipulate Socket Options

level optname Description
IPPROTO_IP IP_OPTIONS Options in IP Header

IPPROTO_TC
P

TCP_MAXSEG get TCP maximum segment

 TCP_NODELAY don’t delay send
SOL_SOCKET SO_BROADCAST permit broadcast
 SO_DEBUG debug flag
 SO_DONTROUTE no routing
 SO_ERROR get and clear error code
 SO_KEEPALIVE keepalive probing
 SO_LINGER linger on close
 SO_OOBINLINE leave URG data inline
 SO_RCVBUF receive buffer size
 SO_SNDBUF send buffer size
 SO_REUSEADDR local address reuse
 SO_TYPE get socket type
 Reference: fctlsocket, ioctlsocket

 Return Value

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 31

-1 Error.
0 Success. The optval pointer contains the option value for
getsockopt(); the option was set for setsockopt().
 Example

rc = setsockopt(s, SOL_SOCKET, SO_KEEPALIVE, 0, 0);
if (rc < 0)
Print(“Error in setsockopt\n”);

Page 32 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

4.1.11 ioctlsocket
 Description :Sets control parameters for a socket.
 Syntax :int ioctlsocket(int s, int request, char * arg);
 Input Parameter:

s
Socket identifier.

request
Request type
SIOCATMARK checks out-of-bound mark.

Arg
Optional argument.
arg is assigned 1 if the socket read is
at the out-of-bound mark, 0 otherwise. arg is of type “int *”.

The ioctlsocket() function behaves the same as the regular BSD
Sockets ioctl() function, except that it only accepts socket identifiers.
The optional third argument is used as a pointer for the result. There is
some variation in how this function is defined in BSD sockets: The
second argument may be “unsigned long”, and of course the variable
arguments are treated differently in non-ANSI C.
 Reference: getsockopt, setsockopt
 Return Value

-1 Error.
0 Operation successful.

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 33

4.1.12 listen
 Description :Listens for connections.
 Syntax :int listen(int s, int backlog);
 Input Parameter:

s
Socket identifier.

backlog
Specifies the number of connections that will be held in a queue
waiting to be accepted. This value includes connections that are in
the SYN_RCVD state and connections that are in the
ESTABLISHED state that have not yet been accepted by the
application.

The listen() function is part of the sequence of functions that are called
to perform a passive open. This call puts the socket into the LISTEN
state.

 Reference: socket, bind, accept
 Return Value

-1 Error.
0 Success.

 Example
int rc; /* return code */
int s; /* socket identifier */
…
rc = listen(s, 5);
if (rc < 0)
Print(“Error calling listen\n”);

Page 34 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

4.1.13 readsocket
Description :Receives a message from a socket ID.
Syntax :int readsocket(int s, char * buf, int len);

 Input Parameter:
s Socket identifier.
buf Buffer into which received data will be stored.
len Maximum number of bytes to be received.
The readsocket() function behaves the same as the regular BSD
Sockets

read() function, except that it only accepts socket identifiers.
 Reference: recv, recvfrom, recvmsg
 Return Value

-1 Error.
>= 0 Number of bytes received.

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 35

4.1.14 recv
 Description :Receives a message.
 Syntax :int recv(int s, char * buf, int len, int flags);
 Input Parameter:

s Socket identifier.
buf Buffer into which received data will be stored.
len Maximum number of bytes to be received.
flags Allows for these options:

MSG_OOB returns urgent data.
MSG_PEEK returns information, allowing it to be read again on a
subsequent call.The flag MSG_WAITALL is not supported.

 Reference: recvfrom, recvmsg
 Return Value

-1 Error.
>= 0 Number of bytes received.

The following error codes could be returned in errno or through
getsockopt() if recv() returns indicating an error:

EWOULDBLOCK

Only returns if the socket is set up as non-blocking. If thisis the case,
then a call to recv() can check for EWOULDBLOCK and try again
later, effectively polling.

EWTIMEDOUT
Would only be returned if previously the macro
SOCKET_RXTOUT was used to adjust the receive timeout of the
socket. The application could call recv()again later.

EOPNOTSUPP
1. The call to recv() asked for out-of-band data (the flags parameter
had MSG_OOB set), and none was available.
2. The call to recv() didn't ask for out-of-band data, and there is some
that needs to be received.

EBADF
Invalid socket handle. No need to close, since that call would return
an error as well.

ECONNABORTED
A definite fatal error. Usually results from a retransmission timeout or

Page 36 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

reception of a RST segment. Time to close the socket.
 Example

int rc; /* return code */
int s1, s2; /* socket identifiers */
unsigned char buff[BUFFLEN]; /* read buffer */
…
s2 = accept(s1, (struct sockaddr *)&socka,
&socksize);
…
rc = recv(s2, buff, 2, 0);
if (rc < 0)
Print(“Error receiving data.\n”);
else if (rc == 2)
Print(“Success: read 2 bytes\n”);
else
Print(Error: did not retrieve 2 bytes\n”);

Notice in this example that recv() uses the second socket identifier,
the one returned from the accept(), not the original socket which is
used as an argument to accept().

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 37

4.1.15 recvfrom
 Description :Receives a message from a connection.
 Syntax :int recvfrom(int s, char * buf, int len, int flags,

struct sockaddr * from, int * fromlen);
 Input Parameter:

s Socket identifier.
buf Buffer in which information will be stored.
len Number of bytes to receive.
Flags

Specifies optional behavior:
MSG_OOB returns urgent data.
MSG_PEEK returns information, allowing it to be read gain on a

subsequent call.
From

Specifies the remote host to which the connection should be made.
Fromlen

Size of the from data structure.
The recvfrom() function allows a connection to be made and a message
to be read from the connection. The flag MSG_WAITALL is not
supported.

 Reference: recv, recvmsg
 Return Value

-1 Error.
>= 0 Number of bytes received.

 Example

The accept() or connect() call is not needed here since recvfrom()
establishes the connection before reading.
int s1, s2; /* socket identifiers */
int rc; /* return code */
unsigned char buff[BUFFLEN]; /* read buffer */
struct sockaddr_in socka; /* remote host address */
…
memset(&socka, 0, sizeof(socka));
socka.sin_family = AF_INET;
gethostbyname_r(hnp, &hostent, buff, sizeof(buff),

Page 38 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

&i1);
if (i1 < 0)
{
Print(“%s not known\n”, hnp);
closesocket(s2);
return -1;
}
memcpy((char *)&socka.sin_addr,
(char *)hostent.h_addr_list[0], Iid_SZ);
socka.sin_port = htons(1100);
rc = recvfrom(s2, buff, 8, 0, (struct sockaddr
*)&socka, &socksize);
if (rc != 8)
Print(“Error in recvfrom\n”);

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 39

4.1.16 recvmsg
 Description :Receives a message.
 Syntax :int recvmsg(int s, msghdr * msg, int flags);
 Input Parameter:

s Socket identifier.
msg Pointer to structure that describes how received data should
be stored. This structure is shown below.
flags Specifies optional behavior:

MSG_OOB returns urgent data.
MSG_PEEK returns information, allowing it to be read again on a
subsequent call.

The recvmsg() function is the most general of the recv functions. This
function allows a connection to be established and read with one call.
The flag MSG_WAITALL is not supported.
Here is the definition of the msghdr structure:

struct msghdr { /* Message header for recvmsg */
char *msg_name; /* optional address */
int msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather arra */
int msg_iovlen; /* num of elems in msg_iov */
char *msg_accrights; /* access rights */
int msg_accrightslen;
};
struct iovec { /* address and length */
char *iov_base; /* base */
int iov_len; /* size */
};
 Reference: recv, recvfrom
 Return Value

-1 Error.
>= 0 Number of bytes received.

Page 40 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

4.1.17 selectsocket
 Description :Waits for activity on a set of sockets.
 Syntax :int selectsocket(int nfds, fd_set * readfds, fd_set

* writefds, fd_set * exceptfds, struct timeval * timeout);
 Input Parameter:

nfds
Number of sockets. Watch out for “off by one” errors.
For example, if the highest value of the descriptors that should be
evaluated is n, nfds should be set to n+1.

readfds
Socket identifiers for which selectsocket() should return if data
becomes available or the state of the socket changes.

writefds
Socket identifiers for which selectsocket() should return if the
socket can accept more data or if there is an error.

exceptfds
Socket identifiers for which selectsocket() should return if
out-of-band data is available.

timeout
Specifies time after which selectsocket() will return if none of the
specified conditions occurs.

This is a general UNIX routine, but handles sockets as well as files.
The fd_set structures specify which sockets (range 0 to nfds-1) are
considered.These macros can be used to manipulate fd_set:
FD_ZERO(&fd_set) clears the socket list
FD_SET(s, &fd_set) adds socket s
FD_CLR(s, &fd_set) removes socket s
FD_ISSET(s, &fd_set) non-zero if s included

When selectsocket() returns, there are bits in the fd-set structures
only for those sockets that satisfied the condition.
Structure timeval gives the timeout value:

struct timeval { /* Time-out format for select() */
long tv_sec; /* seconds */
long tv_usec; /* microseconds */
};

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 41

A NULL pointer means an infinite timeout. If the structure contains
the value 0, then the descriptors will be checked once and the call to
selectsocket() will return without delay. This is useful for
application-level polling.

 Return Value
-1 Error. Note that this should not occur in the current
implementation.
0 Timeout occurred.
>0 This number of sockets are ready for the requested operations.

 Example
int s1, s2, s3; /* sockets */
int rc; /* return code */
fd_set socket_set1, socket_set2;
…
FD_ZERO(&socket_set1);
FD_ZERO(&socket_set2);
FD_SET(s1, &socket_set1);
FD_SET(s3, &socket_set1);
FD_SET(s2, &socket_set2);
rc = selectsocket(3, socket_set1, socket_set2, 0,
NULL);

if (rc < 0)

Print(“Error, no sockets ready.\n”);
else

Print(“%d sockets ready.\n”, rc);
if (FD_ISSET(s1, &socket_set1))

Print(“Socket 1 is ready to be read.\n”);
else if (FD_ISSET(s2, &socket_set2))

Print(“Socket 2 is ready to be written\n”);
else if (FD_ISSET(s3, &socket_set3))

Print(“Socket 3 is ready to be read.\n”);
else

Print(“Error.\n”);

Page 42 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

4.1.18 send
 Description :Sends a message on an established connection.
 Syntax :int send(int s, char * buf, int len, int flags);
 Input Parameter:

s Socket identifier.
buf Pointer to data to be sent.
len Number of bytes to send.
flags

Allows for these options:
MSG_OOB sends the data as urgent data
MSG_DONTROUTE ensures that the message is
not sent through a default router.
The send() function can be used with sockets for which the
connection has previously been established.

 Reference: sendto, sendmsg
 Return Value

-1 Error.
>= 0 Number of bytes sent.
If send() returns indicating an error, the following error codes could
be returned in errno or through getsockopt():

EBADF

The socket descriptor is invalid, or another process is using the
socket at the moment.

ESHUTDOWN
The application has already requested that the sending side of the
socket be shut down. No further data can be sent through this
socket.

ECONNABORTED
An error has occurred on this socket. The socket should be closed.

EMSGSIZE
A non-stream socket has been asked to send more information
than can be written at once through the socket.

ENOBUFS
The system is out of buffers for sending data. The call to send()
can be retried later.

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 43

 Example
int s2; /* socket identifier */
int rc; /* return code */
unsigned char buff[BUFFLEN];
…
rc = send(s2, buff, sizeof(buff), 0);
if (rc < 0)
Print(“Error sending data\n”);

Page 44 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

4.1.19 sendmsg
 Description :Sends a message that can be split between buffers.
 Syntax :int sendmsg(int s, msghdr * msg, int flags);
 Input Parameter:

s Socket identifier.
msg Pointer to structure that describes the data to be sent. This
structure is shown below.
flags Specifies optional behavior:

MSG_OOB sends the data as urgent data
MSG_DONTROUTE ensures that the message is
not sent through a default router.
The sendmsg() function is a send function that allows the data to
be sent to be split into an array of buffers.
Here is the definition of the msghdr structure:

struct msghdr { /* Message header for recvmsg */
char *msg_name; /* optional address */
int msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather arra */
int msg_iovlen; /* num of elems in msg_iov */
char *msg_accrights; /* access rights */
int msg_accrightslen;
};
struct iovec { /* address and length */
char *iov_base; /* base */
int iov_len; /* size */
};

 Reference: send, sendto
 Return Value

-1 Error.
>= 0 Number of bytes sent

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 45

4.1.20 sendto
 Description :Send a message.
 Syntax :int sendto(int s, char * buf, int len, int flags, struct sockaddr *

to, int tolen);
 Input Parameter:

s Socket identifier.
buf Buffer from which information will be sent.
len Number of bytes to send.
flags Specifies optional behavior:

MSG_OOB sends the data as urgent data.
MSG_DONTROUTE ensures that the message is
not sent through a default router.

to Specifies the remote host to which the connection should
be made.
tolen Size of the to data structure.
The sendto() function allows a connection to be made and a
message to be written to the connection.

 Reference: send, sendmsg
 Return Value

-1 Error.
>= 0 Number of bytes sent.

 Example

rc = sendto(s, “HIJKLMNO”, 8, 0,
(struct sockaddr *)&socka, sizeof(socka));
if (rc < 0)
Print(“Error sending\n”);

Page 46 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

4.1.21 shutdown
 Description :Shuts down part of a connection.
 Syntax :int shutdown(int s, int how);
 Input Parameter:

s Socket identifier.
how Describes type of shutdown:
0 shuts down receive data path
1 shuts down send data path, TCP sends FIN
2 shuts down send and receive path

The shutdown() function is useful for fully specifying the limited closure
of a connection. Normally the closesocket() function is used to fully
close a connection.

 Reference: closesocket
 Return Value

-1 Error.
0 Shutdown successful.

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 47

4.1.22 socket
 Description :Creates a socket.
 Syntax :int socket(int domain, int type, int protocol);
 Input Parameter:

Domain
this should always be PF_INET.

type
one of three constants is for this parameter:
SOCK_STREAM stream socket (TCP/IP)
SOCK_DGRAM datagram socket (UDP/IP)
SOCK_RAW raw-protocol interface

protocol
This can be specified as 0.

A call to socket() will create a socket of the specified type. A socket
must be created before any other socket calls are used.

 Reference: closesocket
 Return Value

-1 Error.
>= 0 The newly created socket can be accessed through this
handle.
If socket() returns with an error indication, the value in errno or
obtained through getsockopt() can be interpreted as follows:
EPROTONOSUPPORT

The requested protocol is not available. Perhaps SOCK_STREAM
was specified, but TCP support is not configured for the underlying
stack.

 Example

int s; /* a socket */
…
s = socket(PF_INET, SOCK_DGRAM, 0);
if (s < 0)
Print(“Error opening socket\n”);

Page 48 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

4.1.23 writesocket
 Description :Sends a message to a socket.
 Syntax :int writesocket(int s, char * buf, int len);
 Input Parameter:

s Socket identifier.
buf Pointer to data to be sent.
len Number of bytes to send.
The writesocket() function behaves the same as the regular
BSD Sockets

write() function, except that it only accepts socket identifiers.
 Reference: send, sendto, sendmsg
 Return Value

-1 Error.
>= 0 Number of bytes sent.

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 49

5. Dynamic Protocol Interface

5.1 Overview
This Chapter details the usage of ICPDAS Dynamic Protocol Interface.
The Dynamic Protocol Interface provides a simple and efficient interface
to implement the Networking program.

5.2 Blocking Versus Non-Blocking
Operation

There are two modes of operation that affect how your application deals
with network events in a non-multitasking system: Blocking and
non-blocking.
Blocking is the default mode. This mode will halt processing while
waiting for a network event to complete or timeout. An example of this
would be a wait for a return from a TCP open. Blocking mode would halt
processing until the open returned a connection number or timed out.
This behavior is usually unsatisfactory for most embedded systems.
Non-blocking allows processing to continue while polling the status of
the network event. Non-blocking is desirable in a non-multitasking
system because it makes efficient use of CPU time while waiting for
network events to complete.
Non-blocking issues are addressed in the appropriate sections in this
chapter. An example of non-blocking is also given at the end of this
chapter.

5.3 Initialization and Termination
Ninit() performs general initialization, such as initialization of tables
and buffers. It must be the first network function called and can’t be
called again unless the function Nterm() has been called first.
Portinit() and Portterm() are used to initialize and shut down the
system’s network interfaces.
Detailed descriptions of these functions follow.

Page 50 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

5.3.1 Ninit
 Description: Performs general network initialization.
 Syntax: int Ninit(void);

Ninit() takes no parameters.
 Reference: Nterm, Portinit, Portterm
 Return Value

0 Success.
ENOBUFS

No buffers configured. Check tcpip.h variables
NCONFIGS

and NNETS.
USER

User-defined error return from LOCALSETUP() found in
tcpip.h.

 Example
main()
{
/* initialize all connections */
if (Ninit() < 0)
/* process error */
}5

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 51

5.3.2 Nterm
 Description :Shuts down networking.
 Syntax :int Nterm(void);

Nterm() takes no parameters. Any open network interfaces will be
shut down, so Portterm() does not need to be called before Nterm().
Network support can be restarted by making a call to Ninit().

 Reference: Ninit, Portinit, Portterm
 Return Value

0 Always returns 0.
 Example

/* shut down all network connections */
Nterm();

Page 52 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

5.3.3 Portinit
 Description :Initializes one or more network interfaces.
 Syntax: int Portinit(char * name);
 Input Parameter:

name If “*”, then all network interfaces for this system will be
initialized.
Portinit() initializes the specified network interfaces. Note that all
interfaces can be initialized all at once, or individually. The
initialization routine will prepare the device driver to transmit and
receive network frames, and will install and enable the interrupt
service routine for the network device driver.

 Reference: Ninit(), Nterm(), Portterm()
 Return Value

NE_PARAM
Parameter error. The device driver did not accept the initialization
string specified in tcpip.lib.

EHOSTUNREACH
The specified port (when “*” is not used) is not in tcpip.lib for this
host. This could also mean that the host name is wrong.

NE_HWERR
A hardware error occurred. Generally, this indicates an error with
the network controller.

5
 Examples

/* initialize all network interfaces */
main()
{

if (Ninit() < 0)
/* process error */
if (Portinit(“*”) < 0)
/* process error */

}

/* Initialize a specific network interface */
main()
{

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 53

if (Ninit() < 0)
/* process error */
if (Portinit(“com1”) < 0)
/* process error */

}

Page 54 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

5.3.4 Portterm
 Description :Shuts down one or more network interfaces.
 Syntax: int Portterm(char * name);
 Input Parameter:

name If “*”, then all network interfaces for this system will be shut
down.
Shuts down the specified network interfaces. Note that all interfaces
can be shut down at once, or individually. The shut down routine will
put the network controller into an idle state, and restore the interrupt
vector associated with the network device driver to its original state.
The shutdown is reversible: Just make another call to Portinit(). A
call to Portterm() can be omitted prior to calling Nterm(), because
Nterm() automatically calls Portterm().

 Reference: Ninit(), Nterm(), Portinit()
 Return Value

0 Always returns 0.
 Examples

/* shut down all network connections */
Portterm(“*”);
/* shut down a specific network connection */
Portterm(“com1”);

5

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 55

5.4 Connections
Connections behave very much like files: You can open and close a
connection, you can read data from it, and write data to it. The main
difference is that a connection has a user at each end, and a file has
only one user. The data you read is the data the other user wrote, and
vice versa.
The library offers the user two basic kinds of connections: TCP and
UDP. There are two primary differences:

 TCP performs error correction and flow control, and UDP does
not. You can read TCP like a local disk file: You want to check
for errors, but they should not occur and if they do you quit.
Doing this with UDP would be difficult, and writing applications
using UDP is quite cumbersome. It is best to leave UDP for
prewritten
applications, such as TFTP and BOOTP.

 UDP is a packet protocol, and TCP is a byte-stream protocol.
With TCP, you can’t predict with certainty how many bytes a read
will return, or how many reads you’ll need for a given amount of
data.

Port numbers are used to match the two ends of the connection. If
your local port number is my remote port and vice versa, then we
have a connection.
Normally one end performs an active open and the other a passive
open. The system performing a passive open is typically running a
server application. This system will wait until it receives an
indication from a client application performing an active open.
Connections

Page 56 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

5.5 Open, Close, Read, and Write
These four routines (plus the startup and shutdown) are the only user
level network functions required to write an application using
the Library. This might surprise you, especially if you have seen
network packages that go something like:
call TCPwrite
call Ipwrite
call DRIVERwrite
...
The library uses a table-driven protocol stack structure. Each protocol
level has only one public symbol: The name of the protocol table.
The library performs all necessary calls through these protocol tables.
The user only has to call a general high-level function that is the same
for all protocol configurations.
The open function specifies which protocols, and in which order, are
to be used. There are no restrictions on the protocol stack as such, but
of course not all combinations make sense.
Connections
5

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 57

5.5.1 Nopen
 Description :Opens a connection.
 Syntax: int Nopen(char * to, char * protoc, int lp, int rp, int

flags);
 Input Parameter:

to
String specifying the name of the remote system. This can take one
of the following forms:
“host” Remote host, shortest route.
“host/network” Remote host, using named network.
“*” Any host, used for passive open or broadcast.
“*/network” Any host, using named network.
“n1.n2.n3.n4” IP address of remote system.

protoc
String specifying the transport and network layer protocols,
separated by a slash. Typical values would be “TCP/IP”, “UDP/IP”
or “ICMP/IP”.

lp
Local port number. For an active open, this is often an ephemeral
port, and a suitable random value can be obtained using the utility
function Nportno(). For a passive open, the well-known port
number should be used.

rp
Remote port number. For an active open, this should be the
well-known port for the service used in the connection. For a
passive open, this value should be specified as 0, and any remote
port will be accepted for the connection.

flags
Normally 0, but for a non-blocking open, you can specify the flag
S_NOWA, and the call will return without blocking. In order to
determine if the connection is established, use the macro
SOCKET_ISOPEN(). Also, for UDP connections, you can use the
value S_NOCON to cause the connection to behave in a
connectionless manner.
When you specify S_NOCON, the connection will accept all UDP
messages directed to the local port, regardless of the originating IP

Page 58 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

address or UDP port.
This information is stored so that a call to Nread()
followed by a call to Nwrite() will respond to the source of the
message that was just read.

Nopen() is used for both active and passive opens. The behavior is
determined by the parameters supplied to the function. Several
examples follow to further illustrate the use of the function.
A passive open will wait indefinitely. An active open for TCP will
return when the connection has been made, but it times out in a
couple of minutes if there is no answer.

 Reference: Nclose(), Nread(), Nwrite()
 Return Value

conno
A return value >= 0 is a connection number.
This is the handle for further communication on the connection.

EHOSTUNREACH
Could not access the remote system.

ENOBUFS
NCONNS in tcpip.h is not large enough.

ETIMEDOUT
Timeout.

ECONNABORTED
Remote host refused the connection.

5
 Examples

/* An active open from host1 that causes TCP to send out
open requests to port 1000. The local port number is
dynamically and randomly assigned with the function
Nportno(). */
/* host1 */
int conno, myport; /* connection and port number */
myport = Nportno();
conno = Nopen(“host2”, “TCP/IP”, myport, 1000, 0);
if (conno < 0)
/* process error */
/* A passive open at host2 that waits for and accepts calls
from anyone who asks for port number 1000. This type of

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 59

open would be done by a server */
/* host2 */
int conno; /* connection number */
conno = Nopen(“*”, “TCP/IP”, 1000, 0, 0);
if (conno < 0)
/* process error */
/* A UDP open at host1 for hostA through port com1 would
look like this: */
/* host1 */
conno = Nopen(“hostA/com1”, “UDP/IP”, 1000, 1010, 0);
/* The port “com1” is a host1 port, not a hostA port. This
form of open may be needed if there are two connections
between host1 and hostA. In this manner, “com1” serves to
identify which connection is being opened. Note “com1”

Reference　 s field 2 in the network configuration table in
tcpip.lib */
/* To send and receive ICMP messages, you can use the form:
*/
/* host1 */
conno = Nopen(“host2”, “ICMP/IP”, 1000, 1010, 0);
Connections

/* This is a special situation; see, for instance, PING.C
for the use of ICMP. */
/* Perform a non-blocking OPEN and do some processing while
polling for the OPEN connection. */
conno = Nopen(“*”, “TCP/IP”, 1000, 0, S_NOWA);
if (conno < 0)
/* handle error condition */
while (!SOCKET_ISOPEN(conno))
/* perform other processing */

5

Page 60 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

5.5.2 Nclose
 Description :Closes a connection.
 Syntax: int Nclose(int conno);
 Input Parameter:

conno The connection number previously returned from a call to
Nopen().

Nclose closes a connection, possibly waiting for a complete close
handshake. In no case should the application retry the close. In some
cases (as with TCP), the connection block will actually be freed after
a minute or so, but this is automatic, and the application should not
touch the connection after the close.

 Reference: Nopen(), Nread(), Nwrite()
 Return Value

0 Normal close.
EBADF The connection number is invalid. No closing was
performed.
ECONNABORTED Protocol problem. If you have been writing
data to the other system, consider the dataunsafe. Connection is
closed.

 Example
int error; /* error code */
int conno; /* connection number */
error = Nclose(conno); /* close the connection */
if (error < 0)
/* process error */

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 61

5.5.3 Nread
 Description :Reads a message from a connection.
 Syntax: int Nread(int conno, char * buff, int len);
 Input Parameter:

conno Connection number.
buff Buffer to store message.
len Size of the buffer.

Reads a message from a connection into the specified buffer. For a
blocking socket, the call will block until information is available to be
read, or until a timeout occurs. The timeout can be adjusted using the
SOCKET_RXTOUT() macro.
For TCP connections, Nread() may return up to the maximum
amount of information that will fit in one internal message buffer.
This will be less than MAXBUF bytes. For UDP connections, the
data from the next UDP message will be returned.

 Reference: Nclose(), Nopen(), Nwrite()
 Return Value

0
The remote system has closed the connection.

count
Values > 0 indicate the number of bytes read.

EBADF
The connection number is not valid.

EWOULDBLOCK
Non-blocking connection can’t proceed.
Read would be retried.

ETIMEDOUT
Timeout. Read can be retried.

ECONNABORTED
Protocol problem. Normally the application should close the
connection.

EMSGSIZE
The message is too long for the supplied buffer.

Example
/* user defined input buffer size */
#define MAX_BUFFER_SIZE 80

Page 62 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

int error; /* error code */
int conno; /* connection Number */
char buff[MAX_BUFFER_SIZE]; /* data input buffer */
/* read data into “buff” from connection number “conno” */
error = Nread(conno, buff, sizeof(buff));
if (error < 0)

/* process error */
The constant MAX_BUFFER_SIZE could be replaced with the
constant MAXBUF defined in file tcpip.h. A call to Nread() cannot
return more than MAXBUF bytes.

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 63

5.5.4 Nwrite
 Description :Writes a message to a connection.
 Syntax: int Nwrite(int conno, char * buff, int len);
 Input Parameter:

conno Connection number.
buff Buffer containing message.
len Number of bytes to write.

Nwrite() writes a message to a connection from the specified buffer.
The largest buffer passed to Nwrite() should not exceed the value
given by the SOCKET_MAXDAT() macro. For TCP connections,
this will reflect the maximum segment size that is indicated by the
remote TCP when the connection is established. For UDP
connections, this value will reflect the MTU imposed by the link
layer. These values will generally be at least 256 bytes, so it is
reasonable to write out small buffers directly.

 Reference: Nclose(), Nopen(), Nread()
 Return Value

count
Values >= 0 indicate the number of byteswritten.

EBADF
The connection number is not valid.

ETIMEDOUT
Timeout. With TCP in blocking mode, this probably means the
other end did not send acknowledgments as expected. It could also
mean an extremely heavy system load and that a timeout occurred
before the acknowledgment could be received. The connection
should be closed. In nonblocking mode, the write should be retried.

ECONNABORTED
Protocol problem. Normally the application should close the
connection.5

EMSGSIZE
The message is too large for the internal buffer.

 Example
/* user defined output buffer size */
#define MAX_BUFFER_SIZE 80
int error; /* error code */

Page 64 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

int conno; /* connection Number */
char buff[MAX_BUFFER_SIZE]; /* data output buffer */
/* write data stored in “buff” to connection number “conno”
*/
error = Nwrite(conno, buff, sizeof(buff));
if (error < 0)
/* process error */
/* dynamically sized write buffer */
int error; /* error code */
int conno; /* connection Number */
int maxwrite; /* maximum write size */
char buff[MAXBUF]; /* data buffer */
/* write data stored in “buff” to connection number “conno”
*/
conno = Nopen(“host”, “TCP/IP”, Nportno(), 1050, 0);
if (conno < 0)
/* process error */
maxwrite = SOCKET_MAXDAT(conno);
error = Nwrite(conno, buff, maxwrite);
if (error < 0)
/* process error */

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 65

5.6 Dynamic Protocol Interface Macros
The following macros are useful for obtaining additional information
or setting control information for a connection, and are described in
this section:

 SOCKET_NOBLOCK sets the connection for non-blocking
operation.

 SOCKET_BLOCK sets the connection for blocking operation.
 SOCKET_ISOPEN checks to see if a connection has entered the

ESTABLISHED state.
 SOCKET_HASDATA checks to see if a message is available on a

connection.
 SOCKET_CANSEND checks to see if a connection can accept
data

to be written.
 SOCKET_TESTFIN checks to see if the remote end of the

connection has closed.
 SOCKET_MAXDAT provides the maximum size of a buffer than

can be written to a connection.
 SOCKET_RXTOUT sets the receive timeout for a connection.
 SOCKET_IPADDR provides the IP address of the remote end of

a connection.
 SOCKET_OWNIPADDR provides the IP address of the local end
of

a connection.
 SOCKET_PUSH sets the PSH flag on the next outgoing TCP

segment.
 SOCKET_FIN sets the FIN flag on the next outgoing TCP
segment. Connections

5

Page 66 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

5.6.1 SOCKET_NOBLOCK
 Description: Sets the connection for non-blocking operation.
 Syntax: SOCKET_NOBLOCK(conno)
 Input Parameter:

conno The connection for which non-blocking operation should be
set.

When non-blocking operation is set, calls to network functions that
normally would need to wait for network activity in order to be
completed will return the negative value EWOULDBLOCK when such a
condition is encountered.

5.6.2 SOCKET_BLOCK
 Description:Sets the connection for blocking operation.
 Syntax:SOCKET_BLOCK(conno)
 Input Parameter:

conno The connection for which blocking operation should be set.
When blocking operation is set, calls to network functions run to
completion, or return a timeout error if an associated time limit is
exceeded. Blocking operation is the default behavior for network
functions, and this call will only be needed to return a non-blocking
connection to blocking operation.

5.6.3 SOCKET_ISOPEN
 Description:Checks to see if a connection has entered the

ESTABLISHED state.
 Syntax:SOCKET_ISOPEN(conno)
 Input Parameter:

conno The connection that should be checked for the
ESTABLISHED state.

This macro will evaluate as 0 if the connection is not in the
ESTABLISHED state, and 1 if the connection is in the
ESTABLISHED state. This macro is useful for connections that call
Nopen() with the S_NOWA flag, so that after requesting a connection,
the connection can be checked to see if it has been established.

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 67

5.6.4 SOCKET_HASDATA
 Description: Checks to see if a message is available on a

connection.
 Syntax: SOCKET_HASDATA(conno)
 Input Parameter:

conno The connection that should be checked for an available
message.

This macro will evaluate as 0 if no information is available, or nonzero
if data is available.
5

5.6.5 SOCKET_CANSEND
 Description: Checks to see if a connection can accept data to be

written.
 Syntax: SOCKET_HASDATA(conno, len)
 Input Parameter:

conno
The connection that should be checked for room for writing.

len The amount of data to be written.
This macro will evaluate as 0 if the amount of data is more than can
be written out immediately, or non-zero if the data length specified
can be written.

5.6.6 SOCKET_TESTFIN
 Description: Checks to see if the remote end of the connection has

closed.
 Syntax: SOCKET_TESTFIN(conno)
 Input Parameter:

conno The connection that should be checked for a close from the
remote end.

This macro will evaluate as 0 if the remote end of the connection has
not yet closed, or non-zero if the remote system has closed.

5.6.7 SOCKET_MAXDAT
 Description:Provides the maximum size of a buffer than can be

Page 68 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

written to a connection.
 Syntax: SOCKET_MAXDAT(conno)
 Input Parameter:

conno The connection for which the maximum buffer size should be
determined

This macro will evaluate to the maximum number of bytes that can be
accepted by the connection in a call to Nwrite().

5.6.8 SOCKET_RXTOUT
 Description: Sets the receive timeout for a connection.
 Syntax: SOCKET_RXTOUT(conno, tout)
 Input Parameter:

Conno The connection for which the timeout is to be adjusted.
Tout The new timeout, in milliseconds.

5.6.9 SOCKET_IPADDR
 Description: Provides the IP address of the remote end of a

connection.
 Syntax: SOCKET_IPADDR(conno)
 Input Parameter:

conno The connection for which the remote IP address is to be
returned. The data type of the result is Iid.

5.6.10 SOCKET_OWNIPADDR
 Description: Provides the IP address of the local end of a

connection.
 Syntax: SOCKET_OWNIPADDR(conno)
 Input Parameter:

conno The connection for which the local IP address is to be
returned.

The data type of the result is Iid. This macro is useful for systems
that have more than one network interface. The IP address returned
will be that of the interface that is used for the connection.

5.6.11 SOCKET_PUSH
 Description: Sets the PSH flag on the next outgoing TCP segment.

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 69

 Syntax: SOCKET_PUSH(conno)
 Input Parameter:

conno The connection for which the next outgoing segment should
include the PSH flag.

The next TCP segment to be written following a call to this macro
will have the PSH flag set in the TCP header. This is useful for
indicating to the TCP on the remote system that all internally buffered
segments up through this segment should be delivered to the
application as soon as possible.

5.6.12 SOCKET_FIN
 Description: Sets the FIN flag on the next outgoing TCP segment.
 Syntax: SOCKET_FIN(conno)
 Input Parameter:

conno The connection for which the next outgoing segment should
include the PSH flag.

The next TCP segment to be written following a call to this macro will
have the FIN flag set in the TCP header. This is useful for shutting down
a connection at the same time that the last segment is sent. Following
the write, call Nclose() to finish closing the connection. Nclose() will not
send a FIN segment in this case.

 Examples
The following text provides examples of:
• Broadcasting
• Non-Blocking Operations

Broadcasting Example
For broadcasting messages to all hosts on the network, use host name
“*” in the active open, and then, do an Nwrite(). For instance:

host1:
conno = Nopen(“*/enet”, “UDP/IP”, 1010, 1000, 0);
.....
stat = Nwrite(conno, buf, len);
In this case, “enet” is the portname for the network, and “*”
represents all hosts. The receiving hosts’ open() would generally be
a passive open.

Page 70 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

host2:
conno = Nopen(“*”, “UDP/IP”, 1000, 0, 0);
....
stat = Nread(conno, buf, len);

The receiving hosts must be listening on the same port number that
the broadcasting host is sending to (e.g., 1000 in this case).
Broadcasting should only be used for data links that support it in
hardware, such as Ethernet. It should not be done at the TCP level.
If the broadcasting host connects to several networks, the open call
must specify the network name. Broadcasting is done to one network
only Examples

Non-Blocking Operations Example
The following example shows how to read using non-blocking
operations. Non-blocking writes will complicate an application quite a bit.
If no multi-task is used, there is really no alternative to non-blocking
operations. With multitasking, a heavy use (perhaps even any use) of
non-blocking mode is not recommended.

conno = Nopen(“*”, “TCP/IP”, 1001, 0, S_NOWA);
if (conno < 0) /* ERROR */
while (!SOCKET_ISOPEN(conno))
{
/* perform other work */
 YIELD();

 }
SOCKET_NOBLOCK(conno);
for (;;)
{

YIELD();
len = Nread(conno, buf, sizeof(buf));
if (len < 0)
if (len != EWOULDBLOCK)

break; /* error */
else
/* perform other work */

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 71

else if (len == 0)
break; /* other end closed */

else
{
/* process message */
}

}
stat = Nclose(conno);
if (stat < 0) /* ERROR */

Page 72 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.1.0) 2001.07

Appendix
Glossary
CHAP Challenge Handshake Authentication Protocol. A user
and password authentication method used by a PPP
connection. Both the user name and password are
encrypted.
DHCP Dynamic Host Configuration Protocol. The protocol
used by a host to request an IP address from a DHCP
server based on the host’s name.
DNS Dynamic Name Server. This is a machine which tells
remote hosts what their names are, based on their IP
addresses.
DPI Dynamic Protocol Interface. This is primary interface using stream
I/O-like function calls.
FTP File Transport Protocol. FTP is used to transfer files
using TCP connections through port 21 on an FTP
server.
Passive Open A passive open means a host attempts to open a
connection to any remote host wishing to establish a
connection. The host will remain in the Nopen()
function indefinitely until a connection is established.
TCP Transmission Control Protocol. TCP is a reliable
protocol that insures data is actually received at the
remote site.
TFTP Trivial File Transport Protocol. TFTP is used to
transfer files via a UDP connection through port 69 on
a TFTP server.
UDP User Datagram Protocol. UDP is a protocol designed
to send data packets to the remote site without
guaranteeing reception.

2004.11 7188E/843X/844X/883X/884X TCP/IP Library User’s Manual (Ver.2.0) Page 73

	Introduction
	Package List & Release Notes
	Why! Ethernet Solutions
	The 7188EX, 7188EA & 7188EN Series
	TCP/IP 4-layer model
	Internet Address
	Connection-Oriented Protocol
	Connectionless Protocol

	Software Installation
	Compiling & linking
	Using TC++
	Using BC ++ 3.1

	BSD Socket Interface
	About BSD Sockets
	Accept
	Bind
	Closesocket
	Connect
	fcntlsocket
	gethostbyname
	gethostbyname_r
	getpeername
	getsockname
	getsockopt, setsockopt
	ioctlsocket
	listen
	readsocket
	recv
	recvfrom
	recvmsg
	selectsocket
	send
	sendmsg
	sendto
	shutdown
	socket
	writesocket

	Dynamic Protocol Interface
	Overview
	Blocking Versus Non-Blocking Operation
	Initialization and Termination
	Ninit
	Nterm
	Portinit
	Portterm

	Connections
	Open, Close, Read, and Write
	Nopen
	Nclose
	Nread
	Nwrite

	Dynamic Protocol Interface Macros
	SOCKET_NOBLOCK
	SOCKET_BLOCK
	SOCKET_ISOPEN
	SOCKET_HASDATA
	SOCKET_CANSEND
	SOCKET_TESTFIN
	SOCKET_MAXDAT
	SOCKET_RXTOUT
	SOCKET_IPADDR
	SOCKET_OWNIPADDR
	SOCKET_PUSH
	SOCKET_FIN
	Broadcasting Example
	Non-Blocking Operations Example

	Appendix

